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ABSTRACT

Extracting and presenting essential information of time-varying
volumetric data is critical in many fields of sciences. This paper
introduces a novel approach of identifying important aspects of the
dataset under the particle filter framework in computer vision. With
the view of time-varying volumes as dynamic voxels moving along
time, an algorithm for computing the 3D voxel transition curves is
derived. Based on the curves which characterize the local data tem-
poral behavior, this paper also introduces several post-processing
techniques to visualize important features such as curve clusters by
k-means and curve variations computed from curve gradients.

1 INTRODUCTION

Time-varying volumetric datasets are ubiquitous in many scientific
disciplines such as fluid simulations and medical imaging measure-
ments. These datasets have the properties of being large and dy-
namic, which creates new challenges for developing efficient tech-
niques to visualize and analyze the data. In previous studies, one
way of viewing the data is to treat it as a series of static scalar vol-
umes. With this interpretation, a number of techniques have been
proposed based on showing animations of the data volume or pre-
senting key volumes along a timeline [4]. These methods have the
disadvantages of only revealing part of the whole dataset, which
makes the user lose the global picture. Another way of understand-
ing time-varying volumes is to view it as dynamic 3D volume where
each voxel is a time-dependent series. Researchers have proposed
many solutions to summarize the voxel temporal behaviors and vi-
sualize the whole dataset as a single aggregated volume, for exam-
ple, the time-activity curves [2] and importance curves [5]. These
techniques not only increase the efficiency of viewing the data but
also preserve the overall temporal information.

However, the previous research under the dynamic volume con-
cept mostly focuses on temporal behaviors at fixed coordinates, i.e.,
the voxels. This is adequate for certain datasets where the object ge-
ometry is stable across the time, such as medical images, whereas
for some other time-varying volumetric datasets, such as hurricane
simulations, the shape of object is changing all the time, reflecting
that the meaning of each voxel is varied. In other words, a partic-
ular part of the hurricane data represented by a voxel may move to
other locations as time evolves. Therefore the proposed techniques,
which do not take such movement information into account, may
not be able to reveal the key underline characteristics of the dataset.

In this paper, a novel visualization technique is proposed, based
on a well-known object tracking framework in computer vision
called particle filter [3]. This technique first extracts the motion
information of voxels as a group of transition curves, and then vi-
sualizes the time-varying volumetric data with transfer functions
developed by clustering transition curves and summarizing curve
properties. With this approach, users can efficiently identify voxels
with similar temporal behaviors or abnormal regions in the volume.

2 METHOD

2.1 Particle Filter
Particle filter, also known as a sequential Monte Carlo method [3],
is a famous framework for object tracking. It is an iterative algo-
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Figure 1: One iteration of the algorithm computing the transition
curve of one voxel, including steps: (a) sampling, (b) propagation
and (c) observation. The probability distribution is presented as the
grid background in a yellow-to-green colormap.
rithm that can be used to estimate Bayesian models in which the
latent variables are connected in a Markov chain. Given an initial
probability distribution of the object position, the algorithm tracks
the object in a three step process at each iteration (time frame) in-
cluding sampling, propagation, and observation. In the sampling
step, a set of weighted samples (called particles) is created from the
probability distribution of the object position of the previous time
frames. The more the sample’s weight is, the more likely the object
is there. Next in the propagation step, these samples are applied
with predefined movement dynamics, which makes them drift to
new positions served as predictions of the possible object positions
in current frame. In the observation step, the propagated samples
are evaluated based on some computer vision features from the cur-
rent frame to estimate their probabilities (or weights). Then the
mean position of all the samples is viewed as the predicted object
position and these samples, representing the new probability distri-
bution of the object position, are passed to next iteration. Canton-
Ferrer et al. [1] applied this approach for tracking human body ges-
tures using voxel information, which is similar to our idea. But our
goal is to reveal the underline temporal characteristics of voxels
rather than using them as feature vectors.

2.2 Transition Curves
Under the aforementioned concept, we develop an algorithm to
track the movements of voxels according to the volume data at
each time frame. There are two basic assumptions: 1) at each time
frame, a voxel can only move one unit far, i.e., to its 26 neighbor
locations, or stay at the same position and 2) the volume of current
time frame is only affected by the previous frame (i.e., a first-order
Makov chain).

Let xi = [x′i,y
′
i,z
′
i]

T be the coordinates of the volume lattice
whose index is i. For ith voxel whose initial position is xi,
we want to track its movement along time, forming a path (i.e.,
voxel transition curve) in the volume, Ci = {X1,X2, . . . ,XT },Xt ∈
{x1,x2, . . . ,xN}, where T is the number of time frames and N is
the total number of data points in the volume. At each iteration,
given the previous voxel position Xt−1 and its probability distribu-
tion Pt−1, we want to estimate its current position Xt and distri-
bution Pt . The distribution expresses the uncertainty of the voxel
position, i.e., the likelihood of the voxel residing at that location.
According to the first assumption, the possible voxel positions are
within the 3× 3× 3 neighbor cube centered at Xt , thus the proba-
bility beyond this scope is zero.

Next we describe the algorithm of computing transition curves
using the concept of particle filters. A simple illustration with the
2D volume case is shown in Figure 1.



Figure 2: Results of highlighting voxels of different curve clusters in the volume.

Sampling First we sample all the points located within the
neighbor region of the voxel, Ω(Xt−1), which in our case is the cube
of 27 points centered at Xt−1, and each selected point has the weight
(probability), Pt−1(xi), where xi ∈Ω(Xt−1) and ∑xi

Pt−1(xi) = 1.
Propagation With the sampled location xi, we estimate its cur-

rent position according to the movement dynamics,
x̂i = xi +A(Xt−1−Xt−2)+B, xi ∈Ω(Xt−1), (1)

where A and B are movement parameters. The first item of the equa-
tion represents the determinant part, assuming the point is moving
at speed A and at the same direction as in last iteration, and the
second item represents the random part, in which B is a noise fac-
tor, e.g., in normal distribution B ∼ N(0,σ2

m). According to our
assumption, after the propagation, these sampled points initially in
region Ω(Xt−1) moved within the boundary of region Ω2(Xt−1) that
is a 5×5×5 neighbor cube centered at Xt .

Next we can compute the estimated distribution at current time
frame, P̂t , in region Ω2(Xt−1). Thus we have

P̂t(x j) =
∑i w(x j,xi)Pt−1(xi)

∑i w(x j,xi)
,w(x j,xi) = exp(−

‖x j− x̂i‖
2σ2

x
),

xi ∈Ω(Xt−1),x j ∈Ω
2(Xt−1) (2)

where the weight w(x j,xi) measures how other sample points affect
the probability at the position x j .

Observation In this step we want to adjust the estimated dis-
tribution P̂t according to the real (observed) volumetric data and
identify the most likely movement of the voxel with the adjusted
probability distribution. Let Vt(xi) be the scalar value of the vol-
ume data at position xi at time frame t. Similarly, we can use the
above weights to compute the estimated volume data values,

V̂t(x j) =
∑i w(x j,xi)Pt−1(xi)Vt−1(xi)

∑i w(x j,xi)Pt−1(xi)
(3)

Thus we adjust the distribution according the estimated and ob-
served volume data values,

P′t (x j) = P̂t(x j)exp(−
‖Vt(x j)−V̂t(x j)‖

2σ2
v

) (4)

Because of the movement, we compute Pt(x j) in region Ω2(Xt−1).
In order to predict Xt , we simply find a 3×3×3 region that has the
maximum probability,

Xt = argmax
x j

∑
x∈Ω(x j)

P′t (x) (5)

Thus the center of the selected region is the predicted voxel position
Xt . To compute Pt , we normalize the probability distribution P′t in
Ω(Xt). Then Xt and Pt are passed to next iteration.

3 VOLUMETRIC VISUALIZATION WITH TRANSITION CURVES

This section presents two ways of utilizing the transition curves
to visualize key aspects of the time-varying volume. The dataset
used here is the water vapor value of the hurricane simulation data
in the IEEE Vis2004 contest, containing a volume of dimension

Figure 3: The visualization of transition curve variations.
500×500×100 with 48 time frames. In practice, when computing
the transition curves, the time-varying volume can be block-wised,
i.e., dividing the volume into spatial blocks and averaging the data
values in each block. This approach is more suitable than voxel-
wise method when the data size becomes too large to be handled
efficiently [5]. The performance of computing the transition curves
with block dimension 100× 100× 20 on a desktop of Intel Dual
Core 2.4GHz, 4GB memory is 39 min.

The first approach is highlighting curve clusters with similar
temporal behaviors in the time-varying volume. Figure 2 shows the
results of clustering transition curves into 5 groups using k-means
algorithm, from which we can clearly see that (a) the eye region,
(b) the middle area, (c) peripheral space of the hurricane, and (d)
area closed to the ground are identified.

The second approach is to visualize the properties of the tran-
sition curves starting at each voxel, for example, the variations of
curves. In this paper, the curve variation is measured by computing
the sum of the lengths of curve gradients at each point. The results
show that the curve variation values can clearly indicate the more
stable region (Figure 3a) and severe movement region (Figure 3b).

4 CONCLUSIONS

This paper has introduced a novel approach of visualizing time-
varying volumetric data based on tracking the movement of dy-
namic voxels along time. An algorithm of computing such tran-
sition curves is described based on the framework of the particle
filter. The results indicate that visualizations of characteristics of
transition curves have captured important features of the data.
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