

Introduction

- We propose the use of **prototypical network loss** (PNL), a state-of-the-art approach for the few-shot image classification task, to optimize an end-to-end speaker embedding network.
- We showed that models trained using PNL outperform models of the same architecture optimized with **triplet loss** (TL) on speaker verification (SV) and speaker identification (SI) tasks.

Optimization schemes & Model

- **x**: a sequence of speech features
- y: speaker label
- d: distance function, e.g. cosine or squared Euclidean distance

• *f* : speech sequence embedding model

Prototypical Networks [1] train a neural network episodically. Each mini-batch contains a support set, $S = \{(\mathbf{x}_i, y_i)\}_{i=1}^{N_S}$, and a query set, $Q = \{(\mathbf{x}_j, y_j)\}_{i=1}^{N_Q}$. A query \mathbf{x}_i is classified based on how close it is to the class prototype \mathbf{c}_{y_i} of class y_j (computed as the average of $f(\mathbf{x})$ for all **x** in the support set S_{y_i} of class y_i): $p(y = y_i | \mathbf{x}_i) = \exp(-d(f(\mathbf{x}_i), \mathbf{c}_{y_i})) / \sum_{k'} \exp(-d(f(\mathbf{x}_i), \mathbf{c}_{k'}))$. The loss

function for each mini-batch is:

$$J_{PNL} = \sum_{\{(\mathbf{x}_j, y_j)\} \in Q} -\log p(y = y_j | \mathbf{x}_j)$$

Triplet-based models [2] sample triplets, which consist of an anchor \mathbf{x}_a , a positive sample \mathbf{x}_p with the same speaker label, and a negative sample \mathbf{x}_n with a different speaker label. By sampling all possible triplets in a mini-batch, the loss for this mini-batch is:

$$J_{TL} = \sum_{\tau \in T} \max(0, d(f(\mathbf{x}_a^{\tau}), f(\mathbf{x}_p^{\tau})) - d(f(\mathbf{x}_a^{\tau}), f(\mathbf{x}_n^{\tau})) + \alpha) \quad (2)$$

Centroid-based Deep Metric Learning For Speaker Recognition

Jixuan Wang^{1,2,*}, Kuan-Chieh Wang^{1,2,*}, Marc T. Law^{1,2}, Frank Rudzicz^{1,2,3,4}, Michael Brudno^{1,2,5}

¹University of Toronto, Canada ²Vector Institute, Canada ³St Michaels Hospital, Canada ⁴Surgical Safety Technologies Inc, Canada ⁵Hospital for Sick Children, Canada

Prototypical Network Loss vs. Triplet Loss

(a) prototypical network loss

Dashed lines represent distances encouraged to increase, while **solid lines** represent distances being decreased.

- **PNL**: prototypes for different speakers, denoted by black nodes are computed as the mean of the support set (shaded) during training.
- **TL**: a triplet consists of an anchor, positive, and negative samples, forming the (anchor, positive) and (anchor, negative) pairs. Depending on the sampling strategy not all triplets may be considered.

Conclusion

- With identical speech sequence embedding architectures, PNL outperforms the triplet loss when speakers are seen during training, and by an even larger margin on held-out, unseen speakers for both speaker identification and speaker verification tasks.
- In the future, we would like to explore better architectures of speech sequence embedding models, compare PNL with other loss functions used in deep metric learning and integrate the proposed model into a speaker diarization pipeline.

References

[1] Snell, Jake, Kevin Swersky, and Richard Zemel. "Prototypical networks for few-shot learning." Advances in Neural Information Processing Systems. 2017. [2] Bredin, Hervé. "Tristounet: triplet loss for speaker turn embedding." 2017 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE, 2017.

(b) triplet loss

Results on Speaker Identification

The top row 'S: N_S , Q: N_Q , K-way' denotes the *task* configurations.

	(a) SI acc	uracy on VCT	ΪK	
Model	S: 5, Q: 5, 6-way		S: 10, Q: 10, 18-way	
	Test	Unseen	Test	Unseen
TL (Naive, Euc)	91.96%	77.80%	81.25%	56.37%
TL (Naive, Cos)	92.37%	77.69%	83.51%	58.51%
TL (Semi, Euc)	93.33%	79.69%	85.38%	58.49%
TL (Semi, Cos)	92.13%	73.94%	83.99%	52.97%
PNL (1_5, Euc)	93.24%	77.90%	83.71%	56.52%
PNL (3_5, Euc)	95.63%	84.81%	90.53%	69.64%
PNL (5_5, Euc)	95.47%	83.69%	89.85%	68.55%
PNL (10_10, Euc)	94.38%	85.00%	88.43%	66.63%
	(b) SI accur	acy on VoxCe	leb2	
Model	S: 10, Q: -, 15-way		S: 30, Q: -, 15-way	
	Test	Unseen	Test	Unseen
TL (Semi, Cos)	74.74%	53.92%	75.18%	59.61%
TL (Semi, Euc)	71.78%	51.74%	72.02%	56.79%
PNL (5_5, Euc)	78.38%	59.44%	79.23%	66.63%

Results on Speaker Verification

	(a) EER ON V	CIN				
Model	Test	Uns	Unseen			
IVIOUEI	60s	60s	10s			
TL (Semi, Cos)	5.43(±0.16)	$13.87(\pm 0.37)$	$16.19(\pm 0.86)$			
TL (Semi, Euc)	$5.05(\pm 0.09)$	$12.26(\pm 0.69)$	$13.44 (\pm 0.91)$			
PNL (5_5, Euc)	4.08(±0.13)	$10.77(\pm 0.58)$	$12.00(\pm 0.76)$			
(b) EER on VoxCeleb2						
Model	Test	Unseen				
INIQUEI	60s	60s	10s			
TL (Semi, Cos)	9.23(±0.13)	$14.62(\pm 0.35)$	$16.93(\pm 0.45)$			
TL (Semi, Euc)	$9.90(\pm 0.11)$	$15.92(\pm 0.32)$	$17.61 (\pm 0.51)$			
PNL (5_5, Euc)	8.29(±0.12)	13.68(±0.26)	15.67(±0.56)			

SI accuracy on test and unseen sets of VCTK and VoxCeleb2. Under the "Model" column are the training configurations.

UNIVERSITY OF

TORONTO

$\lambda / C T / C$

EER of SV on both VCTK and VoxCeleb2 datasets. "60s" (60 seconds) refers the duration of speech we used for enrollment. () FER on VCTK