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Today

Unsupervised learning

Clustering

I k-means
I Soft k-means
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Motivating Examples

Determine groups of people in image above
I based on clothing styles
I gender, age, etc

Determine moving objects in videos
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Clustering

Grouping N examples into K clusters is one of the canonical problems in
unsupervised learning

Motivation: prediction; lossy compression; outlier detection

We assume that the data was generated from a number of different classes.
The aim is to cluster data from the same class together.

I How many classes?
I Why not put each datapoint into a separate class?

What is the objective function that is optimized by sensible clustering?
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Clustering

Assume the data {x(1), . . . , x(N)} lives in a Euclidean space, x(n) ∈ Rd .

Assume the data belongs to K classes (patterns)

Assume the data points from same class are similar, i.e. close in euclidean
distance.

How can we identify those classes (data points that belong to each class)?
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K-means intuition

K-means assumes there are k clusters, and each point is close to its cluster
center (the mean of points in the cluster).

If we knew the cluster assignment we could easily compute means.

If we knew the means we could easily compute cluster assignment.

Chicken and egg problem!

Can show it is NP hard.

Very simple (and useful) heuristic - start randomly and alternate between
the two!
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K-means

Initialization: randomly initialize cluster centers

The algorithm iteratively alternates between two steps:

I Assignment step: Assign each data point to the closest cluster

I Refitting step: Move each cluster center to the center of gravity of the
data assigned to it

Assignments Refitted 
means 
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Figure from Bishop Simple demo: http://syskall.com/kmeans.js/
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K-means Objective

What is actually being optimized?

K-means Objective:
Find cluster centers m and assignments r to minimize the sum of squared
distances of data points {x(n)} to their assigned cluster centers

min
{m},{r}

J({m}, {r}) = min
{m},{r}

N∑
n=1

K∑
k=1

r
(n)
k ||mk − x(n)||2

s.t.
∑
k

r
(n)
k = 1,∀n, where r

(n)
k ∈ {0, 1},∀k, n

where r
(n)
k = 1 means that x(n) is assigned to cluster k (with center mk)

Optimization method is a form of coordinate descent (”block coordinate
descent”)

I Fix centers, optimize assignments (choose cluster whose mean is
closest)

I Fix assignments, optimize means (average of assigned datapoints)
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The K-means Algorithm

Initialization: Set K cluster means m1, . . . ,mK to random values

Repeat until convergence (until assignments do not change):

I Assignment: Each data point x(n) assigned to nearest mean

k̂n = arg min
k

d(mk , x
(n))

(with, for example, L2 norm: k̂n = arg mink ||mk − x(n)||2)

and Responsibilities (1-hot encoding)

r
(n)
k = 1←→ k̂(n) = k

I Update: Model parameters, means are adjusted to match sample
means of data points they are responsible for:

mk =

∑
n r

(n)
k x(n)∑
n r

(n)
k
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K-means for Vector Quantization

Figure from Bishop
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K-means for Image Segmentation

How would you modify k-means to get super pixels?
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Questions about K-means

Why does update set mk to mean of assigned points?

Where does distance d come from?

What if we used a different distance measure?

How can we choose best distance?

How to choose K?

How can we choose between alternative clusterings?

Will it converge?

Hard cases – unequal spreads, non-circular spreads, in-between points
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Why K-means Converges

Whenever an assignment is changed, the sum squared distances J of data
points from their assigned cluster centers is reduced.

Whenever a cluster center is moved, J is reduced.

Test for convergence: If the assignments do not change in the assignment
step, we have converged (to at least a local minimum).

K-means cost function after each E step (blue) and M step (red). The
algorithm has converged after the third M step
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Local Minima

The objective J is non-convex (so
coordinate descent on J is not guaranteed
to converge to the global minimum)

There is nothing to prevent k-means
getting stuck at local minima.

We could try many random starting points

We could try non-local split-and-merge
moves:

I Simultaneously merge two nearby
clusters

I and split a big cluster into two

A bad local optimum 
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k-means++

Common way to improve k-means - smart initialization!

General idea - try to get good coverage of the data.

k-means++ algorithm:

1. Pick the first center randomly
2. For all points x(n) set d (n) to be the distance to closest center.
3. Pick the new center to be at x(n) with probability proportional to d (n)2

4. Repeat steps 2+3 until you have k centers
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Soft K-means

Instead of making hard assignments of data points to clusters, we can make
soft assignments. One cluster may have a responsibility of .7 for a datapoint
and another may have a responsibility of .3.

I Allows a cluster to use more information about the data in the refitting
step.

I What happens to our convergence guarantee?
I How do we decide on the soft assignments?
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Soft K-means Algorithm

Initialization: Set K means {mk} to random values

Repeat until convergence (until assignments do not change):

I Assignment: Each data point n given soft ”degree of assignment” to
each cluster mean k , based on responsibilities

r
(n)
k =

exp[−βd(mk , x(n))]∑
j exp[−βd(mj , x(n))]

I Update: Model parameters, means, are adjusted to match sample
means of datapoints they are responsible for:

mk =

∑
n r

(n)
k x(n)∑
n r

(n)
k
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Questions about Soft K-means

How to set β?

What about problems with elongated clusters?

Clusters with unequal weight and width
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A Generative View of Clustering

We need a sensible measure of what it means to cluster the data well.

I This makes it possible to judge different models.
I It may make it possible to decide on the number of clusters.

An obvious approach is to imagine that the data was produced by a
generative model.

I Then we can adjust the parameters of the model to maximize the
probability that it would produce exactly the data we observed.
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