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Introduction

Prototypical Network

Motivation: Assistive technology based on facial gestures , Support set (Enrollment images): S — {(x. )} g St ey My s ey o Rl o ey (e 4
enables individuals with upper limb motor disability to where x; are the support images, y; being their corresponding N BN o - . -
interact with electronic interfaces effectively and efficiently. labels, and Ns the total number of supports. 10 986 05.2 ' : '
Contributions: - TN S L o :
«Query set: Q = {q;}"'%, are images to be classified into 5 5 984 92.3 57, 6 69, 14 78, 0

o Allows for customization by using Prototypical Networks one of the support classes. 110 :gg gg; :

which takes enroliment images » Prototypical Network consists of a neural network f;, and il B L o %2 or. 1 %. 8
o Utilizes graphic engine for synthesizing training data for a distance measure (e.g., Euclidean distance) d(-, -) on the 866 09.5 :

Prototypical Network, circumventing the need of curating a output of f, AL L o 0.5 02 4 9.5

large training set manually. Table: Classification accuracy on synthesized and real faces. Evaluation on

the real faces was done in the 3-way setup, using 5-shot trained models.
The results on the real faces were from 3 trial runs.

o A query q is classified based on how close it is to the class
prototype . of each class ¢ (computed as the average of
fs(x) for all x in the support set S, of class ¢):

exp(—d(f¢(q), “’c))
>_oexp(—d(fs(a), uo))

Previous Work: FaceSwitch [1]

(1) ° Models trained on synthetic faces can transfer to classifying

o Threshold based classifier for 4 predefined actions psly = clq) =
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Training Prototypical Network
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o Successful training of few-shot classifier requires a large

m > * . —> Twitching nose training set. E.g., the popular benchmark, Omniglot )
- - * —> Raising eyebrow dataset, has only 20 images per class, but >1000 classes. s
EEXE]l EEEEXE I e Our insight is that, since the input are tracked landmarks of 2* 1\
the face, we can synthesize a training set using a graphic
. y engine, i.e., AutoDesk Maya. Conclusion
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We present a novel method that allows AT based on facial

Our modified classifier gestures recognition to be customizable, and only can be

trained using only synthetic data.
Future:
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e Scale up using more diverse synthetic faces.

Trained network

o Allow interaction during enrollment.
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