
CSC 411 Lecture 18: Kernels

Ethan Fetaya, James Lucas and Emad Andrews

University of Toronto

CSC411 Lec17 1 / 1

Today

Kernel trick

Representer theorem

CSC411 Lec17 2 / 1

Non-linear decision boundaries

We talk about SVM: max margin linear classifier

Linear is limiting, how do we get non-linear decision boundaries?

Feature mapping x→ φ(x)

How do we find good features?

If features are in a high dimension - high computational cost.

CSC411 Lec17 3 / 1

Motivation

Let’s say that we want a quadratic decision boundary

What feature mapping do we need?

One possibility (ignore arbitrary
√

2 for now)

φ(x) = (1,
√

2x1, ...,
√

2xd ,
√

2x1x2,
√

2x1x3, ...
√

2xd−1xd , x
2
1 , ..., x

2
d)

Pairwise is over i < j

We have dim(φ(x)) = O(d2), could be problematic for large d .

How can this be addressed?

CSC411 Lec17 4 / 1

Kernel Trick Idea

Linear algorithms are based on inner-product

What if you could compute the inner product without computing
φ(x)?

Our previous example:

φ(x) = (1,
√

2x1, ...,
√

2xd ,
√

2x1x2,
√

2x1x3, ...
√

2xd−1xd , x
2
1 , ..., x

2
d)

What is K (x, y) = 〈φ(x), φ(y)〉?

〈φ(x), φ(y)〉 = 1 +
d∑

i=1

2xiyi +
d∑

i ,j=1

xixjyiyj = (1 + 〈x, y〉)2

We can compute K in O(d) memory and compute time!

K is called the (polynomial) kernel.

CSC411 Lec17 5 / 1

Kernel SVM

SVM dual form objective: w =
∑
αi t

(i)x(i)

max
αi≥0
{

N∑
i=1

αi −
1

2

N∑
i,j=1

t(i)t(j)αiαj(x
(i)T · x(j))}

subject to 0 ≤ αi ≤ C ;
N∑
i=1

αi t
(i) = 0

Non-linear SVM using kernel function K():

max
αi≥0
{

N∑
i=1

αi −
1

2

N∑
i,j=1

t(i)t(j)αiαjK(x(i), x(j))}

subject to 0 ≤ αi ≤ C ;
N∑
i=1

αi t
(i) = 0

Unlike linear SVM, cannot express w as linear combination of support vectors

I now must retain the support vectors to classify new examples

Final decision function:
y = sign[b +

〈∑N
i=1 t

(i)αiφ(x
(i)), φ(x)

〉
] = sign[b +

∑N
i=1 t

(i)αiK(x, x(i))]

CSC411 Lec17 6 / 1

Kernels

Examples of kernels: kernels measure similarity

1. Polynomial

K (x(i), x(j)) = (x(i)
T

x(j) + 1)d

where d is the degree of the polynomial, e.g., d = 2 for quadratic
2. Gaussian/RBF

K (x(i), x(j)) = exp(−||x
(i) − x(j)||2

2σ2
)

3. Sigmoid

K (x(i), x(j)) = tanh(β(x(i)
T

x(j)) + a)

Kernel functions exist for non-vectorized data - string kernel, graph kernel,
etc.

Each kernel computation corresponds to a dot product

I calculation for particular mapping φ(x) implicitly maps to
high-dimensional space

CSC411 Lec17 7 / 1

Kernel Functions

Mercer’s Theorem (1909): any reasonable kernel corresponds to some
feature space

Reasonable means that the Gram matrix is positive semidefinite

Kij = K (x(i), x(j))

We can build complicated kernels so long as they are positive semidefinite.

We can combine simple kernels together to make more complicated ones

CSC411 Lec17 8 / 1

Basic Kernel Properties

Positive constant function is a kernel: for α ≥ 0, K ′(x1, x2) = α

Positively weighted linear combinations of kernels are kernels: if ∀i , αi ≥ 0,
K ′(x1, x2) =

∑
i αiKi (x1, x2)

Products of kernels are kernels: K ′(x1, x2) = K1(x1, x2)K2(x1, x2)

The above transformations preserve positive semidefinite functions

We can use kernels as building blocks to construct complicated feature
mappings

CSC411 Lec17 9 / 1

Kernel Feature Space

Kernels let us express very large feature spaces
I polynomial kernel (1 + (x(i))Tx(j))d corresponds to feature space

exponential in d
I Gaussian kernel has infinitely dimensional features

Linear separators in these super high-dimensional spaces correspond
to highly non-linear decision boundaries in the input space

CSC411 Lec17 10 / 1

Example - linear SVM

Solid line - decision boundary. Dashed - +1/-1 margin. Purple - Bayes
optimal

Solid dots - Support vectors on margin

[Image credit: ”Elements of statistical learning”]

CSC411 Lec17 11 / 1

Example - Deg 4 polynomial SVM

[Image credit: ”Elements of statistical learning”]

CSC411 Lec17 12 / 1

Example - Gaussian SVM

[Image credit: ”Elements of statistical learning”]

CSC411 Lec17 13 / 1

Kernel methods

Kernels work well with SVM but not limited to it.
When can we apply the kernel trick?

Representer Theorem:
If w∗ is defined as

w∗ = arg min
N∑
i=1

L
(〈

w, φ(x(i))
〉
, t(i)

)
+ λ||w||2

Then w∗ ∈ span{φ(x1), ..., φ(xN)}, i.e. ∃α : w∗ =
∑N

i=1 αiφ(xi)

Proof idea: The subspace that is orthogonal to the span doesn’t
impact the loss, but increases the norm ⇒ Optimal thing is to set it
to zero.
We assume you can predict using inner-product.

CSC411 Lec17 14 / 1

Optimization

We can compute

〈w, φ(x)〉 =

〈
N∑
i=1

αiφ(x(i)), φ(x)

〉
=

N∑
i=1

αi

〈
φ(x(i)), φ(x)

〉
=

N∑
i=1

αiK (x(i), x)

Similarly for the regularizer

||w||2 =

〈
N∑
i=1

αiφ(x(i)),
N∑
j=1

αjφ(x(j))

〉
=

N∑
i,j=1

αiαj

〈
φ(x(i)), φ(x(j))

〉

=
N∑
i=1

αiαjK (x(i), x(j))

We can optimize without computing φ(x).

α = arg min
N∑
i=1

L

 N∑
j=1

αjk(x(i), x(j)), t(i)

+ λ

N∑
i=1

αiαjK (x(i), x(j))

CSC411 Lec17 15 / 1

Other Kernel methods

Kernel Logistic regression
I We can think of logistic regression as minimizing

log(1 + exp(−t(i)wTx(i)))
I If you use L2 regularization (Gaussian prior) this fits the representer

theorem.
I Performance is close to SVM

PCA
I A bit trickier to show how to only use kernels.
I Equivalent to first using a non-linear transformation to high dimension

then use linear projection to low dimension.

Kernel Bayesian methods (not covered in this course)

I Gaussian processes

CSC411 Lec17 16 / 1

Kernel and SVM

The kernel trick is not limited to SVM, but is most common with it.

Why do the kernel trick and SVM work well together?

Generalization:

I The kernel trick allows you to work in very high dimensions - what
about overfitting?

I SVM enjoys generalization bounds that don’t depend on dimension
(depend on margin or #support vectors).

I Regularization is still very important to reduce overfitting.

Computation:

I In general w∗ is a linear combination of the training data
I SVM only need to save a (hopefully small) subset of support vectors -

Less memory and faster predictions.

CSC411 Lec17 17 / 1

Summary

Advantages:

I Kernels allow very flexible hypotheses
I Kernel trick allows us to work in very high (or infinite) dimensional

space
I Soft-margin extension permits mis-classified examples
I Can usually outperform linear svm

Disadvantages:

I Must choose kernel parameters
I Large number of support vector ⇒ Computationally expensive to

predict new points.
I Can overfit.

CSC411 Lec17 18 / 1

More Summary

Software:

I Sklearn implementation is based on LIBSVM (SMO algorithm)
I SVMLight is among the earliest implementations
I svm-Perf uses Cutting-Plane Subspace Pursuit.
I Several Matlab toolboxes for SVM are also available

Key points:

I Difference between logistic regression and SVMs
I Maximum margin principle
I Target function for SVMs
I Slack variables for mis-classified points
I Kernel trick allows non-linear generalizations

CSC411 Lec17 19 / 1

