CSC 411 Lecture 13:t-SNE

Ethan Fetaya, James Lucas and Emad Andrews

University of Toronto

- SNE Stochastic Neighbor Embedding
- t-SNE
- KL divergence

- t-SNE is an alternative dimensionality reduction algorithm.
- PCA tries to find a global structure
 - Low dimensional subspace
 - Can lead to local inconsistencies
 - Far away point can become nearest neighbors
- t-SNE tries to perserve local structure
 - Low dimensional neighborhood should be the same as original neighborhood.
- Unlike PCA almost only used for visualization
 - No easy way to embed new points

tSNE 2 dimensions embedding for MNIST

PCA 2 dimensions embedding for MNIST

SNE basic idea:

- "Encode" high dimensional neighborhood information as a distribution
- Intuition: Random walk between data points.
 - High probability to jump to a close point
- Find low dimensional points such that their neighborhood distribution is similar.
- How do you measure distance between distributions?
 - Most common measure: KL divergence

- Consider the neighborhood around an input data point $\mathbf{x}_i \in \mathbb{R}^d$
- Imagine that we have a Gaussian distribution centered around x_i
- Then the probability that \mathbf{x}_i chooses some other datapoint \mathbf{x}_j as its neighbor is in proportion with the density under this Gaussian
- A point closer to x_i will be more likely than one further away

Probabilities P_{ij}

The $i \rightarrow j$ probability (should be familiar from A1Q2), is the probability that point \mathbf{x}_i chooses \mathbf{x}_i as its neighbor

$$P_{j|i} = \frac{\exp\left(-||\mathbf{x}^{(i)} - \mathbf{x}^{(j)}||^2 / 2\sigma_i^2\right)}{\sum_{k \neq i} \exp\left(-||\mathbf{x}^{(i)} - \mathbf{x}^{(k)}||^2 / 2\sigma_i^2\right)}$$

With $P_{i|i} = 0$

- The parameter σ_i sets the size of the neighborhood
 - Very low σ_i all the probability is in the nearest neighbor.
 - Very high σ_i Uniform weights.
- Here we set σ_i differently for each data point
- Results depend heavily on σ_i it defines the neighborhoods we are trying to preserve.
- Final distribution over pairs is symmetrized: $P_{ij} = \frac{1}{2N}(P_{i|j} + P_{j|i})$
 - ▶ Pick *i* (or *j*) uniformly and then "jump" to *j* (*i*) acording to $P_{j|i}$ ($P_{i|j}$)

Perplexity

- For each distribution $P_{i|i}$ (depends on σ_i) we define the perplexity
 - $perp(P_{j|i}) = 2^{H(P_{j|i})}$ where $H(P) = -\sum_{i} P_i \log(P_i)$ is the entropy.
- If *P* is uniform over *k* elements perplexity is *k*.
 - Smooth version of k in kNN
 - Low perplexity = small σ^2
 - High perplexity = large σ^2
- Define the desired perplexity and set σ_i to get that (bisection method)
- Values between 5-50 usually work well
- Important parameter different perplexity can capture different scales in the data
- If your interested try A1Q2 which a fixed perplexity instead (let me know how it worked)!

[Pic credit: https://distill.pub/2016/misread-tsne/]

SNE objective

- Given $\mathbf{x}^{(1)}, .., \mathbf{x}^{(N)} \in \mathbb{R}^D$ we define the distribution P_{ij}
- Goal: Find good embedding y⁽¹⁾, ..., y^(N) ∈ ℝ^d for some d < D (normally 2 or 3)
- How do we measure an embedding quality?
- For points y⁽¹⁾, ..., y^(N) ∈ ℝ^d we can define distribution Q similarly the same (notice no σ_i² and not symmetric)

$$Q_{ij} = \frac{\exp\left(-||\mathbf{y}^{(i)} - \mathbf{y}^{(j)}||^2\right)}{\sum_k \sum_{l \neq k} \exp\left(-||\mathbf{y}^{(l)} - \mathbf{y}^{(k)}||^2\right)}$$

- Optimize Q to be close to P
 - Minimize KL-divergence
- The embeddings $\mathbf{y}^{(1)},..,\mathbf{y}^{(N)} \in \mathbb{R}^d$ are the parameters we are optimizing.
 - How do you embed a new point? No embedding function!

KL divergence

Measures distance between two distributions, P and Q:

$$extsf{KL}(Q||P) = \sum_{ij} Q_{ij} \log\left(rac{Q_{ij}}{P_{ij}}
ight)$$

- Not a metric function not symmetric!
- Code theory intuition: If we are transmitting information that is distributed according to P, then the optimal (lossless) compression will need to send on average H(P) bits.
- What happens you expect *P* (and design your compression accordingly) but the actual distribution is Q?
 - will send on average H(Q) + KL(Q||P)
 - ► *KL*(*Q*||*P*) is the "penalty" for using wrong distribution

KL Properties

- $KL(Q||P) \ge 0$ and zero only when Q = P (a.s)
- KL(Q||P) is a convex function.
- if $P_{ij} = 0$ but $Q_{ij} > 0$ then $\mathit{KL}(Q||P) = \infty$

[Pic credit: https://timvieira.github.io/blog/post/2014/10/06/kl-divergence-as-an-objective-function/]

- We have P, and are looking for y⁽¹⁾,..., y^(N) ∈ ℝ^d such that the distribution Q we infer will minimize L(Q) = KL(P||Q) (notice Q on right, uncommon).
- Note that $KL(P||Q) = \sum_{ij} P_{ij} \log \left(\frac{P_{ij}}{Q_{ij}}\right) = -\sum_{ij} P_{ij} \log (Q_{ij}) + const$

• Can show that
$$\frac{\partial L}{\partial \mathbf{y}^{(i)}} = \sum_j (P_{ij} - Q_{ij}) (\mathbf{y}^{(i)} - \mathbf{y}^{(j)})$$

- Not a convex problem! No guarantees, can use multiple restarts.
- Main issue crowding problem.

- In high dimension we have more room, points can have a lot of different neighbors
- In 2D a point can have a few neighbors at distance one all far from each other what happens when we embed in 1D?
- This is the "crowding problem" we don't have enough room to accommodate all neighbors.
- This is one of the biggest problems with SNE.
- t-SNE solution: Change the Gaussian in Q to a heavy tailed distribution.
 - if Q changes slower, we have more "wiggle room" to place points at.

t-Distributed Stochastic Neighbor Embedding

• Student-t Probability density $p(x) \propto (1 + \frac{x^2}{v})^{-(v+1)/2}$

• for
$$v = 1$$
 we get $p(x) \propto rac{1}{1+x^2}$

- Probability goes to zero much slower then a Gaussian.
- Can show it is equivalent to averaging Gaussians with some prior over σ^2
- We can now redefine Q_{ij} as

$$Q_{ij} = \frac{(1+||\mathbf{y}_i - \mathbf{y}_j||^2)^{-1}}{\sum_k \sum_{l \neq k} (1+||\mathbf{y}_k - \mathbf{y}_l||^2)^{-1}}$$

• We leave P_{ij} as is!

t-SNE gradients

• Can show that the gradients of t-SNE objective are

$$\frac{\partial L}{\partial \mathbf{y}^{(i)}} = \sum_{j} (P_{ij} - Q_{ij}) (\mathbf{y}^{(i)} - \mathbf{y}^{(j)}) (1 + ||y_i - y_j||^2)^{-1}$$

• Compare to the SNE gradients: $\frac{\partial L}{\partial \mathbf{y}^{(i)}} = \sum_{j} (P_{ij} - Q_{ij}) (\mathbf{y}^{(i)} - \mathbf{y}^{(j)})$

• Both repulse close dissimilar points and attract far similar points, but the t - SNE has a smaller attraction term to solve crowding.

[Image credit: "Visualizing Data using t-SNE"]

Algorithm 1: Simple version of t-Distributed Stochastic Neighbor Embedding.

Data: data set $X = \{x_1, x_2, ..., x_n\}$, cost function parameters: perplexity *Perp*, optimization parameters: number of iterations *T*, learning rate η , momentum $\alpha(t)$. **Result**: low-dimensional data representation $\mathcal{Y}^{(T)} = \{y_1, y_2, ..., y_n\}$. **begin** compute pairwise affinities $p_{j|i}$ with perplexity *Perp* (using Equation 1) set $p_{ij} = \frac{p_{|i|} + p_{ij}}{2\pi}$ sample initial solution $\mathcal{Y}^{(0)} = \{y_1, y_2, ..., y_n\}$ from $\mathcal{N}(0, 10^{-4}I)$ for t=I to *T* do for t=I to *T* do compute gradient $\frac{\delta C}{\delta \mathcal{Y}}$ (using Equation 5) set $\mathcal{Y}^{(t)} = \mathcal{Y}^{(t-1)} + \eta \frac{\delta C}{\delta \mathcal{Y}} + \alpha(t) (\mathcal{Y}^{(t-1)} - \mathcal{Y}^{(t-2)})$ end

[Slide credit: "Visualizing Data using t-SNE"]

CNN features example

[Image credit: http://cs.stanford.edu/people/karpathy/cnnembed/]

CNN features example

[Image credit: https://lvdmaaten.github.io/tsne/]

Recap

- t-SNE is a great way to visualize data
- Helps understand "black-box" algorithms like DNN.
- Reduced "crowding problem" with heavey tailed distribution.
- Non-convex optimization solved by GD with momentum.
- Less suitable for SGD (think about the parameters), some alternative speedups exists ("Barnes-Hut t-SNE").
- Great extra resource: https://distill.pub/2016/misread-tsne/