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Today

SNE - Stochastic Neighbor Embedding

t-SNE

KL divergence
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Local embedding

t-SNE is an alternative dimensionality reduction algorithm.

PCA tries to find a global structure

I Low dimensional subspace
I Can lead to local inconsistencies

I Far away point can become nearest neighbors

t-SNE tries to perserve local structure

I Low dimensional neighborhood should be the same as original
neighborhood.

Unlike PCA almost only used for visualization

I No easy way to embed new points
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tSNE 2 dimensions embedding for MNIST
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PCA 2 dimensions embedding for MNIST
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Stochastic Neighbor Embedding (SNE)

SNE basic idea:

”Encode” high dimensional neighborhood information as a distribution

Intuition: Random walk between data points.

I High probability to jump to a close point

Find low dimensional points such that their neighborhood distribution is
similar.

How do you measure distance between distributions?

I Most common measure: KL divergence
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Neighborhood Distributions

Consider the neighborhood around an input data point xi ∈ Rd

Imagine that we have a Gaussian distribution centered around xi

Then the probability that xi chooses some other datapoint xj as its neighbor
is in proportion with the density under this Gaussian

A point closer to xi will be more likely than one further away
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Probabilities Pij

The i → j probability (should be familiar from A1Q2), is the probability that
point xi chooses xj as its neighbor

Pj|i =
exp

(
−||x(i) − x(j)||2/2σ2

i

)∑
k 6=i exp

(
−||x(i) − x(k)||2/2σ2

i

)
With Pi|i = 0

The parameter σi sets the size of the neighborhood

I Very low σi - all the probability is in the nearest neighbor.
I Very high σi - Uniform weights.

Here we set σi differently for each data point

Results depend heavily on σi - it defines the neighborhoods we are trying to
preserve.

Final distribution over pairs is symmetrized: Pij = 1
2N (Pi|j + Pj|i )

I Pick i (or j) uniformly and then ”jump” to j (i) acording to Pj|i (Pi|j)
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Perplexity

For each distribution Pj|i (depends on σi ) we define the perplexity

I perp(Pj|i ) = 2H(Pj|i ) where H(P) = −
∑

i Pi log(Pi ) is the entropy.

If P is uniform over k elements - perplexity is k .

I Smooth version of k in kNN
I Low perplexity = small σ2

I High perplexity = large σ2

Define the desired perplexity and set σi to get that (bisection method)

Values between 5-50 usually work well

Important parameter - different perplexity can capture different scales in the
data

If your interested - try A1Q2 which a fixed perplexity instead (let me know
how it worked)!

CSC411 Lec13 9 / 1



Perplexity

[Pic credit: https://distill.pub/2016/misread-tsne/]
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SNE objective

Given x(1), .., x(N) ∈ RD we define the distribution Pij

Goal: Find good embedding y(1), .., y(N) ∈ Rd for some d < D (normally 2
or 3)

How do we measure an embedding quality?

For points y(1), .., y(N) ∈ Rd we can define distribution Q similarly the same
(notice no σ2

i and not symmetric)

Qij =
exp

(
−||y(i) − y(j)||2

)∑
k

∑
l 6=k exp

(
−||y(l) − y(k)||2

)
Optimize Q to be close to P

I Minimize KL-divergence

The embeddings y(1), .., y(N) ∈ Rd are the parameters we are optimizing.

I How do you embed a new point? No embedding function!
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KL divergence

Measures distance between two distributions, P and Q:

KL(Q||P) =
∑
ij

Qij log

(
Qij

Pij

)

Not a metric function - not symmetric!

Code theory intuition: If we are transmitting information that is distributed
according to P, then the optimal (lossless) compression will need to send on
average H(P) bits.

What happens you expect P (and design your compression accordingly) but
the actual distribution is Q?

I will send on average H(Q) + KL(Q||P)
I KL(Q||P) is the ”penalty” for using wrong distribution
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KL Properties

KL(Q||P) ≥ 0 and zero only when Q = P (a.s)

KL(Q||P) is a convex function.

if Pij = 0 but Qij > 0 then KL(Q||P) =∞

[Pic credit: https://timvieira.github.io/blog/post/2014/10/06/
kl-divergence-as-an-objective-function/]
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SNE algorithm

We have P, and are looking for y(1), .., y(N) ∈ Rd such that the distribution
Q we infer will minimize L(Q) = KL(P||Q) (notice Q on right, uncommon).

Note that KL(P||Q) =
∑

ij Pij log
(

Pij

Qij

)
= −

∑
ij Pij log (Qij) + const

Can show that ∂L
∂y(i)

=
∑

j(Pij − Qij)(y(i) − y(j))

Not a convex problem! No guarantees, can use multiple restarts.

Main issue - crowding problem.
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Crowding Problem

In high dimension we have more room, points can have a lot of different
neighbors

In 2D a point can have a few neighbors at distance one all far from each
other - what happens when we embed in 1D?

This is the ”crowding problem” - we don’t have enough room to
accommodate all neighbors.

This is one of the biggest problems with SNE.

t-SNE solution: Change the Gaussian in Q to a heavy tailed distribution.

I if Q changes slower, we have more ”wiggle room” to place points at.
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t-SNE

t-Distributed Stochastic Neighbor Embedding

Student-t Probability density p(x) ∝ (1 + x2

v )−(v+1)/2

I for v = 1 we get p(x) ∝ 1
1+x2

Probability goes to zero much slower then a Gaussian.

Can show it is equivalent to averaging Gaussians with some prior over σ2

We can now redefine Qij as

Qij =
(1 + ||yi − yj ||2)−1∑

k

∑
l 6=k(1 + ||yk − yl ||2)−1

We leave Pij as is!
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t-SNE gradients

Can show that the gradients of t-SNE objective are

∂L

∂y(i)
=
∑
j

(Pij − Qij)(y(i) − y(j))(1 + ||yi − yj ||2)−1

Compare to the SNE gradients: ∂L
∂y(i)

=
∑

j(Pij − Qij)(y(i) − y(j))

Both repulse close dissimilar points and attract far similar points, but the
t − SNE has a smaller attraction term to solve crowding.

[Image credit: ”Visualizing Data using t-SNE”]
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Algorithm

[Slide credit: ”Visualizing Data using t-SNE”]
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CNN features example

[Image credit: http://cs.stanford.edu/people/karpathy/cnnembed/]
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CNN features example

[Image credit: https://lvdmaaten.github.io/tsne/]
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Recap

t-SNE is a great way to visualize data

Helps understand ”black-box” algorithms like DNN.

Reduced ”crowding problem” with heavey tailed distribution.

Non-convex optimization - solved by GD with momentum.

Less suitable for SGD (think about the parameters), some alternative
speedups exists (”Barnes-Hut t-SNE”).

Great extra resource: https://distill.pub/2016/misread-tsne/
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