
CSC 411 Lectures 15-16: Gaussian mixture model & EM

Ethan Fetaya, James Lucas and Emad Andrews

University of Toronto

CSC411 Lec15-16 1 / 1

A Generative View of Clustering

Last time: hard and soft k-means algorithm

Today: statistical formulation of clustering → principled, justification for
updates

We need a sensible measure of what it means to cluster the data well

I This makes it possible to judge different methods
I It may help us decide on the number of clusters

An obvious approach is to imagine that the data was produced by a
generative model

I Then we adjust the model parameters to maximize the probability that
it would produce exactly the data we observed

CSC411 Lec15-16 2 / 1

Generative Models Recap

We model the joint distribution as,

p(x, z) = p(x|z)p(z)

But in unsupervised clustering we do not have the class labels z .

What can we do instead?

p(x) =
∑
z

p(x, z) =
∑
z

p(x|z)p(z)

This is a mixture model

CSC411 Lec15-16 3 / 1

Gaussian Mixture Model (GMM)

Most common mixture model: Gaussian mixture model (GMM)

A GMM represents a distribution as

p(x) =
K∑

k=1

πkN (x|µk ,Σk)

with πk the mixing coefficients, where:

K∑
k=1

πk = 1 and πk ≥ 0 ∀k

GMM is a density estimator

GMMs are universal approximators of densities (if you have enough
Gaussians). Even diagonal GMMs are universal approximators.

In general mixture models are very powerful, but harder to optimize

CSC411 Lec15-16 4 / 1

Visualizing a Mixture of Gaussians – 1D Gaussians

If you fit a Gaussian to data:

Now, we are trying to fit a GMM (with K = 2 in this example):

[Slide credit: K. Kutulakos]

CSC411 Lec15-16 5 / 1

Visualizing a Mixture of Gaussians – 2D Gaussians

CSC411 Lec15-16 6 / 1

Fitting GMMs: Maximum Likelihood

Maximum likelihood maximizes

ln p(X|π, µ,Σ) =
N∑

n=1

ln

(
K∑

k=1

πkN (x(n)|µk ,Σk)

)

w.r.t Θ = {πk , µk ,Σk}

Problems:

I Singularities: Arbitrarily large likelihood when a Gaussian explains a
single point

I Identifiability: Solution is invariant to permutations
I Non-convex

How would you optimize this?

Can we have a closed form update?

Don’t forget to satisfy the constraints on πk and Σk

CSC411 Lec15-16 7 / 1

Latent Variable

Our original representation had a hidden (latent) variable z which would
represent which Gaussian generated our observation x, with some probability

Let z ∼ Categorical(π) (where πk ≥ 0,
∑

k πk = 1)

Then:

p(x) =
K∑

k=1

p(x, z = k)

=
K∑

k=1

p(z = k)︸ ︷︷ ︸
πk

p(x|z = k)︸ ︷︷ ︸
N (x|µk ,Σk)

This breaks a complicated distribution into simple components - the price is
the hidden variable.

CSC411 Lec15-16 8 / 1

Latent Variable Models

Some model variables may be unobserved, either at training or at test time,
or both

If occasionally unobserved they are missing, e.g., undefined inputs, missing
class labels, erroneous targets

Variables which are always unobserved are called latent variables, or
sometimes hidden variables

We may want to intentionally introduce latent variables to model complex
dependencies between variables – this can actually simplify the model

Form of divide-and-conquer: use simple parts to build complex models

In a mixture model, the identity of the component that generated a given
datapoint is a latent variable

CSC411 Lec15-16 9 / 1

Back to GMM

A Gaussian mixture distribution:

p(x) =
K∑

k=1

πkN (x|µk ,Σk)

We had: z ∼ Categorical(π) (where πk ≥ 0,
∑

k πk = 1)

Joint distribution: p(x, z) = p(z)p(x|z)

Log-likelihood:

`(π, µ,Σ) = ln p(X|π, µ,Σ) =
N∑

n=1

ln p(x(n)|π, µ,Σ)

=
N∑

n=1

ln
K∑

z(n)=1

p(x(n)| z (n);µ,Σ)p(z (n)|π)

Note: We have a hidden variable z (n) for every observation

General problem: sum inside the log

How can we optimize this?

CSC411 Lec15-16 10 / 1

Maximum Likelihood

If we knew z (n) for every x (n), the maximum likelihood problem is easy:

`(π, µ,Σ) =
N∑

n=1

ln p(x (n), z (n)|π, µ,Σ) =
N∑

n=1

ln p(x(n)| z (n);µ,Σ)+ln p(z (n)|π)

We have been optimizing something similar for Gaussian bayes classifiers

We would get this (check old slides):

µk =

∑N
n=1 1[z(n)=k] x

(n)∑N
n=1 1[z(n)=k]

Σk =

∑N
n=1 1[z(n)=k] (x(n) − µk)(x(n) − µk)T∑N

n=1 1[z(n)=k]

πk =
1

N

N∑
n=1

1[z(n)=k]

CSC411 Lec15-16 11 / 1

Intuitively, How Can We Fit a Mixture of Gaussians?

Optimization uses the Expectation Maximization algorithm, which alternates
between two steps:

1. E-step: Compute the posterior probability over z given our current
model - i.e. how much do we think each Gaussian generates each
datapoint.

2. M-step: Assuming that the data really was generated this way, change
the parameters of each Gaussian to maximize the probability that it
would generate the data it is currently responsible for.

.95

.5

.5

.05

.5
.5

.95
.05

CSC411 Lec15-16 12 / 1

Relation to k-Means

The K-Means Algorithm:

1. Assignment step: Assign each data point to the closest cluster
2. Refitting step: Move each cluster center to the center of gravity of the

data assigned to it

The EM Algorithm:

1. E-step: Compute the posterior probability over z given our current
model

2. M-step: Maximize the probability that it would generate the data it is
currently responsible for.

CSC411 Lec15-16 13 / 1

Expectation Maximization for GMM Overview

Elegant and powerful method for finding maximum likelihood solutions for
models with latent variables

1. E-step:
I In order to adjust the parameters, we must first solve the inference

problem: Which Gaussian generated each datapoint?
I We cannot be sure, so it’s a distribution over all possibilities.

γ
(n)
k = p(z (n) = k|x(n);π, µ,Σ)

2. M-step:
I Each Gaussian gets a certain amount of posterior probability for each

datapoint.
I We fit each Gaussian to the weighted datapoints
I We can derive closed form updates for all parameters

CSC411 Lec15-16 14 / 1

Where does EM come from? I

Remember that optimizing the likelihood is hard because of the sum inside
of the log. Using Θ to denote all of our parameters:

`(X,Θ) =
∑
i

log(P(x(i); Θ)) =
∑
i

log

∑
j

P(x(i), z (i) = j ; Θ)

We can use a common trick in machine learning, introduce a new
distribution, q:

`(X,Θ) =
∑
i

log

∑
j

qj
P(x(i), z (i) = j ; Θ)

qj

Now we can swap them! Jensen’s inequality - for concave function (like log)

f (E[x]) = f

(∑
i

pixi

)
≥
∑
i

pi f (xi) = E[f (x)]

CSC411 Lec15-16 15 / 1

Where does EM come from? II

Applying Jensen’s,

∑
i

log

∑
j

qj
P(x(i), z (i) = j ; Θ)

qj

 ≥∑
i

∑
j

qj log

(
P(x(i), z (i) = j ; Θ)

qj

)

Maximizing this lower bound will force our likelihood to increase.

But how do we pick a qi that gives a good bound?

CSC411 Lec15-16 16 / 1

EM derivation

We got the sum outside but we have an inequality.

`(X,Θ) ≥
∑
i

∑
j

qj log

(
P(x(i), z(i) = j ; Θ)

qj

)

Lets fix the current parameters to Θold and try to find a good qi
What happens if we pick qj = p(z(i) = j |x (i),Θold)?

I P(x(i),z(i);Θ)
p(z(i)=j|x (i),Θold)

= P(x(i); Θold) and the inequality becomes an equality!

We can now define and optimize

Q(Θ) =
∑
i

∑
j

p(z(i) = j |x (i),Θold) log
(
P(x(i), z(i) = j ; Θ)

)
= EP(z(i)|x(i),Θold)[log

(
P(x(i), z(i); Θ)

)
]

We ignored the part that doesn’t depend on Θ

CSC411 Lec15-16 17 / 1

EM derivation

So, what just happened?

Conceptually: We don’t know z(i) so we average them given the
current model.

Practically: We define a function
Q(Θ) = EP(z(i)|x(i),Θold)[log

(
P(x(i), z(i); Θ)

)
] that lower bounds the

desired function and is equal at our current guess.

If we now optimize Θ we will get a better lower bound!

log(P(X|Θold)) = Q(Θold) ≤ Q(Θnew) ≤ P(P(X|Θnew))

We can iterate between expectation step and maximization step and
the lower bound will always improve (or we are done)

CSC411 Lec15-16 18 / 1

Visualization of the EM Algorithm

The EM algorithm involves alternately computing a lower bound on the log
likelihood for the current parameter values and then maximizing this bound
to obtain the new parameter values.

CSC411 Lec15-16 19 / 1

General EM Algorithm

1. Initialize Θold

2. E-step: Evaluate p(Z|X,Θold) and compute

Q(Θ,Θold) =
∑
z

p(Z|X,Θold) ln p(X,Z|Θ)

3. M-step: Maximize
Θnew = arg max

Θ
Q(Θ,Θold)

4. Evaluate log likelihood and check for convergence (or the parameters). If
not converged, Θold = Θnew , Go to step 2

CSC411 Lec15-16 20 / 1

GMM E-Step: Responsibilities

Lets see how it works on GMM:

Conditional probability (using Bayes rule) of z given x

γk = p(z = k |x) =
p(z = k)p(x|z = k)

p(x)

=
p(z = k)p(x|z = k)∑K
j=1 p(z = j)p(x|z = j)

=
πkN (x|µk ,Σk)∑K
j=1 πjN (x|µj ,Σj)

γk can be viewed as the responsibility of cluster k towards x

CSC411 Lec15-16 21 / 1

GMM E-Step

Once we computed γ
(i)
k = p(z (i) = k |x(i)) we can compute the expected

likelihood

EP(z(i)|x(i))

[∑
i

log(P(x(i), z (i)|Θ))

]
=

∑
i

∑
k

(
γ

(i)
k log(P(z i = k |Θ)) + log(P(x(i)|z (i) = k,Θ))

)
=

∑
i

∑
k

γ
(i)
k

(
log(πk) + log(N (x(i);µk ,Σk))

)
=

∑
k

∑
i

γ
(i)
k log(πk) +

∑
k

∑
i

γ
(i)
k log(N (x(i);µk ,Σk))

We need to fit k Gaussians, just need to weight examples by γk

CSC411 Lec15-16 22 / 1

GMM M-Step

Need to optimize∑
k

∑
i

γ
(i)
k log(πk) +

∑
k

∑
i

γ
(i)
k log(N (x(i);µk ,Σk))

Solving for µk and Σk is like fitting k separate Gaussians but with weights

γ
(i)
k .

Solution is similar to what we have already seen:

µk =
1

Nk

N∑
n=1

γ
(n)
k x(n)

Σk =
1

Nk

N∑
n=1

γ
(n)
k (x(n) − µk)(x(n) − µk)T

πk =
Nk

N
with Nk =

N∑
n=1

γ
(n)
k

CSC411 Lec15-16 23 / 1

EM Algorithm for GMM

Initialize the means µk , covariances Σk and mixing coefficients πk

Iterate until convergence:
I E-step: Evaluate the responsibilities given current parameters

γ
(n)
k = p(z (n)|x) =

πkN (x(n)|µk ,Σk)∑K
j=1 πjN (x(n)|µj ,Σj)

I M-step: Re-estimate the parameters given current responsibilities

µk =
1

Nk

N∑
n=1

γ
(n)
k x(n)

Σk =
1

Nk

N∑
n=1

γ
(n)
k (x(n) − µk)(x(n) − µk)T

πk =
Nk

N
with Nk =

N∑
n=1

γ
(n)
k

I Evaluate log likelihood and check for convergence

ln p(X|π, µ,Σ) =
N∑

n=1

ln

(
K∑

k=1

πkN (x(n)|µk ,Σk)

)
CSC411 Lec15-16 24 / 1

CSC411 Lec15-16 25 / 1

Mixture of Gaussians vs. K-means

EM for mixtures of Gaussians is just like a soft version of K-means, with
fixed priors and covariance

Instead of hard assignments in the E-step, we do soft assignments based on
the softmax of the squared Mahalanobis distance from each point to each
cluster.

Each center moved by weighted means of the data, with weights given by
soft assignments

In K-means, weights are 0 or 1

CSC411 Lec15-16 26 / 1

EM alternative approach *

Our goal is to maximize

p(X|Θ) =
∑
z

p(X, z|Θ)

Typically optimizing p(X|Θ) is difficult, but p(X,Z|Θ) is easy

Let q(Z) be a distribution over the latent variables. For any distribution
q(Z) we have

ln p(X|Θ) = L(q,Θ) + KL(q||p(Z|X,Θ))

where

L(q,Θ) =
∑
Z

q(Z) ln

{
p(X,Z|Θ)

q(Z)

}
KL(q||p) = −

∑
Z

q(Z) ln

{
p(Z|X,Θ)

q(Z)

}

CSC411 Lec15-16 27 / 1

EM alternative approach *

The KL-divergence is always positive and have value 0 only if
q(Z) = p(Z|X,Θ)

Thus L(q,Θ) is a lower bound on the likelihood

L(q,Θ) ≤ ln p(X|Θ)

CSC411 Lec15-16 28 / 1

Visualization of E-step

The q distribution equal to the posterior distribution for the current
parameter values Θold , causing the lower bound to move up to the same
value as the log likelihood function, with the KL divergence vanishing.

CSC411 Lec15-16 29 / 1

Visualization of M-step

The distribution q(Z) is held fixed and the lower bound L(q,Θ) is
maximized with respect to the parameter vector Θ to give a revised value
Θnew . Because the KL divergence is nonnegative, this causes the log
likelihood ln p(X|Θ) to increase by at least as much as the lower bound does.

CSC411 Lec15-16 30 / 1

E-step and M-step *

ln p(X|Θ) = L(q,Θ) + KL(q||p(Z|X,Θ))

In the E-step we maximize q(Z) w.r.t the lower bound L(q,Θold)

This is achieved when q(Z) = p(Z|X,Θold)

The lower bound L is then

L(q,Θ) =
∑
Z

p(Z|X,Θold) ln p(X,Z|Θ)−
∑
Z

p(Z|X,Θold) ln p(Z|X,Θold)

= Q(Θ,Θold) + const

with the content the entropy of the q distribution, which is independent of Θ

In the M-step the quantity to be maximized is the expectation of the
complete data log-likelihood

Note that Θ is only inside the logarithm and optimizing the complete data
likelihood is easier

CSC411 Lec15-16 31 / 1

GMM Recap

A probabilistic view of clustering - Each cluster corresponds to a
different Gaussian.

Model using latent variables.

General approach, can replace Gaussian with other distributions
(continuous or discrete)

More generally, mixture model are very powerful models, universal
approximator

Optimization is done using the EM algorithm.

CSC411 Lec15-16 32 / 1

EM Recap

A general algorithm for optimizing many latent variable models.

Iteratively computes a lower bound then optimizes it.

Converges but maybe to a local minima.

Can use multiple restarts.

Can use smart initializers (similar to k-means++) - problem
dependent.

Limitation - need to be able to compute P(z |x; Θ), not possible for
more complicated models.

I Solution: Variational inference (see CSC412)

CSC411 Lec15-16 33 / 1

