CSC411
Machine Learning & Data Mining
Solutions

1 Locally reweighted regression

Given {(xM),yM), .., (x(M y(N))} and positive weights a1, ..., a!N) show that the solution to the
weighted least square problem
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is given by the formula
w* = (XTAX + M) X" Ay )

where X is the design matrix (defined in class) and A is a diagonal matrix where A;; = o

1.1 Solution

Define the vector r = y —Xw then the first term in the loss can be written as 3 Z;V: 1 r]za(j ). If we look

at Ar we see that [Ar]; = al)rj, so the inner product (r, Ar) = r7Ar = 3 r; - alDr; = Zjvzl r2al).
This means we can rewrite the loss as

1 1
L(w) = 5y = Xw)TA(y — Xw) + A |w] ]

= % (y'Ay — 2w XAy + wIXTAXw + Aw’'w)
using the same derivatives formulas we used in class, Vww!w = 2w, Vouw! Aw = 2Aw (holds for
symmetric A) and Vyw!x = x we get that
VwL(w) = -XTAy + XTAXw + \w
Setting it to zero at the optimal w* we get that
XTAXw* + 2w* = (XTAX + AD)w* = XT Ay

Multiplying both sides by (XT AX+AI)~! (notice that it is positive-definite and therefore invertible)
we get
w* = (XTAX + A1)~ !XT Ay



2 Mini-batch SGD Gradient Estimator

Consider a dataset D of size n consisting of (x, y) pairs. Consider also a model M with parameters

1 . )
0 to be optimized with respect to a loss function L(x,y,0) = — >, (x® 4@ 9.
n

We will aim to optimize L using mini-batches drawn randomly from D of size m. The indices

of these points are contained in the set Z = {i1,...,%,}, where each index is distinct and drawn
uniformly without replacement from {1, ...,n}. We define the loss function for a single mini-batch
as,
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1. Given a set {ay, ..., a,} and random mini-batches Z of size m, show that
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2.1 Solution

We can write,

1 1 &
Er | = ai| =Bz |— > aid[i € I]
i€ m i=1
1 n
=— Z a;P(i € T)
=1

Noting that the probability of sampling a; without replacement is Uy
n

2. Show that Ez [VLz(x,y,0)] = VL(x,y,0)

2.2 Solution

Apply the above with a; = V(x4 6)

3. Write, in a sentence, the importance of this result.

2.3 Solution

This tells us that SGD produces an unbiased estimate of the true gradient.



3 Class-Conditional Gaussians

In this question, you will derive the maximum likelihood estimates for class-conditional Gaussians
with independent features (diagonal covariance matrices), i.e. Gaussian Naive Bayes, with shared
variances. Start with the following generative model for a discrete class label y € (1,2, ..., k) and a
real valued vector of d features x = (z1, z2, ..., zq):

ply =Fk) = ag (4)

D —1/2 D
p(xly =k p,0)= <H 2770?) exp {— > 552 (@i — ,uki)2} (5)
=1

1=1 g

where oy, is the prior on class k, o2 are the shared variances for each feature (in all classes), and pu;
is the mean of the feature i conditioned on class k. We write o to represent the vector with elements
ay, and similarly o is the vector of variances. The matrix of class means is written p where the kth
row of u is the mean for class k.

1. Use Bayes’ rule to derive an expression for p(y = k|z, u, o).

3.1 Solution

o) — P&y =E p 0)p(y = k)
ply = klx, p, o) 2Py = k)p(xly =k, p,0) °

-1/2
(Hfil 2770?) exp {_ 27;1 ﬁ(% - ,Uk:i)2} Ok
- 5 —1/2 5 Z )
>k <Hi:1 27”71‘2) exp {_ Dzt %(% - Mk:i)Q} Ok
2. Write down an expression for the negative likelihood function (NLL)
£(07 D) = - lng(y(l), X(l)a y(2)7 X(2)7 T y(N)7 X(N) |0) (8)

of a particular dataset D = {(y™,xM), (3@ x@) ... (4N x(N))1 with parameters § =
{a, pu, 0}. (Assume that the data are iid.)

3.2 Solution

We wrrite,

N
log p(y™,xM, ..,y xM16) =3 " log p(x |y, 6) + log p(y?|6) 9)
=1



Substituting terms given in question yields result.

3. Take partial derivatives of the likelihood with respect to each of the parameters 1i;; and with
respect to the shared variances o?2.

3.3 Solution

Final form of derivatives as follows:

o(--) _ _EN:]l[y(i) = k] (i, — Mkj)i (10)
Oty i=1 o]
N
aéaé) = ;:2] + M(fﬂij k) %i;; (11)
4. Find the maximum likelihood estimates for p and o.
3.4 Solution
Final solution (vectorized) is as follows:
1 , :
b= Zl 1y® = kJx® (12)
1o
o= N Z(X(Z) - Hy<i))2 (13)
i=1

(Square taken elementwise in equation [13)

4 Kernels

In this question you will prove some properties of kernel functions. The two main ways to show a
function k(x,y) is a kernel function is to find an embedding ¢(z) such that k(x,y) = (¢(x), ¢(y))
or to show the for all x(M), ... x(™) the gram matrix K;; = k(x*), x(9)) is positive semi-definite (i.e.
symmetric and no negative eigenvalues).

4.1 Positive semidefinite and quadratic form

1. Prove that a symmetric matrix K € R%*4 is positive semidefinite iff for all vectors x € R? we
have x? Kx > 0.



4.3

4.2 Solution

Proving = If K is PSD then there exists a orthonoraml basic of eigenvectors vi, ..., v4 with
non-negative eigenvalues A1, ..., \4. For all vector x we can write it using these basis elements
X = Zle a;v;. We now get

T
xI Kx = (Z a,-v,») K (Z ajvj) = ZaiajvlTva = Zaiajv;ff/\jvj =
J ' Y] 0]
Zalaj)\ézj ZaQ)\ >0

Proving «: If the quadratic form is non-negative and v is an eigenvector with eigenvalue A
then
0<vIKv=vIdv=)v]?=)X>0

Kernel properties

Prove the following properties:

4.4

. The function k(x,y) = « is a kernel for « > 0.

. k(x,y) = f(x) - f(y) is a kernel for all f : R — R.

If k1 (x,y) and ko(x,y) are kernels then k(x,y) = a-k1(x,y)+b-ko(x,y) for a,b > 0 is a kernel.

If k1 (x,y)is a kernel then k(x,y) = - (kl()x\’}’]z(w is a kernel (hint: use the features ¢ such
1 1 p

that kl (X7 Y) = <¢(X)7 ¢(Y)>)

Solution

. k(x,y) = « corresponds to the feature mapping ¢(x) = \/& (p(x),0(y)) = (Va, Va) =

k(x,y). You can also show that x’ Kx = « Do XiXj = al[x]|?> > 0.
k(x,y) = f(x)- f(y) corresponds to the feature mapping ¢(x) = f(z) € R.

If k1(x,y) and ka(x,y) are kernels then k(x,y) = a-ki(x,y) +b- ka(x,y) for a,b > 0is a kernel
-We have K = aK; + bK3 s0 xT Kx = x" (aK1 + bK2)x = ax? K1x + bx” Kox > 0.

. k1(x,y) is a kernel so there is some ¢ such that k;(x,y) = (¢(x), #(y)). Define a new feature

Y00 = 50T = g then (w(x), u(y)) = LM = — B — k(x,y)
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