CSC 411 Lecture 14:Clustering

Ethan Fetaya, James Lucas and Emad Andrews

University of Toronto

- Unsupervised learning
- Clustering
 - k-means
 - Soft k-means

Motivating Examples

- Determine groups of people in image above
 - based on clothing styles
 - ▶ gender, age, etc

• Determine moving objects in videos

Clustering

• Grouping N examples into K clusters is one of the canonical problems in unsupervised learning

- Motivation: prediction; lossy compression; outlier detection
- We assume that the data was generated from a number of different classes. The aim is to cluster data from the same class together.
 - How many classes?
 - Why not put each datapoint into a separate class?
- What is the objective function that is optimized by sensible clustering?

- Assume the data $\{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)}\}$ lives in a Euclidean space, $\mathbf{x}^{(n)} \in \mathbb{R}^d$.
- Assume the data belongs to K classes (patterns)
- Assume the data points from same class are similar, i.e. close in euclidean distance.
- How can we identify those classes (data points that belong to each class)?

- K-means assumes there are k clusters, and each point is close to its cluster center (the mean of points in the cluster).
- If we knew the cluster assignment we could easily compute means.
- If we knew the means we could easily compute cluster assignment.
- Chicken and egg problem!
- Can show it is NP hard.
- Very simple (and useful) heuristic start randomly and alternate between the two!

K-means

- Initialization: randomly initialize cluster centers
- The algorithm iteratively alternates between two steps:
 - Assignment step: Assign each data point to the closest cluster
 - Refitting step: Move each cluster center to the center of gravity of the data assigned to it

CSC411 Lec14

K-means Objective

What is actually being optimized?

K-means Objective:

Find cluster centers **m** and assignments **r** to minimize the sum of squared distances of data points $\{\mathbf{x}^{(n)}\}$ to their assigned cluster centers

$$\min_{\{\mathbf{m}\},\{\mathbf{r}\}} J(\{\mathbf{m}\},\{\mathbf{r}\}) = \min_{\{\mathbf{m}\},\{\mathbf{r}\}} \sum_{n=1}^{N} \sum_{k=1}^{K} r_{k}^{(n)} ||\mathbf{m}_{k} - \mathbf{x}^{(n)}||^{2}$$

s.t. $\sum_{k} r_{k}^{(n)} = 1, \forall n, \text{ where } r_{k}^{(n)} \in \{0,1\}, \forall k, n$

where $r_k^{(n)} = 1$ means that $\mathbf{x}^{(n)}$ is assigned to cluster k (with center \mathbf{m}_k)

- Optimization method is a form of coordinate descent ("block coordinate descent")
 - Fix centers, optimize assignments (choose cluster whose mean is closest)
 - Fix assignments, optimize means (average of assigned datapoints)

The K-means Algorithm

- Initialization: Set K cluster means $\mathbf{m}_1, \ldots, \mathbf{m}_K$ to random values
- Repeat until convergence (until assignments do not change):
 - Assignment: Each data point $\mathbf{x}^{(n)}$ assigned to nearest mean

$$\hat{k}^n = \arg\min_k d(\mathbf{m}_k, \mathbf{x}^{(n)})$$

(with, for example, L2 norm: $\hat{k}^n = \arg \min_k ||\mathbf{m}_k - \mathbf{x}^{(n)}||^2$) and Responsibilities (1-hot encoding)

$$r_k^{(n)} = 1 \longleftrightarrow \hat{k}^{(n)} = k$$

 Update: Model parameters, means are adjusted to match sample means of data points they are responsible for:

$$\mathbf{m}_k = \frac{\sum_n r_k^{(n)} \mathbf{x}^{(n)}}{\sum_n r_k^{(n)}}$$

K-means for Vector Quantization

Figure from Bishop

K-means for Image Segmentation

• How would you modify k-means to get super pixels?

- Why does update set **m**_k to mean of assigned points?
- Where does distance d come from?
- What if we used a different distance measure?
- How can we choose best distance?
- How to choose *K*?
- How can we choose between alternative clusterings?
- Will it converge?

Hard cases - unequal spreads, non-circular spreads, in-between points

Why K-means Converges

- Whenever an assignment is changed, the sum squared distances J of data points from their assigned cluster centers is reduced.
- Whenever a cluster center is moved, J is reduced.
- Test for convergence: If the assignments do not change in the assignment step, we have converged (to at least a local minimum).

• K-means cost function after each E step (blue) and M step (red). The algorithm has converged after the third M step

- The objective J is non-convex (so coordinate descent on J is not guaranteed to converge to the global minimum)
- There is nothing to prevent k-means getting stuck at local minima.
- We could try many random starting points
- We could try non-local split-and-merge moves:
 - Simultaneously merge two nearby clusters
 - and split a big cluster into two

A bad local optimum

- Common way to improve k-means smart initialization!
- General idea try to get good coverage of the data.
- k-means++ algorithm:
 - 1. Pick the first center randomly
 - 2. For all points $\mathbf{x}^{(n)}$ set $d^{(n)}$ to be the distance to closest center.
 - 3. Pick the new center to be at $\mathbf{x}^{(n)}$ with probability proportional to $d^{(n)2}$
 - 4. Repeat steps 2+3 until you have k centers

- Instead of making hard assignments of data points to clusters, we can make soft assignments. One cluster may have a responsibility of .7 for a datapoint and another may have a responsibility of .3.
 - Allows a cluster to use more information about the data in the refitting step.
 - What happens to our convergence guarantee?
 - How do we decide on the soft assignments?

- Initialization: Set K means $\{\mathbf{m}_k\}$ to random values
- Repeat until convergence (until assignments do not change):
 - Assignment: Each data point n given soft "degree of assignment" to each cluster mean k, based on responsibilities

$$r_k^{(n)} = \frac{\exp[-\beta d(\mathbf{m}_k, \mathbf{x}^{(n)})]}{\sum_j \exp[-\beta d(\mathbf{m}_j, \mathbf{x}^{(n)})]}$$

Update: Model parameters, means, are adjusted to match sample means of datapoints they are responsible for:

$$\mathbf{m}_k = \frac{\sum_n r_k^{(n)} \mathbf{x}^{(n)}}{\sum_n r_k^{(n)}}$$

- How to set β ?
- What about problems with elongated clusters?
- Clusters with unequal weight and width

- We need a sensible measure of what it means to cluster the data well.
 - This makes it possible to judge different models.
 - It may make it possible to decide on the number of clusters.
- An obvious approach is to imagine that the data was produced by a generative model.
 - Then we can adjust the parameters of the model to maximize the probability that it would produce exactly the data we observed.