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@ Kernel trick

@ Representer theorem



Non-linear decision boundaries

o We talk about SVM: max margin linear classifier
@ Linear is limiting, how do we get non-linear decision boundaries?

o Feature mapping x — ¢(x)
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@ How do we find good features?

o If features are in a high dimension - high computational cost.



Let's say that we want a quadratic decision boundary

What feature mapping do we need?
One possibility (ignore arbitrary v/2 for now)

o(x) = (1, V2X1, ooy N 2Xd, V 2x1 %0,V 2X1 X3, ...\@Xd,lxd,xlz, s X3)

Pairwise is over i < j

o We have dim(¢(x)) = O(d?), could be problematic for large d.

How can this be addressed?
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Kernel Trick Idea

@ Linear algorithms are based on inner-product

@ What if you could compute the inner product without computing
¢(x)?

@ Our previous example:
o(x) = (1, V2x1, ooy V22X,V 2x10, V21 %3, ...\@Xd_lxd,xlz, ...,xg)
o What is K(x,y) = (¢(x), ¢(y))?

d d
(B(x), d(y)) =1+ 2xy; + Y xixyiyj = (1 + (x,y))?

i—1 ij=1

@ We can compute K in O(d) memory and compute time!

e K is called the (polynomial) kernel.
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Kernel SVM

@ SVM dual form objective: w = Za-t(i)x(i)
T .
Eiixo{Za:—fJZIr tDaiay (X))

N
subject to 0 < a; < C; Zait(i) —0

i=1

@ Non-linear SVM using kernel function K():

g}g)é{Za,flet )tW e K (xD, xD)}
ij

subjectto 0< a; < C; Za;t(i) =0
i=1
@ Unlike linear SVM, cannot express w as linear combination of support vectors
» now must retain the support vectors to classify new examples

@ Final decision function_: ' _ _
y =signlb+ (S0 t0aip(x), 6(x) )] = signlb + S, tPaiK (x,x7))
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Kernels

@ Examples of kernels: kernels measure similarity
1. Polynomial
K(x,x1) = (x0"x0) 4 1)

where d is the degree of the polynomial, e.g., d = 2 for quadratic
2. Gaussian/RBF

X O,

KO, x0) = exp(— 12—
g

3. Sigmoid
K(x(), x0)) = tanh(ﬁ(x(i)Tx(j)) +a)
@ Kernel functions exist for non-vectorized data - string kernel, graph kernel,

etc.

@ Each kernel computation corresponds to a dot product

» calculation for particular mapping ¢(x) implicitly maps to
high-dimensional space
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Kernel Functions

@ Mercer's Theorem (1909): any reasonable kernel corresponds to some
feature space

@ Reasonable means that the Gram matrix is positive semidefinite

K = K(x,x)

@ We can build complicated kernels so long as they are positive semidefinite.

@ We can combine simple kernels together to make more complicated ones



Basic Kernel Properties

@ Positive constant function is a kernel: for a > 0, K'(x1,x) = «

@ Positively weighted linear combinations of kernels are kernels: if Vi, a; > 0,
K'(x1,x2) = > aiKi(x1, x2)

@ Products of kernels are kernels: K'(x1,x2) = Ki(x1, x2)K2(x1, x2)
@ The above transformations preserve positive semidefinite functions

@ We can use kernels as building blocks to construct complicated feature
mappings
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Kernel Feature Space

@ Kernels let us express very large feature spaces
» polynomial kernel (1 + (x())7x1))? corresponds to feature space
exponential in d
» Gaussian kernel has infinitely dimensional features
@ Linear separators in these super high-dimensional spaces correspond
to highly non-linear decision boundaries in the input space
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Example - linear SVM
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@ Solid line - decision boundary. Dashed - +1/-1 margin. Purple - Bayes

optimal
@ Solid dots - Support vectors on margin

[Image credit: " Elements of statistical learning”]



Example - Deg 4 polynomial SVM
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[Image credit: " Elements of statistical learning”]



Example - Gaussian SVM
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Kernel methods

o Kernels work well with SVM but not limited to it.
@ When can we apply the kernel trick?

4 Representer Theorem:
If w* is defined as

N

W — argminz i <<W7¢(x(i))> : t(f)) + w2

i=1

(_ Then w* € span{¢(x1), ..., o(xn)}, ie. Ja: w* = SN @id(xi)

J

@ Proof idea: The subspace that is orthogonal to the span doesn't
impact the loss, but increases the norm = Optimal thing is to set it
to zero.

@ We assume you can predict using inner-product.



Optimization

@ We can compute

w, (x)) <Za¢x() > zN:a,< (x)>—§:a;K(x() X

i=1

o Similarly for the regularizer

N
[wlf* = <Za o(x), > aje(x1) > Zaaj< p(x1), x(’))>
= j=1

ij=1

= Z aja;K(x x0))
i=1

o We can optimize without computing ¢(x).
N N
a:argminZL Zajk x0)y, () +>‘ZO‘O‘J (), x0))
i=1 Jj=1 i=1
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Other Kernel methods

o Kernel Logistic regression

» We can think of logistic regression as minimizing
log(1 + exp(—t(wTx())

» If you use L, regularization (Gaussian prior) this fits the representer
theorem.

» Performance is close to SVM

e PCA

> A bit trickier to show how to only use kernels.

» Equivalent to first using a non-linear transformation to high dimension
then use linear projection to low dimension.

@ Kernel Bayesian methods (not covered in this course)

» Gaussian processes



Kernel and SVM

@ The kernel trick is not limited to SVM, but is most common with it.
@ Why do the kernel trick and SVM work well together?
@ Generalization:

» The kernel trick allows you to work in very high dimensions - what
about overfitting?

» SVM enjoys generalization bounds that don't depend on dimension
(depend on margin or #support vectors).

» Regularization is still very important to reduce overfitting.

@ Computation:

> In general w* is a linear combination of the training data
» SVM only need to save a (hopefully small) subset of support vectors -
Less memory and faster predictions.



@ Advantages:
» Kernels allow very flexible hypotheses
» Kernel trick allows us to work in very high (or infinite) dimensional

space
» Soft-margin extension permits mis-classified examples
» Can usually outperform linear svm

@ Disadvantages:

» Must choose kernel parameters

» Large number of support vector = Computationally expensive to
predict new points.

» Can overfit.



@ Software:

Sklearn implementation is based on LIBSVM (SMO algorithm)
SVMLight is among the earliest implementations

svm-Perf uses Cutting-Plane Subspace Pursuit.

Several Matlab toolboxes for SVM are also available
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@ Key points:

v

Difference between logistic regression and SVMs
Maximum margin principle

Target function for SVMs

Slack variables for mis-classified points

Kernel trick allows non-linear generalizations
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