CSC 411 Lecture 13:t-SNE

Ethan Fetaya, James Lucas and Emad Andrews

University of Toronto
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@ SNE - Stochastic Neighbor Embedding
@ t-SNE

@ KL divergence

CSC411 Lecl3 2/1



Local embedding

@ t-SNE is an alternative dimensionality reduction algorithm.
@ PCA tries to find a global structure

» Low dimensional subspace
» Can lead to local inconsistencies

» Far away point can become nearest neighbors
@ t-SNE tries to perserve local structure

» Low dimensional neighborhood should be the same as original
neighborhood.

@ Unlike PCA almost only used for visualization

» No easy way to embed new points
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tSNE 2 dimensions embedding for MNIST
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Stochastic Neighbor Embedding (SNE)

SNE basic idea:
@ "Encode” high dimensional neighborhood information as a distribution
@ Intuition: Random walk between data points.
» High probability to jump to a close point

@ Find low dimensional points such that their neighborhood distribution is
similar.

@ How do you measure distance between distributions?

» Most common measure: KL divergence
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Neighborhood Distributions

@ Consider the neighborhood around an input data point x; € R

Imagine that we have a Gaussian distribution centered around x;

Then the probability that x; chooses some other datapoint x; as its neighbor
is in proportion with the density under this Gaussian

A point closer to x; will be more likely than one further away
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Probabilities P;;

The i — j probability (should be familiar from A1Q2), is the probability that
point x; chooses x; as its neighbor

exp (— |l —x0|[?/207)

P = .
T e (—|Ix0 — x(][2/202)

J

With P;; =0
@ The parameter o; sets the size of the neighborhood

» Very low o; - all the probability is in the nearest neighbor.
» Very high o; - Uniform weights.

@ Here we set o; differently for each data point

@ Results depend heavily on o; - it defines the neighborhoods we are trying to
preserve.

@ Final distribution over pairs is symmetrized: Pj; = 5% (P;; + Pj;)
» Pick i (or j) uniformly and then " jump” to j (i) acording to Pj; (Pj;)
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Perplexity

@ For each distribution Pj; (depends on o;) we define the perplexity
> perp(P;;) = 2M(Fi) where H(P) = — 3", P;log(P;) is the entropy.
@ If P is uniform over k elements - perplexity is k.

» Smooth version of k in kNN
» Low perplexity = small 2
» High perplexity = large o?

@ Define the desired perplexity and set o; to get that (bisection method)
@ Values between 5-50 usually work well

@ Important parameter - different perplexity can capture different scales in the
data

@ If your interested - try A1Q2 which a fixed perplexity instead (let me know
how it worked)!
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Perplexity
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SNE objective

o Given x(M), ... x(N) € RP we define the distribution P;

@ Goal: Find good embedding y(), ... y(™) € RY for some d < D (normally 2
or 3)

@ How do we measure an embedding quality?

@ For points y(U, ... y(M ¢ RY we can define distribution @ similarly the same
(notice no o and not symmetric)

i
_ exp (—[ly?) — yU|?)
Dk Ditk ©XP (=[ly® —y(1[2)

Qjj

@ Optimize Q to be close to P
» Minimize KL-divergence
@ The embeddings y(I), .., y(M) € R? are the parameters we are optimizing.

» How do you embed a new point? No embedding function!
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Measures distance between two distributions, P and Q:

KL(llP) =3 0 log (2
ij y

@ Not a metric function - not symmetric!

@ Code theory intuition: If we are transmitting information that is distributed
according to P, then the optimal (lossless) compression will need to send on
average H(P) bits.

@ What happens you expect P (and design your compression accordingly) but
the actual distribution is Q?

» will send on average H(Q) + KL(Q||P)
» KL(Q||P) is the "penalty” for using wrong distribution
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KL Properties

@ KL(Q||P) > 0 and zero only when Q@ = P (a.s)

@ KL(Q||P) is a convex function.
@ if Pj =0 but Q; > 0 then KL(Q||P) = o0

Minimising Q'EXCIUSIVE
KL@©||P)
=S o(H)In O(H) P
2 PH|VY
L Inclusive
Minimising
KL(PI|Q) Q ’
= pa ym EEIT)
T O(H)

[Pic credit: https://timvieira.github.io/blog/post/2014/10/06/

kl-divergence-as-an-objective-function/]
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SNE algorithm

@ We have P, and are looking for y(I), ... y(M) € R? such that the distribution
Q@ we infer will minimize L(Q) = KL(P||Q) (notice Q on right, uncommon).

Note that KL(P|[Q) = >_; Py log (S—j) = —>_; Pijlog (Qy) + const

Can show that 26 = 3,(Py — Q) (y\) —y¥)

Not a convex problem! No guarantees, can use multiple restarts.

@ Main issue - crowding problem.

CSC411 Lecl3 14 /1



Crowding Problem

@ In high dimension we have more room, points can have a lot of different
neighbors

@ In 2D a point can have a few neighbors at distance one all far from each
other - what happens when we embed in 1D?

@ This is the "crowding problem” - we don't have enough room to
accommodate all neighbors.

@ This is one of the biggest problems with SNE.
@ t-SNE solution: Change the Gaussian in @ to a heavy tailed distribution.

» if @ changes slower, we have more "wiggle room” to place points at.
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t-Distributed Stochastic Neighbor Embedding

@ Student-t Probability density p(x) oc (1 + X—Vz)’("*l)/2

> for v =1 we get p(x) x 1752

@ Probability goes to zero much slower then a Gaussian.

@ Can show it is equivalent to averaging Gaussians with some prior over ¢
@ We can now redefine Qj; as
B ¢ 7

ok (L llye —yilP)

Qjj

@ We leave Pj as is!
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t-SNE gradients

@ Can show that the gradients of t-SNE objective are

oL P _
oy > (P = Q)Y —yD) A+ [y — y )
J

@ Compare to the SNE gradients: a?;l(_') =>(Pj— Q) (y™ —y))

AR

Jonal d

w-dimensi

() Gradient of SNE. (b) Gradient of UNI-SNE. () Gradient of t-SNE.

@ Both repulse close dissimilar points and attract far similar points, but the
t — SNE has a smaller attraction term to solve crowding.

[Image credit: "Visualizing Data using t-SNE”]
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Algorithm

Algorithm 1: Simple version of t-Distributed Stochastic Neighbor Embedding.
Data: data set X = {x1,X2,...,Xn},
cost function parameters: perplexity Perp,
optimization parameters: number of iterations 7', learning rate 1, momentum o(z).

Result: low-dimensional data representation 9 (") = {13y2s s Vn}-

begin
compute pairwise affinities p ;; with perplexity Perp (using Equation 1)
o Piitpi
set pij = =

sample initial solution ¥ ©) = {y1,y2, ...y, } from AL(0,107*1)
for t=1to T do
compute low-dimensional affinities ¢;; (using Equation 4)
compute gradient % (using Equation 5)
set () = o (t=1) +T\% +o(r) (9/(1—1) _ 9/'(1—2))
end

end

[Slide credit: " Visualizing Data using t-SNE"]
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CNN features example

[Image credit: http://cs.stanford.edu/people/karpathy/cnnembed/]
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CNN features example

[Image credit: https://Ivdmaaten.github.io/tsne/]
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o t-SNE is a great way to visualize data

@ Helps understand "black-box" algorithms like DNN.

@ Reduced "crowding problem” with heavey tailed distribution.
@ Non-convex optimization - solved by GD with momentum.

@ Less suitable for SGD (think about the parameters), some alternative
speedups exists (" Barnes-Hut t-SNE").

@ Great extra resource: https://distill.pub/2016/misread-tsne/
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