
CSC 411
Machine Learning & Data Mining

Solutions

1 Locally reweighted regression

Given {(x(1), y(1)), .., (x(N), y(N))} and positive weights a(1), ..., a(N) show that the solution to the
weighted least square problem

w∗ = argmin
1

2

N∑
i=1

a(i)(y(i) −wTx(i))2 +
λ

2
||w||2 (1)

is given by the formula
w∗ =

(
XTAX+ λI

)−1
XTAy (2)

where X is the design matrix (defined in class) and A is a diagonal matrix where Aii = a(i)

1.1 Solution

Define the vector r = y−Xw then the first term in the loss can be written as 1
2

∑N
j=1 r

2
ja

(j). If we look
at Ar we see that [Ar]j = a(j)rj , so the inner product 〈r, Ar〉 = rTAr =

∑
j rj · a(j)rj =

∑N
j=1 r

2
ja

(j).
This means we can rewrite the loss as

L(w) =
1

2
(y −Xw)TA(y −Xw) + λ

1

2
||w||2

=
1

2

(
yTAy − 2wTXTAy +wTXTAXw + λwTw

)
using the same derivatives formulas we used in class, ∇ww

Tw = 2w, ∇ww
TAw = 2Aw (holds for

symmetric A) and∇ww
Tx = x we get that

∇wL(w) = −XTAy +XTAXw + λw

Setting it to zero at the optimal w∗ we get that

XTAXw∗ + λw∗ = (XTAX+ λI)w∗ = XTAy

Multiplying both sides by (XTAX+λI)−1 (notice that it is positive-definite and therefore invertible)
we get

w∗ = (XTAX+ λI)−1XTAy



2 Mini-batch SGD Gradient Estimator

Consider a dataset D of size n consisting of (x, y) pairs. Consider also a modelM with parameters

θ to be optimized with respect to a loss function L(x, y, θ) =
1

n

∑n
i=1 `(x

(i), y(i), θ).

We will aim to optimize L using mini-batches drawn randomly from D of size m. The indices
of these points are contained in the set I = {i1, . . . , im}, where each index is distinct and drawn
uniformly without replacement from {1, . . . , n}. We define the loss function for a single mini-batch
as,

LI(x, y, θ) =
1

m

∑
i∈I

`(x(i), y(i), θ) (3)

1. Given a set {a1, . . . , an} and random mini-batches I of size m, show that

EI

[
1

m

∑
i∈I

ai

]
=

1

n

n∑
i=1

ai

2.1 Solution

We can write,

EI

[
1

m

∑
i∈I

ai

]
= EI

[
1

m

n∑
i=1

ai1[i ∈ I]

]

=
1

m

n∑
i=1

aiP(i ∈ I)

=
1

m

m

n

n∑
i=1

ai =
1

n

n∑
i=1

ai

Noting that the probability of sampling ai without replacement is
m

n
.

2. Show that EI [∇LI(x, y, θ)] = ∇L(x, y, θ)

2.2 Solution

Apply the above with ai = ∇`(x(i), y(i), θ)

3. Write, in a sentence, the importance of this result.

2.3 Solution

This tells us that SGD produces an unbiased estimate of the true gradient.



3 Class-Conditional Gaussians

In this question, you will derive the maximum likelihood estimates for class-conditional Gaussians
with independent features (diagonal covariance matrices), i.e. Gaussian Naive Bayes, with shared
variances. Start with the following generative model for a discrete class label y ∈ (1, 2, ..., k) and a
real valued vector of d features x = (x1, x2, ..., xd):

p(y = k) = αk (4)

p(x|y = k,µ,σ) =

(
D∏
i=1

2πσ2i

)−1/2
exp

{
−

D∑
i=1

1

2σ2i
(xi − µki)2

}
(5)

where αk is the prior on class k, σ2i are the shared variances for each feature (in all classes), and µki
is the mean of the feature i conditioned on class k. We write α to represent the vector with elements
αk and similarly σ is the vector of variances. The matrix of class means is written µ where the kth
row of µ is the mean for class k.

1. Use Bayes’ rule to derive an expression for p(y = k|x,µ,σ).

3.1 Solution

p(y = k|x,µ,σ) = p(x|y = k,µ,σ)p(y = k)∑
k p(y = k)p(x|y = k,µ,σ)

(6)

=

(∏D
i=1 2πσ

2
i

)−1/2
exp

{
−
∑D

i=1
1

2σ2
i
(xi − µki)2

}
αk∑

k

(∏D
i=1 2πσ

2
i

)−1/2
exp

{
−
∑D

i=1
1

2σ2
i
(xi − µki)2

}
αk

(7)

2. Write down an expression for the negative likelihood function (NLL)

`(θ;D) = − log p(y(1),x(1), y(2),x(2), · · · , y(N),x(N)|θ) (8)

of a particular dataset D = {(y(1),x(1)), (y(2),x(2)), · · · , (y(N),x(N))} with parameters θ =
{α,µ,σ}. (Assume that the data are iid.)

3.2 Solution

We write,

log p(y(1),x(1), . . . , y(N),x(N)|θ) =
N∑
i=1

log p(x(i)|y(i),θ) + log p(y(i)|θ) (9)



Substituting terms given in question yields result.

3. Take partial derivatives of the likelihood with respect to each of the parameters µki and with
respect to the shared variances σ2i .

3.3 Solution

Final form of derivatives as follows:

∂(· · · )
∂µkj

= −
N∑
i=1

1[y(i) = k](xij − µkj)
1

σ2j
(10)

∂(· · · )
∂σ2

j

=
−N
2σ2j

+

N∑
i=1

(xij − µkj)2
1

2σ4j
(11)

4. Find the maximum likelihood estimates for µ and σ.

3.4 Solution

Final solution (vectorized) is as follows:

µ̂ =
1

N

N∑
i=1

1[y(i) = k]x(i) (12)

σ̂ =
1

N

N∑
i=1

(x(i) − µy(i))
2 (13)

(Square taken elementwise in equation 13)

4 Kernels

In this question you will prove some properties of kernel functions. The two main ways to show a
function k(x,y) is a kernel function is to find an embedding φ(x) such that k(x,y) = 〈φ(x), φ(y)〉
or to show the for all x(1), . . . ,x(n) the gram matrix Kij = k(x(i),x(j)) is positive semi-definite (i.e.
symmetric and no negative eigenvalues).

4.1 Positive semidefinite and quadratic form

1. Prove that a symmetric matrix K ∈ Rd×d is positive semidefinite iff for all vectors x ∈ Rd we
have xTKx ≥ 0.



4.2 Solution

Proving ⇒: If K is PSD then there exists a orthonoraml basic of eigenvectors v1, ...,vd with
non-negative eigenvalues λ1, ..., λd. For all vector x we can write it using these basis elements
x =

∑d
i=1 aivi. We now get

xTKx =

(∑
i

aivi

)T
K

∑
j

ajvj

 =
∑
i,j

aiajv
T
i Kvj =

∑
i,j

aiajv
T
i λjvj =∑

i,j

aiajλjδ(i, j) =
∑
i

a2iλi ≥ 0

Proving ⇐: If the quadratic form is non-negative and v is an eigenvector with eigenvalue λ
then

0 ≤ vTKv = vTλv = λ||v||2 ⇒ λ ≥ 0

4.3 Kernel properties

Prove the following properties:

1. The function k(x,y) = α is a kernel for α > 0.

2. k(x,y) = f(x) · f(y) is a kernel for all f : Rd → R.

3. If k1(x,y) and k2(x,y) are kernels then k(x,y) = a ·k1(x,y)+b ·k2(x,y) for a, b > 0 is a kernel.

4. If k1(x,y)is a kernel then k(x,y) = k1(x,y)√
k1(x,x)

√
k1(y,y)

is a kernel (hint: use the features φ such

that k1(x,y) = 〈φ(x), φ(y)〉).

4.4 Solution

1. k(x,y) = α corresponds to the feature mapping φ(x) =
√
α: 〈φ(x), φ(y)〉 = 〈

√
α,
√
α〉 = α =

k(x,y). You can also show that xTKx = α
∑

ij xixj = α||x||2 ≥ 0.

2. k(x,y) = f(x) · f(y) corresponds to the feature mapping φ(x) = f(x) ∈ R.

3. If k1(x,y) and k2(x,y) are kernels then k(x,y) = a ·k1(x,y)+b ·k2(x,y) for a, b > 0 is a kernel
- We have K = aK1 + bK2 so xTKx = xT (aK1 + bK2)x = axTK1x+ bxTK2x ≥ 0.

4. k1(x,y) is a kernel so there is some φ such that k1(x,y) = 〈φ(x), φ(y)〉. Define a new feature
ψ(x) = φ(x)

||φ(x)|| =
φ(x)√
k1(x,x)

then 〈ψ(x), ψ(y)〉 = 〈φ(x),φ(y)〉√
k1(x,x)

√
k1(y,y)

= k1(x,y)√
k1(x,x)

√
k1(y,y)

= k(x,y).
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