
CSC 411 Lecture 12:Principle Components Analysis

Ethan Fetaya, James Lucas and Emad Andrews

University of Toronto

CSC411 Lec12 1 / 22

Today

Unsupervised learning

Dimensionality Reduction

PCA

CSC411 Lec12 2 / 22

Unsupervised Learning

Supervised learning algorithms have a clear goal: produce desired outputs for
given inputs.

I You are given {(x (i), t(i))} during training (inputs and targets)

Goal of unsupervised learning algorithms less clear.

I You are given the inputs {x (i)} during training, labels are unknown.
I No explicit feedback whether outputs of system are correct.

Tasks to consider:

I Reduce dimensionality
I Find clusters
I Model data density
I Find hidden causes

Key utility

I Compress data
I Detect outliers
I Facilitate other learning

CSC411 Lec12 3 / 22

Major Types

Primary problems, approaches in unsupervised learning fall into three classes:

1. Dimensionality reduction: represent each input case using a small
number of variables (e.g., principal components analysis, factor
analysis, independent components analysis)

2. Clustering: represent each input case using a prototype example (e.g.,
k-means, mixture models)

3. Density estimation: estimating the probability distribution over the
data space

Sometimes the main challenge is to define the right task.

Today we will talk about a dimensionality reduction algorithm

CSC411 Lec12 4 / 22

Example

What are the intrinsic latent dimensions in these two datasets?

How can we find these dimensions from the data?

CSC411 Lec12 5 / 22

Principal Components Analysis

PCA: most popular instance of dimensionality-reduction methods.

Aim: find a small number of “directions” in input space that explain
variation in input data; re-represent data by projecting along those directions

Important assumption: variation contains information

Data is assumed to be continuous:

I linear relationship between data and the learned representation

CSC411 Lec12 6 / 22

PCA: Common Tool

Handles high-dimensional data

I Can reduces overfitting
I Can speed up computation and reduce memory usage.

Unsupervised algorithm.

Useful for:

I Visualization
I Preprocessing
I Better generalization
I Lossy compression

CSC411 Lec12 7 / 22

PCA: Intuition

Aim to reduce dimensionality:

I linearly project to a much lower dimensional space, K << D:

x ≈ Uz + a

where U is a D × K matrix and z a K -dimensional vector

Search for orthogonal directions in
space with the highest variance

I project data onto this subspace

Structure of data vectors is encoded
in sample covariance

CSC411 Lec12 8 / 22

Single dimension

To find the principal component directions, we center the data (subtract the
sample mean from each feature)

Calculate the empirical covariance matrix: Σ = 1
NX

TX (some people divide
by 1/(N-1))

Look for a direction w that maximizes the projection variance y (i) = wTx(i)

I Normalize ||w|| = 1 or you can just increase the variance to infinity.

What is the variance of the projection?

Var(y) =
∑
j

1

N
(wTx(i))2 =

1

N

∑
i

wT
i x

(i)x(i)Tw = wTΣw

Our goal is to solve:
w∗ = arg max

||w||=1
wTΣw

CSC411 Lec12 9 / 22

Eigenvectors

Target: find w∗ = arg max||w||=1w
TΣw

Σ has an eigen-decomposition with orthonormal v1, ..., vd and
eigenvalues λ1 ≥ λ2 ≥ ... ≥ λd ≥ 0

Write w in that bases

w =
∑
i

aivi ,
∑
i

a2i = 1

The objective is now arg max∑
i a

2
i =1 a

2
i λi

Simple solution! Put all weights in the larget eigenvalue! w = v1
What about reduction to dimension 2?

I Second vector has another constrain - orthogonal to the first.
I Optimal solution - second largest eigenvector.

The best k dimensional subspace (max variance) is spanned by the
top-k eigenvectors.

CSC411 Lec12 10 / 22

Eigenvectors

Another way to see it:

Σ has an eigen-decomposition Σ = UΛUT

I where U is orthogonal, columns are unit-length eigenvectors

UTU = UUT = 1

and Λ is a diagonal matrix of eigenvalues in decreasing magnitude.

What would happen if we take z(i) = UT x (i) as our features?

ΣZ = UTΣXU = Λ
I The dimension of z are uncorrelated!

How can we maximize variance now? Just take the top k features,
i.e. first k eigenvectors.

CSC411 Lec12 11 / 22

Algorithm

Algorithm: to find K components underlying D-dimensional data

1. Compute the mean for each feature mi = 1
N

∑
j x

(j)
i .

2. Select the top M eigenvectors of C (data covariance matrix):

Σ =
1

N

N∑
n=1

(x(n) −m)(x(n) −m)T = UΛUT ≈ U1:K Λ1:KU
T
1:K

3. Project each input vector x−m into this subspace, e.g.,

zj = uTj (x−m); z = UT
1:K (x−m)

4. How can we (approximately) reconstruct the original x if we want to?
I x̃ = U1:Kz+m = U1:KU

T
1:Kx+m

CSC411 Lec12 12 / 22

Choosing K

We have the hyper-parameter K , how do we set it?

Visualization: k=2 (maybe 3)

If it is part of classification/regression pipeline - validation/cross-validation.

Common approach: Pick based on the percentage of variance explained by
each of the selected components.

I Total variance
∑d

j=1 λj = Trace(Σ)

I Variance explained
∑k

j=1 λj
I Pick smallest k such that

∑k
j=1 λj > αTrace(Σ) for some value α e.g.

0.9

Based on memory/speed constraints.

CSC411 Lec12 13 / 22

Two Derivations of PCA

Two views/derivations:

I Maximize variance (scatter of green points)
I Minimize error (red-green distance per datapoint)

CSC411 Lec12 14 / 22

PCA: Minimizing Reconstruction Error

We can think of PCA as projecting the data onto a lower-dimensional
subspace

Another derivation is that we want to find the projection such that the best
linear reconstruction of the data is as close as possible to the original data

J(u, z,b) =
∑
n

||x(n) − x̃(n)||2

where

x̃(n) =
K∑
j=1

z
(n)
j uj + m z

(n)
j = uTj (x(n) −m)

Objective minimized when first M components are the eigenvectors with the
maximal eigenvalues

CSC411 Lec12 15 / 22

Applying PCA to faces

Run PCA on 2429 19x19 grayscale images (CBCL data)

Compresses the data: can get good reconstructions with only 3 components

PCA for pre-processing: can apply classifier to latent representation

I PCA with 3 components obtains 79% accuracy on face/non-face
discrimination on test data vs. 76.8% for GMM with 84 states

Can also be good for visualization

CSC411 Lec12 16 / 22

Applying PCA to faces: Learned basis

CSC411 Lec12 17 / 22

Applying PCA to digits

CSC411 Lec12 18 / 22

Relation to Neural Networks

PCA is closely related to a particular form of neural network

An autoencoder is a neural network whose outputs are its own inputs

The goal is to minimize reconstruction error

CSC411 Lec12 19 / 22

Implementation details

What is the time complexity of PCA?

Main computation - generating Σ matrix O(dn2) and computing
eigendecomposition O(d3)

For d � n can use a trick - compute eigenvalues of 1
NXX

T instead
Σ = 1

NX
TX (how is that helpful?). Complexity is O(d2n + n3)

Don’t need full eigendecomposition - only top-k! (much) faster solvers for
that.

Common approach nowadays - solve using SVD (runtime of O(mdk))

I More numerically accurate

CSC411 Lec12 20 / 22

Singular value decomposition

What is singular value decomposition (SVD)?

Decompose X , X = VΛUT with orthogonal U,V and diagonal with positive
elements Λ.

I Holds for every matrix unlike eigen-decomposition.

How do they connect to the eigenvectors of XTX?

XTX = (VΛUT)T (VΛUT) = UΛV TVΛUT = UΛ2UT

The column of U are the eigenvectors of XTX .

I The corresponding eigenvalue is the square of the singular value.

Finding the top k singular values of X is equivalent to finding the top k
eigenvectors of XTX .

CSC411 Lec12 21 / 22

Recap

PCA is the standard approach for dimensionality reduction

Main assumptions: Linear structure, high variance = important

Helps reduce overfitting, curse of dimensionality and runtime.

Simple closed form solution
I Can be expensive on huge datasets

Can be bad on non-linear structure
I Can be handled by extensions like kernel-PCA

Bad at fined-grained classification - we can easily throw away
important information.

CSC411 Lec12 22 / 22

	Introduction

