
THE UNIVERSITY OF CHICAGO

SYMMETRY AND EQUIVALENCE RELATIONS IN CLASSICAL AND GEOMETRIC

COMPLEXITY THEORY

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

BY

JOSHUA ABRAHAM GROCHOW

CHICAGO, ILLINOIS

JUNE 2012

To my parents, Jerrold Marvin Grochow and Louise Barnett Grochow

ABSTRACT

This thesis studies some of the ways in which symmetries and equivalence relations arise in

classical and geometric complexity theory. The Geometric Complexity Theory program is

aimed at resolving central questions in complexity such as P versus NP using techniques

from algebraic geometry and representation theory. The equivalence relations we study

are mostly algebraic in nature and we heavily use algebraic techniques to reason about

the computational properties of these problems. We first provide a tutorial and survey on

Geometric Complexity Theory to provide perspective and motivate the other problems we

study.

One equivalence relation we study is matrix isomorphism of matrix Lie algebras,

which is a problem that arises naturally in Geometric Complexity Theory. For certain cases

of matrix isomorphism of Lie algebras we provide polynomial-time algorithms, and

for other cases we show that the problem is as hard as graph isomorphism. To our

knowledge, this is the first time graph isomorphism has appeared in connection with any

lower bounds program.

Finally, we study algorithms for equivalence relations more generally (joint work with

Lance Fortnow). Two techniques are often employed for algorithmically deciding equivalence

relations: 1) finding a complete set of easily computable invariants, or 2) finding an algorithm

which will compute a canonical form for each equivalence class. Some equivalence relations in

the literature have been solved efficiently by other means as well. We ask whether these three

conditions—having an efficient solution, having an efficiently computable complete invariant,

and having an efficiently computable canonical form—are equivalent. We show that this

question requires non-relativizing techniques to resolve, and provide new connections between

this question and factoring integers, probabilistic algorithms, and quantum computation.

iii

ACKNOWLEDGMENTS

First I thank my advisors. I thank Lance Fortnow for his advice, support, guidance, and

collaboration on Chapter 5 and several other projects which have yet to bear fruit. I thank

Ketan Mulmuley for his advice and support, as well as countless hours of discussion through-

out the course of my graduate career. Without these discussions, it would not have been

possible to seriously work on problems related to Geometric Complexity Theory—such as

matrix isomorphism of Lie algebras (Chapter 4)—let alone to write a survey on it

(Chapter 3). I thank Benson Farb for his advice, guidance, and many fruitful discussions,

even when he was not officially my advisor.

I thank my thesis committee for their continued advice, prodding, and editorial support.

I thank Anne Rogers for her support and for the countless decisions regarding my career

trajectory, both large and small, she helped me understand how to make.

I thank Sasha Razborov for many interesting discussions, and for enforcing a much-needed

kick-in-the-pants in the middle of my graduate career that ensured I graduated in a timely

fashion. I cannot imagine this duty was much fun for him, but it was a tremendous help to

me.

I thank anonymous reviewers for feedback that improved the quality, clarity, and presen-

tation of the works on which Chapters 4 and 5 are based. In particular, one of the reviewers

pointed out the importance of the complexity of factoring polynomials for Chapter 4. One

of the reviewers suggested that we define some sort of hybrid notion of Cohen and transi-

tive genericity, as well as suggested the notion of UP-transitive genericity that are used in

Chapter 5. I also thank Lane Hemaspaandra—who was our editor for the corresponding

paper—and Paolo Codenotti for useful comments on a draft of Chapter 5. I thank Laci

Babai for useful comments on a draft of Chapter 4, as well as pointing me to several results

[20, 62] related to that chapter, and suggesting that I consider the corresponding questions

for associative algebras.

I thank Stuart Kurtz and Laci Babai for several useful discussions regarding Chapter 5.

In particular, Stuart suggested the use of the equivalence relation RL, which led to Theorem

iv

5.3.3, and Laci pointed out the canonical form for subgroup equality of permutation groups

[23]. I thank Scott Aaronson for the observations leading to Section 5.3.1. I thank Andreas

Blass for pointing me to the original two papers he co-authored with Gurevich [56, 57].

I thank my collaborators, on projects both finished and in progress: Lance Fortnow,

László Babai, Paolo Codenotti, Youming “Jimmy” Qiao, Jonah Blasiak, and Thomas

Church. It was and continues to be a pleasure to work with them. In particular, Chap-

ter 5 is based on joint work with Lance, and Jonah helped me clarify my thoughts on

matrix isomorphism of Lie algebras and together realize the equivalence with graph

isomorphism in Chapter 4.

I find it incredibly useful, rewarding, and fun to talk through mathematics with others,

and it is my great pleasure and honor to thank Lance Fortnow, Ketan Mulmuley, Ben-

son Farb, Thomas Church, Ian Shipman, Spencer Dowdall, Anna Marie Bohmann, Daniel

Studenmund, Vipul Naik, Paolo Codenotti, Youming “Jimmy” Qiao, Chris Umans, J. M.

Landsberg, Jerzy Weyman, Shrawan Kumar, Neeraj Kayal, Arkadev Chatthopadhyay, Pascal

Koiran, Gerald J. Sussman, and Jonah Blasiak for not only useful and interesting discus-

sions, but also for their infectious enthusiasm. Many discussions regarding GCT and matrix

isomorphism of Lie algebras took place at the Brown-ICERM Workshop on Mathe-

matical Aspects of P vs. NP and its Variants in August 2011, for which I would like to

thank ICERM and the organizers of the workshop—J. M. Landsberg, Saugata Basu, and J.

Maurice Rojas—for the invitation and support to attend the workshop.

I would especially like to thank Stuart Kurtz and Gerald J. Sussman for sharing with me

some small portion of their incredible breadth of knowledge and depth of philosophy. They

have both made my research career and my life more interesting.

This thesis was partially supported by K. Mulmuley’s NSF Grant CCF-1017760, L. Fort-

now et al.’s NSF Grant DMS-0652521 and fellowships from the University Chicago Depart-

ment of Computer Science.

I would like to thank the members of the University of Chicago Department of Computer

Science Techstaff. They’ve setup such a great system and were so helpful that I barely

noticed all the technology I was using: I could do what I wanted, how I wanted, when I

wanted. I think this is the mark of a truly great technical staff. I would also like to thank

v

the staff of the University of Chicago Library, especially those in Eckhart Library: I am

likely one of their most frequent patrons.

Finally, I thank my family and extended family. My extended family, who were also my

roommates at various points throughout my graduate career: Spencer Dowdall, Ian Shipman,

Ann Herbert, Rebecca Lordan, and (honorary roommate) Thomas Church; it’s not so much

that they made graduate school worth the time and effort, but that they made it worthwhile

at least ten times over. I especially thank my grandparents Samuel and Frances Grochow,

and Marvin and Hazel Barnett, my parents Jerrold and Louise Grochow, and my sister,

Rebecca Grochow, for all their love and support in so many ways over the years. Last but

by no means least, I thank my fiancé Nikki Pfarr. I thank her for her patience, support, and

partnership; for her humor; for her love, romance, and companionship; for her wisdom, wit,

humor, and intelligence; and for her smile.

vi

TABLE OF CONTENTS

ABSTRACT . iii

ACKNOWLEDGMENTS . iv

LIST OF FIGURES . x

LIST OF TABLES . xi

Chapter

1 INTRODUCTION . 1
1.1 Computational complexity . 2

1.1.1 Computational problems and complexity measures 2
1.1.2 Degrees of complexity . 3

1.2 Equivalence relations . 5
1.3 Symmetry . 7

1.3.1 Continuous symmetries and Lie algebras 9
1.3.2 Symmetry-based equivalence relations 9

1.4 Symmetry and equivalence relations in complexity 12
1.5 Organization . 15

2 BACKGROUND . 16
2.1 Complexity Theory . 16

2.1.1 Computational problems . 17
2.1.2 Reductions . 18
2.1.3 Complexity classes . 18
2.1.4 Circuit complexity . 26
2.1.5 Algebraic complexity . 28
2.1.6 Barriers: relativization, algebrization, and natural proofs 31

2.2 Algebra . 33
2.2.1 Equivalence relations . 33
2.2.2 Groups . 33
2.2.3 Rings, fields, and modules . 38
2.2.4 Lie algebras . 40

vii

3 A TUTORIAL AND SURVEY OF GEOMETRIC COMPLEXITY THEORY . . 49
3.1 Introduction . 49

3.1.1 Outline . 50
3.2 The 1,000-foot view . 51

3.2.1 The plan of attack . 51
3.2.2 On the necessity of algebraic geometry, representation theory, and al-

gorithms . 53
3.2.3 The plan of attack II: a few details 56

3.3 The 100-foot view: from computational reductions to orbit closures 57
3.3.1 Background: group actions and orbits 57
3.3.2 Equivalence of lower bounds and orbit closure containment 61
3.3.3 Algebraic versus Boolean complexity 66

3.4 The 10-foot view: characterization by symmetries 70
3.4.1 Background: stabilizers in group actions 71
3.4.2 Symmetry-characterization and self-reduction: the Flip Theorem . . . 73
3.4.3 Symmetry-characterization avoids the Razborov–Rudich barrier . . . 83
3.4.4 An algorithmic consequence of symmetry-characterization 84

3.5 The view from the ground . 85
3.5.1 Using the zeroes of a function to understand its orbit closure 86
3.5.2 The relationship between the Mulmuley–Sohoni Conjecture and per-

manent versus determinant . 90

4 MATRIX ISOMORPHISM OF MATRIX LIE ALGEBRAS 94
4.1 Introduction . 94

4.1.1 Results . 95
4.1.2 A note on finding roots of single-variable polynomials 98
4.1.3 Outline . 100

4.2 Warm-up: diagonalizable Lie algebras and linear code equivalence . . . 101
4.3 Basic algorithms for Lie algebras and their representations 105

4.3.1 Describing Lie algebras and representations as input to algorithms . . 105
4.3.2 Abstract isomorphism of semisimple Lie algebras 106
4.3.3 Equivalence and decomposition of representations 107

4.4 Semisimple Lie algebras and graph isomorphism 108
4.5 Completely reducible Lie algebras . 120
4.6 Application to equivalence of polynomials 122
4.7 Application to abstract isomorphism of Lie algebras 127
4.8 Twisted code equivalence reduces to graph isomorphism 132
4.9 Future work . 134

4.9.1 Other fields . 134
4.9.2 Connections with finite group isomorphism 139
4.9.3 Open Questions . 144

viii

5 THE COMPLEXITY OF EQUIVALENCE RELATIONS 148
5.1 Introduction . 148

5.1.1 Examples . 150
5.1.2 Main results . 151
5.1.3 Organization . 152

5.2 Previous Results . 153
5.3 Evidence for Separation . 155

5.3.1 New Collapses . 155
5.3.2 Hardness . 161

5.4 Oracles . 164
5.4.1 Preliminaries on Generic Oracles . 165
5.4.2 Oracles for PEq, Ker, and CF . 168

5.5 Future Work . 173
5.5.1 Logarithmic Space . 173
5.5.2 Additional Questions . 174

6 CONCLUSION . 176

REFERENCES . 180

ix

LIST OF FIGURES

1.1 Some relationships between symmetry, equivalence relations, and
computational complexity . 1

1.2 Are these two graphs “the same?” . 5
1.3 A labeling of the vertices . 6
1.4 Two graphs with the same number of vertices and edges that are not the

same. 6
1.5 Some shapes with varying degrees of symmetry: a circle, an equilateral

triangle, an isosceles triangle, a general triangle. 8
1.6 A geometric figure with an infinite but discrete group of symmetries. . . . 9
1.7 Under the full symmetry group of an equilateral triangle, the points marked

by circles are all equivalent to one another. The midpoints of the sides,
marked by squares, are all equivalent to one another, but are not equivalent
to the points marked by circles. 10

3.1 The action of Sn on n-vertex graphs is by isomorphisms 58
3.2 Orbits of points on an equilateral triangle under the action of the dihedral

group. Each shape (square or circle) corresponds to a single orbit. 59
3.3 The padded permanent. 63

4.1 Two matrix isomorphic faithful representations of a Lie algebra L yield an
automorphism of L by going around the triangle clockwise: ρ−1

2 ◦ cA ◦ ρ1. . 110
4.2 Color gadget encoding the action of the groups acting on the columns. In

twisted code equivalence these are the twisting groups; from the Lie
algebra point of view these are the outer automorphism groups of the simple
direct summands. 115

x

LIST OF TABLES

4.1 The complexity of abstract Lie algebra isomorphism and matrix iso-

morphism of Lie algebras. This table suggests that the latter is “one
step up” from the former. 131

xi

CHAPTER 1

INTRODUCTION

This thesis is about symmetry, equivalence relations, and computational complexity. In this

introduction we discuss what these terms mean and how they relate to one another. In

the remainder of the thesis we study several relations among these topics in more depth:

how symmetries of and equivalence relations on algorithms and algorithmic problems may

improve our understanding of computational complexity, via Geometric Complexity Theory

(Chapter 3); the computational complexity of a particular equivalence relation that arises in

Geometric Complexity Theory (matrix isomorphism of matrix Lie algebras, Chap-

ter 4); and finally, how computational complexity sheds light on algorithmic problems as-

sociated with equivalence relations in general (Chapter 5). In the concluding Chapter 6

we discuss other relationships between symmetry and computational complexity, and spec-

ulate on the future role of representation theory—the use of linear algebra to understand

symmetry—in computational complexity.

Symmetry

Equivalence
Relations

Computational
Complexity

Geometric
Complexity
Theory (Ch. 3)

Ch. 6

Group
Theory

Chs. 1 & 6

Ch. 5

Figure 1.1: Some relationships between symmetry, equivalence relations, and
computational complexity

In the remainder of this introduction, we define computational complexity, symmetry, and

equivalence relations, and in the final Section 1.4 we introduce the main theme of this thesis:

1

how symmetry and equivalence relations may help shed light on computational complexity

and vice versa.

1.1 Computational complexity

1.1.1 Computational problems and complexity measures

Computational complexity is the study of the difficulty, or complexity, of computing various

functions or relations, often referred to generally as “problems.” Definitionally, a relational

problem may have more than one answer for each instance, while a function (problem) has

at most one answer for each instance. For example, given a road map and two cities, finding

any route between the two cities is a relational problem—there may be many such routes;

finding the length of the shortest route between two cities is a function problem. In both

these cases, a road map with two marked cities is an instance of the problem.

There are many measures of the computational complexity of a problem. Two of the most

prominent complexity measures are the time needed to solve a problem, and the memory

or space needed to solve a problem. “Time” is measured by the number of steps taken by

an idealized computer called a Turing machine [266]. The time complexity of a problem is

the least amount of time needed by any algorithm that solves the problem on this idealized

computer. Of course, the actual time to solve a problem depends on the algorithm used and

the computer it is run on. Measuring time on a Turing machine allows us to eliminate the

issue of picking any particular hardware or software. Throughout the rest of this section

we will focus on time complexity for concreteness, but what we say will also be valid for

essentially any reasonable complexity measure.

For a given problem, there are typically many instances, even infinitely many, so how do

we assign a quantitative measure to the time taken to solve a problem P ? In the example

above of road maps, we would expect any algorithm, even the fastest possible algorithm, to

take more time solving the problem on a road map with 1000 cities than on a road map with

10 cities. Thus the time taken by an algorithm will be some function of the input size; in any

given problem there is usually a natural notion of the size of an input, but generally speaking

the size of an input should reflect the number of bits, or the amount of information, needed

to encode the input in some reasonable fashion. In this thesis we will only be concerned with

2

so-called worst-case complexity, meaning that we consider the maximum amount of time

taken by A over all instances of a given size.

But now we run into a problem: what do we mean by the least amount of time needed?

By hard-coding the answers for certain instances into an algorithm, we can make the time to

solve those instances essentially as small as we like. Instead, we measure the time complexity

of P by the minimum growth rate of the time taken by any algorithm solving P ; for example,

for inputs of size n, as n goes to infinity, does the amount of time taken by the best algorithm

for P scale like n? n2? n3? 2n? This better captures the time taken by general strategies

for solving P , independent of hard-coding the answers to certain instances.

Even this definition has issues. First, in reality few problems actually have infinitely

many instances, as there are only finitely many atoms in the universe. Second, there are

problems for which there is no optimal algorithm [59], that is, the minimum growth rate

does not exist: there is some problem P and infinitely many algorithms solving P such that

each algorithm takes time whose asymptotic growth rate is less than that of the previous

algorithm in the list. However, these problems seem to rarely cause trouble in practice, and

the asymptotic growth rate of the time taken by algorithms has proved to be a robust and

useful measure of the complexity of a problem, both in theory and in practice.

1.1.2 Degrees of complexity

In this thesis, we will mainly be concerned with the theory of polynomial-time complexity.

An algorithm A is said to run in polynomial time if there are constants c1, c2, c3, independent

of n, so that for all n, the time taken by A on any instance of size n is at most c1n
c2 + c3.

Problems that can be solved in polynomial time are often said to be “efficiently solvable.”

Despite the fact that an algorithm which runs in time n100 is hardly efficient—even on inputs

of size 10 the number of steps needed by such an algorithm is more than the number of atoms

in the universe—history has shown that the discovery of a polynomial-time algorithm for a

problem often leads to the discovery of a truly efficient algorithm, in the real-world, practical

sense.

One of the original motivations for the definition of polynomial time was to formally

show that an algorithm is better than brute force [100, 218]. If the possible solutions to

instances of size n consist of n-bit strings, then a naive brute-force strategy might consider

3

all 2n strings of n bits and thus take exponential time. The question of whether all problems

that have brute force solutions with short answers can be solved in polynomial time is the

famous “P versus NP” question [88, 265, 209, 124], for which there is a million-dollar prize

[80].

A useful technique in complexity theory is to relate problems to one another by saying

that P1 is at most as hard as P2. This enables us to make statements like “problems P1 and

P2 have the same complexity,” without having to know what that complexity actually is. If

in the future the complexity of P2 is determined, then that of P1 would be automatically

determined as well.

Informally, we say that “P1 reduces to P2” if any algorithm for P2 yields an algorithm

of similar (polynomially related) complexity for P1. Such a reduction tells us that P1 is at

most as hard as P2. If the reverse holds as well—that is, if P2 also reduces to P1—then we

say that P1 and P2 have the same degree of complexity. In order to formally capture the idea

that an algorithm for P2 yields an algorithm for P1, Turing introduced the notion of “oracle

machines.” An algorithm with an “oracle for P2” is an algorithm A that calls an algorithm

for P2 as a black-box subroutine: that is, A may write down instances of P2 and then expect

to receive answers back from this subroutine. Aside from the fact that the subroutine solves

P2, its exact nature is unimportant; in some sense it doesn’t even matter if P2 is solvable at

all, in which case A is treating the subroutine as an “oracle” that solves P2. Note, however,

that this oracle may be replaced by any algorithm for P2, and then the oracle algorithm

would turn into a complete, down-to-earth, oracle-free algorithm.

The task of determining the exact complexity of any given problem has turned out to be

incredibly difficult, and for most problems this question has resisted 40 years of intense re-

search (for example, see the survey by Fortnow [108]). But in those four decades, thousands

of reductions between problems have been discovered. Through these reductions, complex-

ity theorists have grouped myriad problems, some of theoretical interest but most coming

from practical needs, together into a very few degrees of complexity. Algorithmic problems,

algorithms, and degrees of complexity are the principal objects of study in computational

complexity theory.

4

1.2 Equivalence relations

Finding a good notion of equivalence can be an important step in figuring out how to show

that two mathematical objects, such as complexity classes, are distinct from one another.

This idea is borne out in the histories of almost every branch of math: algebra, analysis,

topology, geometry, combinatorics, etc. At a more basic level, complexity degrees themselves

are examples of equivalence relations, and other equivalence relations arise in complexity

theory in fundamental ways, discussed throughout this thesis.

The most natural equivalences arise because we are forced to use symbols to write some-

thing down, but those symbols are not essential to the thing itself. For example, whether we

write integers in base 2 or base 10, we are still dealing with “the same” numbers. What we

mean by an integer is an abstract notion, independent of the way it is written down, that

depends only on its relationship with other integers.

The next example, graph isomorphism, is used throughout this introduction and appears

prominently in Chapter 4. A graph consists of a set V of vertices and a set E of edges, where

each edge consists of a pair of vertices. In the following diagrams, dots represent vertices

and lines represent edges; intersections are artifacts of the drawing. Each of the two graphs

in Figure 1.2 have 10 vertices and 15 edges, but are they “the same?”

Figure 1.2: Are these two graphs “the same?”

The drawings as you see them do not look the same. Nevertheless, the two graphs are

“the same” in that the manner in which vertices are related to one another by edges in the left

graph is the same as the manner in which vertices are related to one another by edges in the

right graph; if we choose a particular association between the vertices in the left graph with

the vertices in the right graph then this can be easily checked. For example, if we label the

vertices by the letters A, . . . , J as in Figure 1.3, then the set of edges of each graph becomes

5

the same set of 15 unordered pairs {{A,B}, {A,E}, {A, F}, {B,G}, {B,C}, {C,D}, {C,H},
{D,E}, {D, I}, {E, J}, {F,H}, {F, I}, {G, I}, {G, J}, {H, J}}.

A

B

C

D

E

F

G
H

I J

A

B

F E

C

D

G

I

H J

Figure 1.3: A labeling of the vertices

This does not follow automatically from the fact that the two graphs have the same

number of vertices and edges, as Figure 1.4 shows.

Figure 1.4: Two graphs with the same number of vertices and edges that are not the same.

Had we been given two graphs that were not the same, how we would have known? We

could start to look for other ways in which graphs might be equivalent, and rule out two

graphs being the same by showing that they are not equivalent according to one of these

notions. For example, the number of vertices, number of edges, number of paths of a given

length, number of vertices with a given number of adjacent edges, etc. are all criteria which

might be used to show that two graphs are not the same.

In addition to distinguishing mathematical objects, equivalence relations have historically

been used to define fields of mathematical inquiry. It is often the case that mathematicians

begin with some intuitive idea of their subject matter, say, algorithms, or geometry, and

only later formalize this into a definition of what a geometry “is.” This process of defining

is often closely tied with an equivalence relation, which defines when two geometries are

“the same” and discards other possible features of geometries that may have been relevant

but ultimately were deemed irrelevant. In particular, artifacts of the symbols used to write

something down are often discarded by such equivalence relations. This is actually a very

6

revisionist view of the history of mathematics: very rarely are such first definitions phrased

in terms of equivalence relations. However, the notion of equivalence relation formalizes and

reifies this process of finding the right definitions, and by studying equivalence relations as

(meta-)mathematical objects in their own right we might gain insight into what kinds of

equivalence relations are useful for various mathematical pursuits.

A philosophical premise which might be said to underlie Geometric Complexity Theory

is that the most useful equivalence relations for giving good definitions in complexity theory

are those that in some sense have low complexity (discussed in Chapter 5), and those that

are based on symmetry, which we discuss next.

1.3 Symmetry

Equivalence relations—hence mathematical definitions, as in the previous section—based on

symmetry are in some sense “better” than others. Such symmetry-based equivalence rela-

tions often provide more tools to distinguish mathematical objects, particularly through the

theory of symmetry itself, group theory. In this section we define what we mean by symme-

try and explain how symmetries can give rise to equivalence relations. In the next section

we begin to see in what sense these symmetry-based equivalence relations are “better,” and

what this might tell us about complexity.

In this regard, we highly recommend the book Symmetry by Hermann Weyl [275], both

for novices and experts: it is wonderfully written and takes the reader on a path from

symmetry in art and nature to its formalization in group theory. Here we will take a more

direct route, which although less scenic, has the virtue of being only a few pages instead of

a few dozen.

In what sense is a circle “more symmetric” than an equilateral triangle? Or an equilateral

triangle more symmetric than an isosceles triangle (two sides equal), or an isosceles triangle

more symmetric than a general triangle (see Figure 1.5)?

We say that a symmetry of an object is a transformation under which, at the end of

the transformation, the object appears exactly as it did before the transformation. For

example, rather than saying that an isosceles triangle has left-right symmetry, we say that it

is symmetric under the reflection through its vertical axis. If a transformation is a symmetry

of an object, we say that the object is invariant under the transformation.

7

Figure 1.5: Some shapes with varying degrees of symmetry: a circle, an equilateral triangle,
an isosceles triangle, a general triangle.

A general triangle has no symmetries. Actually, it will be convenient to regard the null or

identity transformation (“do nothing”) as a symmetry of any object. When we say an object

has no symmetries, we mean it has no symmetries other than the identity transformation.

An equilateral triangle has six symmetries: the identity, rotation by 120 or 240 degrees,

and reflection through any of its three axes. Had we forgotten the rotation by 240 degrees,

we could have deduced its existence: rotation by 240 degrees is the consequence of rotating

by 120 degrees twice. If we perform one transformation followed by another, we get a third

transformation, whose result is simply the result of applying the two transformations in

succession. If two transformations are both symmetries of an object, then the transformation

we get by applying them in succession is again a symmetry. This generalizes the idea of

applying the rotation by 120 degrees twice. For an equilateral triangle, if we had only

discovered the rotation by 120 degrees and a single reflection through an axis, we could have

deduced the rest of the triangle’s symmetries by this method of composing transformations.

An isosceles triangle has the symmetry given by reflection through its axis, as well as

the identity symmetry. Note that composing the reflection with itself results in the identity

transformation.

Moreover, if a transformation is a symmetry of some object, then the transformation’s

inverse—undoing the transformation, or doing the transformation in reverse—is also a sym-

metry of that object. Any collection of transformations that is closed under composition and

under taking inverses is called a group (of transformations, or symmetries). Group theory is

the formal study of symmetry.

8

1.3.1 Continuous symmetries and Lie algebras

The circle has infinitely many symmetries: it is invariant under all rotations about its center,

as well as under any reflection through any line that passes through the circle’s center. Not

only does the circle have infinitely many symmetries, but “continuously many.” We say its

symmetries form a “continuous group.” What we mean by this should be intuitive, but to

help clarify we give a non-example.

Consider the geometric figure which consists of infinitely many points, one placed at each

integer (Figure 1.6). This figure has infinitely many symmetries: shift left or right by n, for

... ...

Figure 1.6: A geometric figure with an infinite but discrete group of symmetries.

any integer n, reflect 180 degrees around any of the points of the figure, or reflect 180 degrees

around any point that is halfway between two points of the figure. Despite having infinitely

many symmetries, the symmetries of this figure form a discrete collection (group), rather

than a continuous one as in the case of the circle.

Continuous groups of symmetries are called Lie groups (or more generally topological

groups), after their inventor Sophus Lie; Lie algebras, the main subject of Chapter 4, are a

key tool in the study of Lie groups. A Lie algebra is an “infinitesimal approximation” of a

Lie group in the same way that the terms of a Taylor series are approximations of a function.

In fact, in exactly the same way: the Lie algebra consists of the first-order approximations of

the transformations in a Lie group, where we think of each transformation as a function to be

approximated by a Taylor series. The infinitesimal approximation afforded by Lie algebras

allows the use of plain linear algebra to understand these continuous groups of symmetries.

Both continuous and finite groups of symmetries appear throughout this thesis.

1.3.2 Symmetry-based equivalence relations

Symmetries naturally lead to equivalence relations. For example, in the isosceles triangle,

the two corners of its base are equivalent, but they are not equivalent to the corner at the

9

top of the triangle. In a general triangle, all three corners are not equivalent to one another;

in an equilateral triangle, all three corners are equivalent to one another. However, a corner

is not equivalent to a point on the side. Moreover, most (but not all!) points on the sides of

an equilateral triangle are not equivalent to one another.

Given a group G of symmetries acting on some set—in the above examples, the set in

question is the set of points of the figure—two points of the set are (G-)equivalent if one of

them can be taken to the other by some transformation in the group G. In general, G need

not be the group of all symmetries of the set; it may be a subgroup, but it must still be

closed under composition and inversion.

In the equilateral triangle, we have already mentioned that the three corners form one

equivalence class under the group of symmetries of the equilateral triangle. Figure 1.7 shows

two other equivalence classes of points.

Figure 1.7: Under the full symmetry group of an equilateral triangle, the points marked by
circles are all equivalent to one another. The midpoints of the sides, marked by squares, are
all equivalent to one another, but are not equivalent to the points marked by circles.

In a similar manner, any group of symmetries leads to an equivalence relation. In Sec-

tion 3.3.1 we discuss further how the very notion of group was in some sense designed to

lead to equivalence relations; see especially Proposition 3.3.1 and the subsequent discussion.

There are also quite general situations in which the reverse connection holds: any equiv-

alence relation with certain natural properties arises from some group in the above manner.

We discuss one of these, the Feldman–Moore Theorem, in Footnote 1 on page 13.

10

Symmetries apply to more than just geometrical figures. For example, we would natu-

rally say that the expression x2 + y2 + z2 is symmetric in x, y, and z. Sticking with the

formalism of transformation groups, we would say that this expression is invariant under any

transformation that permutes the variables x, y, and z. Similarly, x2+ y2+ z3 is symmetric

in x and y, but not in z. That is, x and y are equivalent in this expression, but they are not

equivalent to z.

The symmetries of the plane consist of its rigid motions: translations, rotations, and

reflections. They form a continuous group of symmetries. Felix Klein, in his famous Erlangen

Program, first introduced the idea that a geometry, such as the Euclidean geometry of the

plane, or more general geometries including non-Euclidean geometries, is fully determined

by its group of symmetries. In other words, geometric statements about the plane are

exactly those statements that are invariant under the symmetry group of the plane. As

a starting point, note that the distance between two points is unchanged if they are both

simultaneously translated, reflected about an axis, or rotated about any third point. By

specifying a symmetry group, one specifies which geometry one is interested in. This is the

symmetry-based version of the idea from the previous section that an equivalence relation

specifies the aspects of a mathematical object that define a field of inquiry.

Now we return to the more interesting example of graph isomorphism. Recall that graph

isomorphism is an equivalence relation in which two graphs are equivalent if the vertices of

one can be matched with the vertices of the other to make the graphs identical. In this case,

the underlying set of the equivalence relation is the set of all graphs on n vertices, which

we denote Gn. For definiteness, let us label these vertices by the numbers 1, . . . , n. Any

permutation of the numbers 1, . . . , n induces a transformation on the set of all graphs on

n vertices; the set of all such permutations is the symmetry group of Gn. The equivalence

classes under this symmetry group are exactly the isomorphism classes of graphs.

Note that the symmetries of a single graph form a subgroup of the symmetries of Gn. For
example, the group of symmetries of G4 is the group of all permutations of {1, . . . , 4}. There
are 4! = 24 such permutations. The group of symmetries of the square (see Figure 1.4) form

a subgroup consisting of only 8 transformations. Chester [76] gives a nice discussion of this

phenomenon in the world of physics: the symmetries of Gn are analogous to the symmetries

of a physical law—such as conservation of angular momentum—while the symmetries of

11

the square are analogous to the symmetries of a given physical system—such as a spinning

asteroid—which may have fewer symmetries than the fundamental physical law.

1.4 Symmetry and equivalence relations in complexity

When an equivalence relation arises from a group of symmetries, as with graph isomorphism,

geometry, and the other examples in the previous section, then the tools of group theory may

be used in its study. In this manner, groups have risen to a central place in mathematics,

second only perhaps to numbers and sets. More than that, when an equivalence relation

arises from a group, we often have a better grasp of its meaning. For example, equivalence

relations arising from groups are so central in physics that Chester titled his paper “Is

symmetry identity?” [76]; he suggests that groups of symmetries are notions of identity or

equivalence. In the end he recognizes there are other equivalence relations and hence other

notions of identity, but the thrust of the paper is that the equivalence relations that matter

are those coming from groups. All of this suggests that an equivalence relation without an

underlying group often yields a somewhat unsatisfying notion of sameness. In my view, this

is certainly the case in computational complexity, though Geometric Complexity Theory

offers an intriguing possibility for more satisfying equivalence relations in complexity theory.

In computational complexity, equivalence relations arise at two very different levels: at

the level of computational problems to be solved, such as the graph isomorphism problem—

given two graphs, decide whether they are isomorphic—and at the meta level of describing

computational problems and algorithms, as in the notion of degree of complexity. In the

former, group theory still often plays a central role. For example, the best known algorithms

to solve the graph isomorphism problem heavily use group theory [35, 33]. Also, the ability

to efficiently compute the determinant of a matrix is closely related to the group of symme-

tries of the determinant (see Proposition 3.4.3). In Chapter 5 we study the complexity of

deciding equivalence relations in general: that is, for any fixed equivalence relation ∼, what

is the complexity of the problem “given x and y, decide whether x ∼ y.” Since quantum

mechanics is so intimately related to symmetry, the connection between equivalence rela-

tions and symmetry allows us to show a new connection between quantum computing and

the (non-quantum) computational complexity of equivalence relations.

12

However, at the meta level in computational complexity, the primary equivalence relation

of interest is that of degree of complexity. It is not clear how we might employ group theory

in the study of degrees of complexity1. We still do not have a really good notion of what it

means for two computational problems or two algorithms to be equivalent, in the sense that

we have yet to find a notion, symmetry-based or otherwise, that allows us to distinguish

complexity classes from one another.

Algebraic complexity offers the possibility of a more satisfying notion of equivalence nat-

urally arising from a group of symmetries for computational problems and algorithms. The

Geometric Complexity Theory Program [207] (see also Chapter 3), in turn, suggests a method

of exploiting group theory to resolve the fundamental questions of computational complexity

that have eluded the community for more than 40 years, such as P versus NP. Geometric

Complexity Theory also offers a way to extend these techniques from algebraic complexity

to traditional Turing-machine-based computational complexity (see Section 3.3.3).

In algebraic complexity, the primary concern is not the number of steps of a Turing

machine, but the number of arithmetic operations—addition, multiplication, subtraction,

and division—needed to compute a function. If f(x1, . . . , xn) is a function, and A is an

n× n matrix, then we define the function A · f by first applying A to the inputs, and then

applying f :

(A · f)(x1, . . . , xn) := f((x1, . . . , xn)A),

where we treat (x1, . . . , xn) as a row vector. The algebraic complexity of A ·f is at most that

of f plus n2, the number of operations needed to compute the vector-matrix multiplication

(x1, . . . , xn)A. If A is invertible, then the reverse also holds, since we may use A−1 in place

of A. In particular, if the complexity of f is greater than n2—or if we are wondering whether

f can be computed in polynomially many arithmetic operations at all—then it is equivalent

to study f or A · f , when A is invertible.

1. It is known, from the very general Feldman–Moore Theorem [103], that the equivalence
relation “has the same complexity degree,” which we’ll write as P1 ≡ P2, does in fact arise from a
group of symmetries. However, the Feldman–Moore Theorem merely shows the existence of such
a group; there are infinitely many possibilities for the group, and the Feldman–Moore Theorem
constructs one. The groups given by the Feldman–Moore Theorem are non-canonical, in that they
are generally not related to the underlying equivalence relation in a natural way; it is not clear how
to pick a group that is naturally associated to ≡. Thus, despite the Feldman–Moore Theorem and
the existence of a group yielding ≡, it is still unclear how really to use group theory to study ≡.

13

For example, consider the function f(x, y) = x2 + y2. f is equivalent to the function

(A · f)(x, y) = (αx + βy)2 + (γx + δy)2, whenever the matrix A =

(

α β

γ δ

)

is invertible.

The function x2+y2 can be computed in three arithmetic operations—one addition and two

multiplications—and (A · f)(x, y) can be computed in nine operations (though perhaps one

can do better!).

Furthermore, these transformations of the variables give us a notion of equivalent algo-

rithms, as follows. Consider the following program for computing x2 + y2:

1. Let a1 := x.

2. Let a2 := y.

3. Compute a3 := a21.

4. Compute a4 := a22.

5. Compute and output a3 + a4.

We may get an equivalent program by first rotating the vector (x, y) by any angle θ: since

x2+ y2 is the square of the length of the vector (x, y), and this length is invariant under the

rotation

(

cos(θ) sin(θ)

− sin(θ) cos(θ)

)

, when A is of this form, we have not only that A ·f and f are

equivalent, but that they are equal. Thus the following program, which obviously computes

A · f , in fact computes f , and we may consider it equivalent to the previous program under

the rotation A:

1. Compute a1 := (cos(θ)x+ sin(θ)y).

2. Compute a2 := (− sin(θ)x+ cos(θ)y).

3. Compute a3 := a21.

4. Compute a4 := a22.

5. Compute and output a3 + a4.

Here we used the fact that the symmetry group of f(x, y) = x2+y2 contains all rotations

around the origin; it also contains all reflections about lines through the origin. That this

is the same as the symmetry group of the circle should perhaps not be a surprise, since the

unit circle is given by the equation x2+y2 = 1. In particular, this is a continuous Lie group.

In Chapter 4 we use the Lie group of symmetries of a function to study the complexity of

14

the question of when two given functions are equivalent. This leads us to a natural question

on Lie algebras, whose complexity we ultimately relate to that of the graph isomorphism

problem. We also show that certain cases of this problem on Lie algebras can be solved in

polynomial time. Thus, in the algebraic setting the meta-relation of equivalence between

problems is closely related to a concrete computational problem on Lie algebras.

The above notion of equivalence is very similar to complexity degrees, but is based on

the group of all invertible n × n matrices (this is indeed a group: by definition every such

matrix has an inverse, and composing the linear transformations of matrices is the same as

matrix multiplication). This gives a symmetry-based notion of “equivalent complexity” for

computational problems and algorithms in the algebraic setting. There are certain natural

problems, such as the multiplication of 2 × 2 matrices [99] or the multiplication of two

polynomials modulo a third [19], for which the optimal algorithm is unique, in the sense

that any two optimal algorithms are equivalent under this group. We are unaware of any

such statement for any problem in the Turing machine model. This phenomenon is just

one benefit of the prominence of symmetries in algebraic complexity. The symmetry-based

nature of equivalence relations on problems and algorithms in algebraic complexity, and their

use in Geometric Complexity Theory, suggests that they may enable further understanding

of complexity in general.

1.5 Organization

Chapter 2 introduces needed formalisms and background material. In Chapter 3 we give a

tutorial and survey of the Geometric Complexity Theory program, including some new ob-

servations of our own. In Chapter 4 we discuss and present the matrix isomorphism problem

for matrix Lie algebras and present our results on that problem, as well as its application

to the affine equivalence problem for polynomials and the isomorphism problem for abstract

Lie algebras. In Chapter 5 we discuss the algorithmic question of solving equivalence rela-

tions more generally, and show that various approaches to solving equivalence relations are

likely to be of different computational powers. We also relate the complexity of equivalence

relations to probabilistic and quantum computation. In Chapter 6 we conclude with some

open questions and remarks for future work. Each chapter has its own introduction detailing

its contents and organization.

15

CHAPTER 2

BACKGROUND

This section serves to introduce standard concepts, and fix notation and conventions. We

recommend that the reader proceed directly to the chapter they are interested in, and refer

to this chapter only as needed.

2.1 Complexity Theory

We assume the reader is familiar with standard (uniform) models of computation as in the

books by Sipser [247] or Arora and Barak [14]. We use the multi-tape Turing machine with

read-only input tape and write-only output tape as our standard model of computation, and

make no further mention of the model except where it is relevant. Oracle Turing machines

have a separate oracle tape and oracle query state. When the machine enters the query

state, it transitions to one of two specified states depending on whether the string on the

oracle tape is in the oracle. An oracle Turing machine with unspecified oracle is denoted

M� for emphasis.

Alphabet and strings Throughout, Σ denotes a finite set, called the alphabet, and

is usually taken to be {0, 1}. We often use the term “bit” rather than the more general

“symbol” because of this convention. The set of strings of length exactly k over Σ is denoted

Σk. The empty string is denoted ε. The notation Σ≤k is used to denote
⋃k
n=0Σ

n, and Σ∗

is used to denote the set of all finite strings. The length of a string is denoted by absolute

value: thus |x| = k if and only if x ∈ Σk.

Lexicographic order. When Σ is an initial segment of the natural numbers, it is

equipped with the usual ordering, but even otherwise we may think of Σ as having an

ordering <Σ. The lexicographic ordering on Σ∗ is given by x <lex y if |x| < |y| or |x| = |y|,
and if j is the leftmost position at which x and y differ, then xj <Σ yj, where xj denotes

the j-th bit of x.

16

There is a bijective correspondence between Σ∗ and N, given by the lexicographic ordering

on Σ∗, and we use this correspondence freely, referring to elements of Σ∗ as “numbers” and

speaking of the “length of the number n.” Note that the length of the number n is ⌈log|Σ|(n)⌉.
We use log to denote log2.

Tuples. Ordered tuples are written with parentheses, such as (u0, . . . , uk). When needed,

an ordered tuple is encoded into a single string by the iterated application of an easily

computable and easily invertible bijective pairing function 〈·, ·〉 : N×N → N such as 〈x, y〉 =
1
2(x+y)(x+y+1)+y. The iteration is performed as follows: 〈u0, . . . , uk〉 = 〈u0, 〈u1, . . . , uk〉〉.

2.1.1 Computational problems

A subset L ⊆ Σ∗ is called a language. The complement of L is denoted L = Σ∗\L. The

decision problem for a language L is: given x ∈ Σ∗, decide whether or not x ∈ L. Many com-

putational problems can be stated as decision problems, or are computationally equivalent

to decision problems.

However, some problems are more naturally stated as search problems. A search problem

is: given x ∈ Σ∗, find some y such that (x, y) satisfies some condition. For example, given an

(encoding of) a graph G, find a Hamiltonian path in G if one exists. A solution to a search

problem is a function f such that (x, f(x)) satisfies the desired condition, or f(x) = ⊥ if

there is no string y such that (x, y) satisfies the desired condition. Hence the computational

complexity of search problems is closely related to the computational complexity of functions.

The indicator function of a language L is the function

L(x) =







1 if x ∈ L

0 if x /∈ L

It is standard to abuse notation and use the same letter for both the language and its

indicator function. Algorithmically solving the decision problem L is the same as computing

the function L.

17

2.1.2 Reductions

A Turing reduction from language A to language B is an oracle Turing machine M� such

that A(x) = MB(x) for all x ∈ Σ∗. We write M : A ≤T B. (The function-like notation

“M : A ≤T B” is not standard, but is a natural combination of standard function notation

“f : X → Y ” and the standard reduction notation “A ≤T B.”)

A many-one reduction or m-reduction from A to B is a (computable) function f : Σ∗ →
Σ∗ such that x ∈ A ⇐⇒ f(x) ∈ B. We write f : A ≤m B.

For any notion of reduction r, A ≡r B denotes that A ≤r B and B ≤r A. If C is a

class of machines, then ≤C
r denotes that the reducing machine lies in C. Many complexity

classes are naturally associated with a class of machines, and when this is the case we use

the name of the complexity class. For example, although P is a collection of languages, in

reductions we use P to denote the class of deterministic polynomial-time Turing machines.

In particular, the polynomial-time-bounded versions of the above reductions are denoted ≤P
T

and ≤P
m, respectively.

Polynomial-time Turing reductions are known as Cook reductions and polynomial-time

many-one reductions are known as Karp reductions, since these were the types of reductions

originally used by their respective namesakes to define NP-completeness [88, 156].

A class (collection) of languages C is said to be closed under r reductions if B ∈ C and

A ≤r B implies A ∈ C.

2.1.3 Complexity classes

Polynomial time. The class of languages decidable in deterministic polynomial time is

denoted P.

The class of languages decidable in nondeterministic polynomial time is denoted NP.

Equivalently, A ∈ NP if there is a set B ∈ P such that

x ∈ A ⇐⇒ (∃pw)[(x, w) ∈ B]

where the right hand side is taken to mean “there exists a polynomial q such that |w| ≤ q(|x|)
and (x, w) ∈ B.” Such a string w is said to witness that x ∈ A, and is called a witness for x.

18

If C is a class of languages, then coC = {L : L ∈ C}. For example, A ∈ coNP if and

only if there is a set B ∈ P such that

x ∈ A ⇐⇒ (∀pw)[(x, w) ∈ B]

where ∀p has the obvious meaning. Note that we can use (x, w) ∈ B or (x, w) /∈ B in the

above characterization, since P is closed under complementation, i. e., P = coP.

The following basic questions (and many more) are open: P
?
= NP, NP

?
= coNP,

P
?
= NP ∩ coNP.

Hardness and completeness. If C is a class of languages and r is a notion of reduction,

a language L is said to be hard for C under r reductions if X ≤r L for every X ∈ C. If,

furthermore L ∈ C, then L is said to be r-complete for C.
In many cases, a standard notion of reduction is used. For example, a language L is said

to be NP-hard if it is hard for NP under Karp (≤P
m) reductions.

Logarithmic space. The class of languages decidable in deterministic logarithmic space

is denoted L. Here the input is read-only and the space of the input is not counted towards

the space bound. The class of languages decidable in nondeterministic logarithmic space is

denoted NL. Unlike the situation for NP, it is known that NL = coNL [144, 258].

Polynomial space. The class of languages decidable in polynomial space is denoted

PSPACE. The nondeterministic analogue, NPSPACE is often mentioned only up to the

point of Savitch’s Theorem, which implies PSPACE = NPSPACE [231]. We make no

further mention of NPSPACE.

Relativizing complexity classes. For a language A, and a class M of oracle Turing

machines, we can define the relativized class MA as the class of languages that are Turing-

reducible to A by some machine in M. For a class of machines M and a class of languages

C, we define MC =
⋃

L∈C ML.

It is standard to abuse this terminology and use classes of languages instead of classes of

machines for the base of the oracle, but the meaning is as expected. For example, PA is the

set of all languages that are polynomial-time Turing-reducible to A.

The polynomial hierarchy. Relativizing to a language L is essentially the same as

relativizing to its complement L. Hence, for example PNP contains both NP and coNP.

Based on this observation, we may define the polynomial hierarchy, originally introduced by

19

Stockmeyer and Meyer [255, 254] in analogy with the arithmetic hierarchy from computability

theory:

Σ0P = P

Σ1P = NP

Σk+1P = NPΣkP

∆k+1P = PΣkP.

From these, we define ΠkP = coΣkP; for example, Π1P = coNP. Thus Σ0P = Π0P =

∆0P = ∆1P = P. Note that Σk+1P = ΣkP
NP.

It is clear that ΣkP ∪ΠkP ⊆ ∆k+1P ⊆ Σk+1P ∩Πk+1P. The polynomial hierarchy

is the union PH =
⋃∞

k=0ΣkP =
⋃∞
k=0ΠkP =

⋃∞
k=0∆kP.

The following are equivalent: (1) ΣkP = ΠkP, (2) ΣjP = ΣkP for some j ≥ k, and (3)

PH = ΣkP. If any (and hence all) of these conditions holds, we say the hierarchy collapses

to the k-th level. If this does not hold for any level k, we say that PH is infinite. It is widely

believed that PH is infinite.

Complexity class operators. We now define the operators ∀· and ∃· on complexity

classes. If C is a complexity class, then ∀ · C consists of those languages L for which there is

a language L′ ∈ C such that

x ∈ L ⇐⇒ (∀py)[(x, y) ∈ L′].

The ∃· operator is defined similarly. It is clear from our definitions that NP = ∃ · P and

coNP = ∀ ·P. Indeed, it holds generally that co∃ · C = ∀ · coC.
It is a standard exercise to show that

∀ ·ΣkP = Πk+1P and ∃ ·ΠkP = Σk+1P.

Hence we may consider Σk as the operator ∃ · ∀ · · · ·Qk· where there are k operators total

and Qk is ∀ or ∃ depending on whether k is even or odd, respectively. Similarly, we may

consider Πk to be the operator ∀ · ∃ · · · · ·Q′
k·.

20

Randomness. Several complexity classes have been defined to capture various notions

of randomized computation. Bounded-error probabilistic polynomial time, denoted BPP,

consists of those languages L for which there is a language L′ ∈ P and a polynomial p such

that, for all x of length n:

Pr
r∈Σp(n)

[L′(x, r) = L(x)] ≥ 2/3

Here, 2/3 can be replaced by any function of n that is bounded below by 1/2 + ε for some

constant ε > 0. By running an algorithm for L′ several times with independent random bits

r and taking the majority vote, the probability of correctness can be increased to 1− 2q(n)

for any polynomial q. Note that BPP allows two-sided error : L′ can err on strings x ∈ L

and on strings x /∈ L. BPP algorithms are sometimes referred to as polynomial-time Monte

Carlo algorithms.

The classesRP and coRP are the one-sided error version ofBPP. The classRP consists

of those languages L for which there is a language L′ ∈ P and a polynomial p such that

x ∈ L =⇒ Pr
r∈Σp(|x|)

[L′(x, r) = 1] > 1/2

x /∈ L =⇒ Pr
r∈Σp(|x|)

[L′(x, r) = 1] = 0

Probabilistic classes can also be defined in terms of nondeterministic Turing machines.

A probabilistic Turing machine is a nondeterministic Turing machine where each binary

nondeterministic choice, referred to as a “coin flip,” is assigned a probability of 1/2. The

probability of any given branch of the computation is the product of the probabilities of the

coin flips that occur on that branch. From this viewpoint, it is clear that RP ⊆ NP.

The class ZPP, or zero-error probabilistic polynomial time, consists of those languages

for which there is a randomized algorithm that never errs, and runs in expected polynomial

time, the expectation being taken over the random coin flips. It is an easy exercise to show

that ZPP = RP ∩ coRP. ZPP algorithms are sometimes referred to as polynomial-time

Las Vegas algorithms [21].

The relationship between BPP and NP is unknown. Today it is an easy exercise to

show that if NP ⊆ BPP then NP = RP, though this was originally proved by Ko [168].

Sipser [245], with help from Gács, and Lautemann [179] showed that BPP ⊆ Σ2P ∩Π2P.

21

Similar to the ∀· and ∃· operators, we can define the BP· operator. The class BP · C
consists of those languages L for which there is a language L′ ∈ C and a polynomial p such

that

Pr
r∈Σp(|x|)

[L′(x, r) = L(x)] ≥ 2/3.

It is clear that BP ·P = BPP.

Mixing randomness and nondeterminisim. Arthur–Merlin games, and their corre-

sponding complexity class AM, were introduced by Babai [22]. The basic idea is that the

mere mortal King Arthur (with access to random coins) wishes the all-powerful wizard Mer-

lin to prove a fact to him. For our purposes, it is simplest to define the class of Arthur-Merlin

games as:

AM = BP ·NP.

Babai showed [22] that for any fixed number of alternations greater than 2 of the operators

BP and ∃·, BP · ∃ ·BP · ∃ · · · · ·P = AM. Often such extensions are denoted, for example,

MAM = ∃ ·BP · ∃ ·P.

Note that in this definition, Arthur’s coins are public. At the same time, Goldwasser,

Micali, and Rackoff [126] defined a similar class in which the coin tosses are all private—they

need not be revealed to the verifier. Both of these models are known as interactive proofs.

Subsequently, Goldwasser and Sipser [127] showed that “public coins are as good as private

coins,” that is, the class of languages with constant-round interactive proofs is exactly AM.

Subsequently it was shown that GI ∈ coAM [125, 127].

Although it will not be relevant, we feel we should mention one of the crowning achieve-

ments of complexity theory in the 1990s. The class IP consists of those languages that have

interactive proofs with a polynomially bounded number of rounds, that is, the number of

rounds can grow as a polynomial of the size of the input. One of the two non-relativizing

proof techniques currently known—arithmetization—was developed in the course of proving

that IP = PSPACE [187, 238] (see also [31, 29, 4] for related work).

Quantum complexity. The class BQP consists of those languages that can be decided

on a quantum computer in polynomial time with error strictly bounded away from 1/2, as

in the definition of BPP. For more details on quantum computing, we recommend the book

by Nielson and Chuang [211].

22

Function classes

Complexity-bounded function classes are defined in terms of Turing transducers : Turing

machines with an additional write-only output tape. A transducer only outputs a value if

it enters an accepting state. In general, then, a nondeterministic transducer can be partial

and/or multi-valued. Whenever we say “partial” or “multivalued,” we mean “potentially

partial” and “potentially multivalued.” For such a function f , we write

set-f(x) = {y : some accepting computation of f outputs y}

The domain of a partial multi-valued function is the set dom(f) = {x : set-f(x) 6= ∅}. The
graph of a partial multi-valued function is the set graph(f) = {(x, y) : y ∈ set-f(x)}.

The class FP is the class of all total functions computable in polynomial time. The class

PF is the class of all partial functions computable in polynomial time. Note that machines

computing a PF function must halt in polynomial time even when they make no output.

Logarithmic-space functions. The class FL is the class of all (single-valued, total)

functions computable by a logspace transducer. Note that neither the input tape nor the

output tape is counted in the space usage.

Nondeterministic functions. The class NPSV consists of all single-valued partial

functions computable by a nondeterministic polynomial-time transducer. Note that multiple

branches of an NPSV transducer may accept, but they must all have the same output.

The class NPMV consists of all multi-valued partial functions computable by a nonde-

terministic polynomial-time transducer.

The classes NPSVt and NPMVt are the subclasses of NPSV and NPMV, respec-

tively, consisting of the total functions in those classes.

The classes NPSVg and NPMVg are the subclasses of NPSV and NPMV, respec-

tively, whose graphs are in P.

A refinement of a multi-valued partial function f is a multi-valued partial function g

such that dom(g) = dom(f) and set-g(x) ⊆ set-f(x) for all x. In particular, if set-f(x) is

nonempty then so is set-g(x).

If F1 and F2 are two classes of partial multi-valued functions, then we write F1 ⊆c F2

to indicate that every function in F1 has a refinement in F2.

23

It is known that NPMV ⊆c PF if and only if P = NP [235] if and only if NPSV ⊆ PF

[237]. Selman [236] is one of the classic works in this area, and gives many more results

regarding these function classes.

The following theorem is our main formal evidence for believing thatNPMV *c NPSV:

Theorem 2.1.1 (Hemaspaandra, Naik, Ogihara and Selman [138]). The following conditions

are equivalent:

1. There is a function f ∈ NPSV such that, for any formula ϕ, f(ϕ) is a satisfying

assignment of ϕ, if one exists, or ⊥ otherwise;

2. NPMV ⊆c NPSV;

3. NPMVg ⊆c NPSV [236].

If any, and hence all, of the above conditions hold, then PH = Σ2P.

In fact, they showed that the conditions of the above theorem imply SAT ∈ (NP ∩
coNP)/poly [138]. At the time, this was only known to imply PH = Σ2P, but shortly

thereafter the collapse was improved to PH = ZPPNP [170].

We note that NPMVg ⊆c NPSVg obviously implies NPMVg ⊆c NPSV, and hence

that the conditions of the above theorem hold, but that the converse, namely the implication

NPMV ⊆c NPSV =⇒ NPMVg ⊆c NPSVg, is not known to hold.

It is not difficult to show that NPMVg ⊆c NPSVg implies NP = UP; we review a

proof of this fact in the proof of Corollary 5.3.2. Again, the converse is not known to hold.

We also note that it is still an open question as to whether NP = UP implies any collapse

of PH at all.

The following diagram summarizes these implications:

NPMVg ⊆c NPSVg

��

+3 NPMVg ⊆c NPSV
KS

[236]
��

[138]
+3 SAT ∈ (NP ∩ coNP)/poly

��

NP = UP NPMV ⊆c NPSV
PH = Σ2P [138]

PH = ZPPNP [170]

Any implication not present in the above diagram is not known to hold, nor are there oracles

known to settle these non-implications either way.

24

Counting classes

The function class #P is defined as the class of functions f such that there is a nondeter-

ministic Turing machine M such that f(x) is the number of accepting paths of M(x). The

class #L has the same relationship to NL as #P does to NP.

The class GapP is the set of differences of #P functions, that is, GapP = {f−g : f, g ∈
#P}. One may similarly define GapL. GapP may also be defined as {f − g : f ∈ #P, g ∈
FP}. In particular, P#P = PGapP, even if we restrict the reducing machines to make only

a single query to the #P oracle. Note that all functions in #P are nonnegative, whereas

GapP contains functions with both positive and negative values. However, it is not known

if every nonnegative function in GapP is in #P. For further discussion of this and other

properties of these counting classes, see the survey by Fortnow [107].

Counting solutions seems to be much more powerful than detecting the existence of a

solution. For example, although #P is a counting analog of NP, its power seems to be much

greater than that of NP: Toda’s Theorem [261] states that PH ⊆ P#P.

The permanent of a matrix is defined like the determinant, but without signs:

perm(X) =
∑

π∈Sn
x1,π(1) · · ·xn,π(n).

Valiant [269] showed that computing the permanent of matrices with 0, 1-entries is #P-

complete (equivalently, GapP-complete). Similarly, computing the determinant of integer

matrices is GapL-complete [93, 262, 273].

Advice

Karp and Lipton [157] introduced the notion of Turing machines that take advice. Advice

comes in the form of a number of bits that depend only on the input length n, and not on

anything else about the input. This is the only requirement on the advice bits—they need

not be generated by a Turing machine, for example. In other words, any function f : N → Σ∗

is a legal advice function.

If ℓ : N → N is any function and C is a complexity class (technically, a class of machines),

then C/ℓ is the class of languages decidable by a machine in C with advice of length at most

25

ℓ. The most frequently used class is P/poly, which is the class of languages decidable in

polynomial time with polynomial-length advice. We will see in the next section that advice

is closely related to circuit complexity.

As an example of the utility of advice, suppose a language L ⊆ Σ∗ is sparse: the number

of strings in L up to length n is bounded by a polynomial in n. Then L ∈ P/poly. Simply

take the advice at length n to be the concatenation of all the strings in L of length n. On

input x, a polynomial-time machine can check whether x is in the list provided by the advice,

thus deciding correctly whether or not x ∈ L. In fact, Meyer observed (according to Berman

and Hartmanis [52]) that P/poly is exactly the class of languages that are polynomial-time

Turing reducible to a sparse language.

2.1.4 Circuit complexity

Boolean circuits are used to model the complexity of problems in a way that is not necessarily

uniform in the input size n; in other words, circuits provide a formal model of computational

complexity of a problem where each input length n can have its own algorithm. From the

perspective of algorithms, this may not seem particularly useful, but this view has dominated

most lower bounds research in the last 30 years. For example, to show that P 6= NP, it

suffices to show the stronger statement thatNP does not have (non-uniform) polynomial-size

circuits.

A Boolean circuit is a computational device computing a function on a fixed number of

input bits, say n. It is defined by a directed acyclic graph, in which there are exactly n nodes

with no in-edges, called “input nodes,” that are labeled by the input variables x1, . . . , xn.

All non-input nodes are called “gates,” and are labeled by a computational operation such

as AND, OR, or NOT. Each gate performs the specified computational operation, taking as

input the values coming along its in-edges, and putting its output on all of its out-edges.

A gate with no out-edges is called an “output node” of the circuit. The output nodes are

ordered. If we call them y1, . . . , ym, then a circuit C on input x computes the function

C(x) = y. As it should never cause confusion, we often use C to denote both the circuit and

the function it computes.

Just as there are several measures of complexity of an algorithm, there are several mea-

sures of the complexity of a circuit. The two most frequently used complexity measures are

26

the size of a circuit—the number of edges—and the depth of a circuit—the length of the

longest directed path from any input node to any output node.

The fan-in of a circuit is the maximum in-degree of any node, and the fan-out is the

maximum out-degree. A circuit of fan-out 1 is called a formula.

A family of circuits (Cn)
∞
n=1 computes a function Σ∗ → Σ∗ by applying Cn to strings of

length n. Note that, unlike Turing machines, the circuits Cn and Cm need not be related to

one another when n 6= m.

The circuit-size complexity of a function f : Σn → Σm is the minimum size of a circuit

computing f . When no further specification is made, we mean circuits with AND, OR,

and NOT gates. The circuit-size complexity of a function f : Σ∗ → Σ∗ is the function

n 7→ circuit-size(f |Σn). The circuit-size complexity of a language L ⊆ Σ∗ is the circuit-size

complexity of its characteristic function. One similarly defines circuit-depth complexity.

The class of languages decidable by polynomial-size circuit families, where the size of Cn

is bounded by a polynomial in n, coincides with the advice class P/poly. In one direction,

the circuit Cn can be encoded into the advice for length n; in the other direction, the advice

for length n can be hard-coded into Cn.

A circuit family (Cn) is said to be an ACi circuit family if the size of Cn is bounded by

a polynomial in n, and the depth of Cn is bounded by logi n. Here the superscript denotes

exponentiation, as in (logn)i (rather than iteration log log log · · · log n). A circuit family is

said to be an NCi circuit family if it is an ACi circuit family that in addition has bounded

fan-in; that is, there is a universal constant c such that the fan-in of all Cn is at most c.

The complexity class ACi consists of all languages computed by ACi circuit families, and

similarly for NCi.

A threshold (or majority) gate is a gate with k inputs whose output is 1 if and only if at

least ⌊k/2⌋+1 of its inputs are 1. The complexity class TCi is defined just like ACi, except

that TCi circuits may, in addition, have threshold gates. Typically only TC0 is studied.

We define the hierarchies AC =
⋃

iACi and similarly for NC and TC. As ACi ⊆
NCi+1 ⊆ ACi+1, we have AC = NC. Moreover, ACi ⊆ TCi ⊆ ACi+1, so again we have

TC = NC. Typically this whole hierarchy is only referred to as NC, though for specific i

the classes ACi,NCi,TCi are usually referred to individually.

27

One of the first great achievements in circuit complexity was the lower bound the the

PARITY function—what is the parity of the number of 1s in the input x—is not in AC0,

thus showing that AC0 6= TC0 [120].

Uniformity conditions. Because of the non-uniformity in n in the above models, even

“small” circuit classes such as AC0 contain uncomputable languages in them. Compar-

ing such classes to uniform classes like L and P thus makes little sense without addition

restrictions.

A uniformity condition on a circuit class is the requirement that the function 1n 7→ Cn

be computable in a particular class. For example, P-uniform NCi is the class of languages

decided by NCi circuit families (Cn) where the function 1n 7→ Cn can be computed in

poly(n) time. Other often-used uniformity conditions are L-uniform and DLOGTIME-

uniform. This last deserves some discussion, since deterministic logarithmic time does not

even allow enough time to read the entire input. The idea here is that questions about

the circuit Cn, such as “is gate i an input to gate j?” can be answered in O(logn) time.

There is a consensus that for really small circuit classes like AC0 and TC0, this is the

“right” uniformity condition. It is sometimes referred to as “fully uniform.” See Barrington,

Immerman, and Straubing [41] and Ruzzo [228].

With full-uniformity, we have the following inclusions:

NC1 ⊆ L ⊆ NL ⊆ DET ⊆ NC2 ⊆ NC ⊆ P

where DET is the class of decision problems that are logspace Turing reducible to computing

the determinant of an integer matrix. Note that DET, although a class of languages, has

essentially the same power as the function class GapL.

2.1.5 Algebraic complexity

In algebraic complexity, we are typically interested in the number of arithmetic operations—

typically just additions, subtractions, multiplications, and divisions, but occasionally other

operations such as extracting square roots, etc.—needed to perform an algebraic computa-

tion. Algebraic complexity can be studied over any ring R, or even other algebraic structures

28

such as the (min,+) semi-ring. In this thesis we will only be considering algebraic questions

over fields F.

Because we are only concerned with the number of arithmetic operations, field elements

are often considered “indivisible units” rather than being represented in any particular way

over a finite alphabet. This enables us to talk about algebraic complexity over uncountable

fields such as the real and complex numbers, even though these cannot be specified exactly

on a Boolean computer.

There are three related but distinct computational models that are most popularly used

in algebraic complexity, which we now briefly review.

An algebraic circuit is defined just as in Boolean circuits, except instead of the gates

being labeled by logical operations, they are labeled by arithmetic operations—addition,

multiplication, subtraction. When we wish to allow division as well we will explicitly mention

it. However, a result of Strassen [256] says that, for the computation of polynomials, division

gates do not substantially help. Each input can be any field element and a single wire carries

a field element on it, rather than just a single bit as in the Boolean model. The notions of

circuit size and depth are defined exactly as in the Boolean model. As with Boolean circuits,

this is a non-uniform model of computation, in that if (Cn) is a family of algebraic circuits

where Cn has n inputs, there need not be any relation between Cn and Cm when m 6= n.

The Blum–Shub–Smale (or BSS) model [58] essentially generalizes the “real RAMmodel,”

and provides a nice uniform counterpart to the algebraic circuit model. They start with the

definition of Turing machine, but each tape cell is now allowed to contain an element from

the base ring or field of computation, and arithmetic operations can be performed in a single

step. Constants from the field may also be built into the control of the Turing machine.

Defining analogs of complexity classes such as P and NP is often quite easy in the BSS

model, because the definitions of these classes in the Boolean model are so closely tied

to Turing machines. With some classes there are some technical hurdles, but we will not

encounter any of these intricacies in this thesis. The corresponding complexity classes in the

BSS model over a ring R are denoted PR and NPR, for example, PC.

Valiant’s model is somewhat closer to the algebraic circuit model, but with a few differ-

ences. Call a family of polynomials (fn) a p-family if the degree and number of variables

of fn are bounded by a polynomial in n. The class VP (“V” for “Valiant”) consists of

29

those p-families that are computable by polynomial-size arithmetic circuits. Such families

are called p-computable.

As with the other models, there is a notion of VP for each field F. Technically this

can work over other algebraic structures as rings, but typically Valiant’s classes are only

discussed over fields. When we wish to emphasize the field, we may write VPF.

The class VNP consists of those p-families (fn) such that there is a p-family (gn) satis-

fying:

fn(x1, . . . , xp(n)) =
∑

e∈{0,1}q(n)
gn(e0, . . . , eq(n), x1, . . . , xp(n))

where p(n) and q(n) are both polynomials. Such a family (fn) is called p-definable. This

is essentially equivalent to the coefficients of fn being p-computable. For other equivalent

definitions, see the books by Bürgisser [69] and Bürgisser, Clausen and Shokrollahi [70].

The notion of reduction used in Valiant’s theory is that of projections: we say a polyno-

mial f is a projection of a polynomial g if f can be gotten from g by replacing the variables

of g with constants or (possibly other) variables. A family (fn) is a p-projection of a family

(gn) if there is a polynomial p(n) such that fn is a projection of gp(n). Using this notion of

reduction one defines the notion of hardness and completeness in the usual manner.

Valiant [269] showed that the permanent is VNP-complete. Thus, although VNP is in

some sense an algebraic analog of the Boolean class NP, it is much closer to the Boolean

counting class #P.

In the Boolean world, the determinant of integer matrices is GapL-complete. It is per-

haps surprising then that in the algebraic world—where the determinant was first defined

and naturally lives—the place of the determinant in terms of algebraic complexity is some-

what tricky. For example, there are Valiant analogs of the circuit classes NCi; however,

although the determinant is very close to NC2 in the Boolean world, in Valiant’s theory

VNC2 = VP, as follows from a classical depth-reduction result for circuits [267].

In complexity, the word quasipolynomial is taken to mean any function of the form

2O(logk n) for fixed k. One defines quasipolynomial projections, or qp-projections, just as p-

projections, and defines VQP as the quasipolynomial analog of VP. Then the determinant

is VQP-complete under qp-projections. However, although this is an exact characterization

30

of the determinant in Valiant’s model, it is again somewhat unsatisfying since we know that

the determinant is in VP.

Another characterization was given by Malod and Portier [191]. They define a restricted

kind of circuit that they call “weakly skew,” and show that the determinant is complete

under p-projections for the weakly skew analog of VP, denoted VPws. The permanent

versus determinant question in the algebraic world is thus the same as VPws versus VNP

question.

2.1.6 Barriers: relativization, algebrization, and natural proofs

Baker, Gill, and Solovay [38] showed that there are oracles A and B relative to which

PA = NPA and PB 6= NPB. Thus any proof technique which would work just as well

in the presence of oracles—in other words, that relativizes (to any oracle)—cannot be used

to resolve the P versus NP question. In particular, this rules out the powerful techniques

of simulation and diagonalization. This result can be taken somewhat in the spirit of the

independence results of Cohen [84, 85]. In some sense, this shows that P versus NP cannot

be resolved by an argument based “solely on the axioms” for a Turing machine, but must

somehow use some specific properties of a specific Turing machine or specific language.

The first non-relativizing result was IP = PSPACE [187, 238]. This was shown

unconditionally, after Fortnow and Sipser [111] had given an oracle A relative to which

coNPA 6⊆ IPA. Using the technique of arithmetization [30], a whole new series of results

arose and led to new directions for complexity theory: interactive and probabilistically check-

able proofs, together with approximation algorithms and inapproximability results. In the

wake of these results, people naturally wondered what it was that made the proof techniques

not relativize.

Arora, Impagliazzo, and Vazirani [15] attempted to formalize this notion by giving an

axiom system based on “local checkability,” such that theorems proved in this axiom system

are exactly the relativizing theorems. In particular, they showed that the aforementioned

non-relativizing results could not be proved within their axiom system. However, their axiom

system is somewhat controversial; Fortnow [106], argues that their axiom system, when given

a natural oracle access mechanism, does in fact relativize, and that the crucial property of

31

the non-relativizing results was their algebraic nature. To argue for this thesis, he showed

that the IP = PSPACE “relativizes with a low-degree polynomial extension of an oracle.”

This latter idea was eventually formalized and strengthened to the notion of algebraic

relativization or algebrization for short [4]. Aaronson and Wigderson [4] showed that al-

gebrization captures very closely the limits of our current techniques, as well as provid-

ing an interesting connection with communication complexity. Impagliazzo, Kabanets, and

Kolokolova [145] extended the ideas of Arora–Impagliazzo–Vazirani to algebraic relativiza-

tion.

We remark that relativization results have somewhat fallen out of favor in the community,

though we still firmly believe in their relevance. We highly recommend Fortnow [106] and

Aaronson [2, Section 1.3] for discussions of the importance and utility of oracle results.

Razborov and Rudich [221] showed that a different class of proof techniques, that they

call “natural proofs,” cannot be used to show NP 6⊆ P/poly. A proof or proof technique is

said to “naturalize” if it can be converted into a natural proof; this conversion process is not

always obvious, as they demonstrate in their paper. A “natural proof” actually consists of

a key useful property; (Cn)
∞
n=1 is a useful property if each Cn is a subset of the n-variable

Boolean functions with a subset C∗
n such that

1. (Constructivity) Determining whether an n-variable Boolean function is in C∗
n can be

done in polynomial time in the size of the truth table of the function;

2. (Largeness) |C∗
n| ≥ 2−O(n)22

n
, where 22

n
is the number of Boolean functions on n

variables;

3. (Usefulness) The circuit-size of any sequence of functions f1, f2, . . . , fn, . . . where fn ∈
Cn is super-polynomial. That is, for any k there is a sufficiently large n such that the

circuit-size of fn is greater than nk.

Razborov and Rudich show that if such a natural property exists, then 2n
ε
-hard pseudoran-

dom generators do not exist. In particular, if such a natural property exists then factoring

integers can be done in time 2n
ε
for any ε > 0, which is significantly better than the current

state of the art, which is 2O(n1/3(log n)2/3) for n-bit numbers [89].

32

2.2 Algebra

2.2.1 Equivalence relations

A binary relation R on a set X is a subset of X × X . When we speak of relations as

algorithmic problems, we will take X = Σ∗, the set of all strings. If R is an equivalence

relation and (x, y) ∈ R, we write x ∼R y. An equivalence relation is

1. reflexive: x ∼R x for all x;

2. symmetric x ∼R y ⇐⇒ y ∼R x for all x, y;

3. transitive: if x ∼R y and y ∼R z then x ∼R z.

If f is any function, then the kernel of f is

Ker(f) = {(x, y) : f(x) = f(y)}.

It is clear that Ker(f) is an equivalence relation. If R = Ker(f) then f is said to be a

complete invariant for R. A canonical form for an equivalence relation R is a function g

such that x ∼R g(x) for all x, and x ∼R y if and only if g(x) = g(y). Note that if g is a

canonical form for R, then Ker(g) = R and g is idempotent, that is, g ◦ g = g. Indeed, g is

a canonical form for R if and only if g is an idempotent complete invariant for R.

If R is an equivalence relation, then the equivalence class of the string x is [x]R = {y :

x ∼R y}. The equivalence classes of R partition X .

The trivial relation is all of X × X , that is, all elements of X are equivalent under

the trivial relation, or equivalently [x] = X for all x. The discrete relation is the relation

of equality, that is, each element is equivalent only to itself under the discrete relation.

Equivalently, the discrete relation is defined by [x] = {x} for every x.

2.2.2 Groups

A group is a set G together with a binary operation · : G×G→ G, usually written in infix

notation as a · b or sometimes omitted altogether, as in ab, satisfying three axioms:

1. Associativity: a(bc) = (ab)c for all a, b, c ∈ G

33

2. Identity: there is an element 1 ∈ G such that 1a = a1 = a for all a ∈ G;

3. Inverses: for each a in G there is an element b ∈ G such that ab = 1.

A group is called abelian, after Niels Henrik Abel, if it also satisfies the axiom of com-

mutativity: ab = ba for all a, b ∈ G. It is sometimes customary to denote the operation in

an abelian group using additive, rather than multiplicative, notation, so a + b rather than

ab, −a for the inverse of a, and 0 for the identity. We also speak of the sum of elements

rather than product, and denote by na the n-fold sum of a with itself (analogous to the

multiplicative notation an above). If we use additive notation for a group we will explicitly

mention it, with the exception of the additive group of a ring, module, or vector space (see

below).

If G is a group, then a subgroup of G is a subset H ⊆ G such that 1 ∈ H , and H is

closed under the group operation and under taking inverses. In other words, a ∈ H implies

a−1 ∈ H , and a, b ∈ H implies ab ∈ H . If H is a subgroup of G, we write H ≤ G.

If A,B ⊆ G, then we write AB for the set of products {ab : a ∈ A, b ∈ B}. If either

set is a singleton, we denote it by a single element without braces, as in aB, for some

a ∈ G. We use this notation iteratively, so ABA = {a1ba2 : a1, a2 ∈ A, b ∈ B} and

aBa−1 = {aba−1 : b ∈ B}. We also write A−1 := {a−1 : a ∈ A}.
The order or size of G is its cardinality as a set, and is denoted |G|.

Proposition 2.2.1 (Lagrange’s Theorem; definition of index). If H ≤ G, then |H| divides
|G|. The number |G|/|H| is called the index of H in G and is denoted [G : H]. Hence

|G| = |H|[G : H].

Proof sketch. For H ≤ G, we call aH a (left) coset of H in G. The result follows from the

claim that the cosets of H are all of equal size and partition the group G. A key step is to

note that aH = bH if and only if b−1a ∈ H .

The collection of (left) cosets of H ≤ G is denoted G/H = {aH : a ∈ G} and has

cardinality [G : H].

A map ϕ : G1 → G2 is a group homomorphism if ϕ(ab) = ϕ(a)ϕ(b) for all a, b ∈ G1,

where on the left-hand side the multiplication ab takes place in G1 and on the right-hand

side the multiplication takes place in G2. The kernel of a homomorphism ϕ is ker(ϕ) := {g ∈

34

G1 : ϕ(g) = 1}, and the image is the image of ϕ as a map of sets. Note that in algebra the use

of the word kernel is slightly different than the more general usage for equivalence relations,

above. We use the lowercase ker(ϕ) for the algebraic meaning, and the uppercase Ker(ϕ)

for the equivalence relation. The two are related, however: if H = ker(ϕ) (algebraic sense),

then Ker(ϕ) (equivalence relation) is the equivalence relation {(a, b) : ϕ(a) = ϕ(b)}, which is

the same as {(a, b) : aH = bH}, so the group kernel completely determines the equivalence

relation kernel. Unless otherwise specified, the “kernel of a group homomorphism” is the

subgroup just introduced, and not the equivalence relation kernel.

Any vector space V , together with its addition operation, forms an abelian group. A

linear map between vector spaces is, in particular, a group homomorphism. The kernel of a

linear map in the sense of linear algebra—the set of vectors mapped to zero—is identical to

the kernel of the linear map when considered as a homomorphism of abelian groups.

A homomorphism is surjective (onto), injective (one-to-one), or bijective if it is so as

a map of sets. An isomorphism is a bijective homomorphism. Two groups G1, G2 are

isomorphic if there exists an isomorphism between them, and we denote this by G1
∼= G2.

The set-theoretic inverse ϕ−1 : G2 → G1 of a group isomorphism is also a group isomorphism.

Isomorphic groups have “the same” group structure, and are essentially different labelings

or namings of the same group.

An automorphism is an isomorphism from a group to itself. If ϕ1 : G1 → G2 and

ϕ2 : G2 → G3 are group homomorphisms, then the composition ϕ2 ◦ ϕ1 : G1 → G3 is a

group homomorphism. In particular, if we take G1 = G2 = G3 = G, then since every

automorphism has an inverse, the collection of automorphisms of a fixed group G is itself a

group, with the group operation being composition of maps. This group is denoted Aut(G).

The kernel and image of a group homomorphism are always groups. In fact, the kernel

of a homomorphism satisfies the stronger property of being a normal subgroup. A subgroup

H ≤ G is normal if gHg−1 = H for every g ∈ G. The property of being a normal subgroup

depends on both the subgroup and its ambient group. That is, it is possible for H ≤ G ≤ K

with H normal in G but H not normal in K. We denote normal subgroups by H EG.

If a, b ∈ G, then the conjugate of a by b is bab−1. Hence H is a normal subgroup of G if

and only if every conjugate of H in G is equal to H .

35

The kernel of a homomorphism is a normal subgroup. Conversely, every normal subgroup

is the kernel of some homomorphism. Namely, if N E G, then we may define the quotient

group by giving the group operation on the coset space G/N . The group operation is given

by (aN)(bN) = abN ; that this is well-defined follows from the equality of sets aNbN =

abNb−1bN = abNN = abN . By viewing the cosets as sets, rather than elements in their

own right, the axioms of a group are easily verified for G/N .

Proposition 2.2.2 (First Isomorphism Theorem). If ϕ : G1 → G2 is a group homomor-

phism, then im(ϕ) ∼= G/ ker(ϕ).

Given any set S ⊆ G, the subgroup generated by S is the smallest subgroup of G con-

taining S, and is denoted 〈S〉. For finite groups it is plain to see that such a subgroup exists;

for infinite groups one uses Zorn’s Lemma. If 〈S〉 = G, then S is said to be a generating

set for G. Note that every finite group has a generating set of size at most log2 |G|: indeed,
suppose a1, . . . , ak is a sequence of group elements, let Ai denote 〈a1, . . . , ai〉, and suppose

ai /∈ Ai−1 for all i. Then as Ai−1 � Ai for all i, and the index [Ai : Ai−1] is an integer, the

index must be at least two. Hence |Ai| ≥ 2|Ai−1|. Hence, by the time k ≥ log2 |G|, we must

have Ak = G.

Important Classes and Examples of Groups

We now cover some of the most important examples of groups. A group is called cyclic if it is

generated by a single element. A cyclic group is determined up to isomorphism by its order,

so we may speak unambiguously of the cyclic group of order n, denoted Cn or sometimes

Z/nZ—the integers modulo n with addition as the group operation.

The symmetric group Sn is the group of all permutations of the set {1, . . . , n}. We may

similarly define the symmetric group on any set X , in which case it is denoted Sym(X).

The alternating group An is the unique index 2 subgroup of Sn; An consists of all even

permutations; a permutation is even if the number of two-element swaps it takes to implement

the permutation is even.

The general linear group of degree n over a field F is the set of all invertible n×n matrices

over F, and is denoted GLn(F). When we wish to leave the field unspecified or it is clear

from context, we may write GLn. If V is any vector space over a field, GL(V), the general

36

linear group “on V ” is the group of all invertible linear maps V → V . If dimV = n, then

picking a basis for V yields an isomorphism GL(V) ∼= GLn.

A group is simple if it has no proper non-trivial normal subgroups. Equivalently, G is

simple if and only if, whenever ϕ : G → H is a homomorphism, either ϕ is trivial (im(ϕ) =

1) or ϕ is an isomorphism onto its image (ker(ϕ) = 1). Taking quotient groups forgets

certain information about the original group, thereby simplifying it and perhaps facilitating

additional understanding. This tool is, by definition, unavailable for simple groups. The

finite simple groups have been completely classified in what is perhaps the largest single

theorem proven to date, spanning tens of thousands of pages by hundreds of authors (see,

for example, the accounts by Solomon [249] and Aschbacher [17] and references therein).

The finite simple groups fall into a few infinite families, plus 26 “sporadic” groups that do

not fall into these families. The infinite families are: the cyclic groups of prime order (the

only abelian finite simple groups), the alternating groups, and the groups of Lie type. The

groups of Lie type are closely related to the simple classical Lie algebras over finite fields,

which are the finite fields analogues of simple Lie algebras over C (see Section 2.2.4).

The free group on n generators Fn is defined as follows. It is an infinite group with

n generators X = {x1, . . . , xn}, sometimes denoted FX . A word in the generators is a

string over the alphabet X ∪X−1 := {x1, . . . , xn, x−1
1 , . . . , x−1

n }. A word a1 . . . ak with each

ai ∈ X ∪ X−1 is called reduced if it is never the case that two adjacent letters are of the

form xix
−1
i or x−1

i xi. The elements of Fn are the reduced words over X ∪X−1; words are

multiplied by juxtaposition, and then reducing—eliminating all adjacent pairs xix
−1
i and

x−1
i xi recursively until arriving at a reduced word. The group is called “free” because its

generators are not constrained by any relations between them other than those required by

the group axioms.

Free groups are characterized by the property that any map X → G from a set X to a

group G extends uniquely to a group homomorphism FX → G.

A group can be defined by giving a presentation of the group. This consists of giving a

generating set, say x1, . . . , xn, and a set of relations that are required to hold of these gener-

ators. These are often written 〈x1, . . . , xn|r1, . . . , rk〉 where each ri is a word over X ∪X−1,

called a relator. The group is defined as FX/R, where R is the smallest normal subgroup of

FX containing the words r1, . . . , rk. Such a group presentation satisfies a universal property

37

similar to a free group: any map X → G from a set X to a group G such that the words

ri become trivial in G extends uniquely to a group homomorphism FX/R → G. In general,

group presentations need not be finite—they may contain infinitely many generators and

relators. Group presentations are useful tools, but they can be difficult to work with; for

example, it is uncomputable—there is no algorithm, regardless of efficiency—to tell from a

group presentation whether or not the group is isomorphic to the trivial, one-element group

[212, 60].

2.2.3 Rings, fields, and modules

Rings generalize the algebraic structure of the integers, the rational numbers, and n × n

matrices. These are all examples of rings, and are good to keep in mind when reading

the definition. A ring R is a set together with two binary operations · : R × R → R and

+: R× R → R satisfying the following axioms:

1. (R,+) is an abelian group, with additive notation. In particular, its identity is denoted

by 0.

2. · is an associative operation with two-sided identity denoted by 1.

3. Distributivity: a(b+ c) = ab+ ac and (b+ c)a = ba + ca for all a, b, c ∈ R.

The following facts are easily derived from these axioms:

• The additive identity 0 is unique. Moreover, 0r = r0 = 0 for all r ∈ R.

• The multiplicative identity 1 is unique, and is distinct from the additive identity, 1 6= 0,

unless the ring consists of only a single element.

• If a ring element r ∈ R has a (left) multiplicative inverse s ∈ R, that is rs = 1, then

sr = 1, and s is the unique such inverse, which is thus denoted r−1.

A ring is called commutative if its multiplication operation is commutative: rs = sr for

all r, s ∈ R. The integers Z and rationals Q are commutative rings; the set of n×n matrices

is not commutative whenever n ≥ 2.

38

A map ϕ : R → S is a ring homomorphism if ϕ(1R) = 1S , and ϕ preserves both the

addition and multiplication, that is, ϕ(r1 + r2) = ϕ(r1) + ϕ(r2) and ϕ(r1r2) = ϕ(r1)ϕ(r2).

An isomorphism is a bijective homomorphism; an automorphism is an isomorphism from a

ring to itself. Under composition of maps, the set of automorphisms of a ring R becomes a

group, denoted Aut(R).

An ideal in a ring R is a subset I ⊆ R such that I is closed under addition and under

multiplication by arbitrary elements of R. That is, for all i1, i2 ∈ I and r ∈ R, i1 + i2 ∈ I

and ri1, i1r ∈ I. As with the notion of normal subgroup, the notion of ideal depends both

on I and on the parent ring R. That is, it is possible to have an ideal I in R, R a subring

of S, but I is not an ideal in S.

The kernel of a ring homomorphism ϕ : R → S is ker(ϕ) = {r ∈ R : ϕ(r) = 0}. The

kernel is an ideal of R, and the image of ϕ is a subring of S. Conversely, given any ideal

I ⊆ R, we may define the quotient ring R/I. The additive group of R/I is just the additive

quotient group (note that, under addition, I is a subgroup of (R,+)). The product is defined

by (a + I)(b+ I) = ab+ I; it is easily verified that, since I is an ideal, this product is well-

defined and gives a ring structure to R/I. As with groups, the first isomorphism theorem

holds for rings: if ϕ : R → S is a ring homomorphism, then im(ϕ) ∼= R/ ker(ϕ).

A field is a commutative ring in which every nonzero element has a multiplicative inverse.

The rationals Q, reals R, and complex numbers C are fields. For every prime p and natural

number n, there is a finite field of order pn that is unique up to isomorphism, and is denoted

Fpn. These are the only finite fields. These fields are nested, in that Fpn is a subfield of Fpm

whenever n divides m.

If a ring R contains a field F as a subring and the elements of F commute with every

element in R, then R is said to be an F-algebra. Note that, in this case, the additive

structure of R and the multiplication between F and R give R the structure of a (possibly

infinite-dimensional) vector space over F.

A skew field or division ring is like a field but need not be commutative. The quater-

nions H are a skew field: H is the four-dimensional R-algebra with R-basis {1, i, j, k} and

multiplication defined by the multiplication in R and the rules i2 = j2 = k2 = ijk = 1. As

a consequence ij = k, ji = −k, jk = i, kj = −i, ki = j, ik = −j. All finite division rings

are in fact fields (a result originally due to Wedderburn and Dickson, see Parshall [215]).

39

The characteristic of a ring is the least positive integer n such that 1 + 1 + · · ·+ 1 = 0

(n times). If this never holds, we say the ring has characteristic zero. The characteristic

of a field is necessarily either 0 or a prime number. In particular, the finite field Fpn has

characteristic p, as it contains Fp ∼= Z/pZ as a subfield.

A field is algebraically closed if every polynomial with coefficients in the field has at least

one root in the field. If F is any field, then its algebraic closure is denoted F, and is defined

to be the smallest algebraically closed field containing F; every field has a unique algebraic

closure, up to isomorphism. C is algebraically closed, and is the algebraic closure of R. The

algebraic closure of Q is distinct from C and, following the above convention, is denoted Q.

The algebraic closure of a finite field Fpn is the “union” (this notion can be made precise)

of Fpm for all m. In particular, Fpn = Fp.

If one field F contains another field F′ as a subfield, then F is a vector space over F′. The

dimension of this vector space is said to be the degree of the field extension.

A field is perfect if either it has characteristic zero, or it has characteristic p and every

element is a p-th power. In particular, all fields of characteristic zero, all finite fields, and all

subfields of the algebraic closures Fp of finite fields are perfect. There is a more satisfying,

internal definition of perfectness, but for this thesis this equivalent definition suffices.

2.2.4 Lie algebras

For the purposes of this thesis, we highly recommend the book of De Graaf [97]. We sum-

marize the necessary highlights here. For more general background on Lie algebras we

recommend any of several standard books [116, 150, 143, 166]. For Lie algebras over non-

algebraically closed fields or in positive characteristic, we recommend the books by Jacobson

[150] and especially Seligman [234], though it is a good idea to have seen the case of Lie

algebras over C before wading into modular Lie algebras [234].

A Lie algebra is a vector space L over a field F together with a bilinear operation, referred

to as the Lie bracket and written [·, ·] : L × L → L satisfying:

1. Skew-symmetry: [v, v] = 0 for all v ∈ L (or equivalently in characteristic 6= 2, [v1, v2] =

−[v2, v1])

2. Bi-linearity: [αv + βw, u] = α[v, u] + β[w, u], and similarly for the second coordinate.

40

3. The Jacobi identity: [u, [v, w]] + [w, [u, v]] + [v, [w, u]] = 0. This is the “Lie algebra”

version of associativity, and can be thought of as “the derivative of the associative

law.”

A matrix Lie algebra is a set of matrices where taking [A,B] := AB − BA makes the

set into a Lie algebra. In particular, the collection Mn(F) of all n × n matrices over F is a

matrix Lie algebra.

A homomorphism between Lie algebras L1,L2 is a linear map ρ : L1 → L2 that preserves

the brackets, that is, where ρ([u, v]L1) = [ρ(u), ρ(v)]L2. An isomorphism is a bijective

homomorphism; an automorphism is an isomorphism of L with itself.

Note that conjugate matrix Lie algebras are isomorphic as abstract Lie algebras, since

g[M1,M2]g
−1 = [gM1g

−1, gM2g
−1], that is, conjugation by g is a Lie algebra homomorphism

whose inverse is conjugation by g−1.

Structure theory of Lie algebras

Given any two Lie algebras L1,L2, their direct sum is the Lie algebra L1 ⊕ L2 whose

underlying vector space is the direct sum of the underlying vector spaces of the Li. The

bracket [v1, v2] for any elements v1 ∈ L1 and v2 ∈ L2 is defined to be zero.

An ideal in a Lie algebra is a subspace I ⊆ L such that [u, v] ∈ I for any u ∈ L and v ∈ I.

Ideals are the Lie-algebraic analogue of normal subgroups of groups and ideals in rings. Given

any ideal, one can form the quotient Lie algebra L/I whose elements are additive cosets of

I, that is, of the form v + I; conversely, given any homomorphism of Lie algebras its kernel

is an ideal.

A Lie algebra is abelian if [u, v] = 0 for all u, v ∈ L. Any vector space can thus be given

the structure of an abelian Lie algebra. Every subspace of an abelian Lie algebra is an ideal.

0 is the trivial ideal. An ideal is proper if it is not the whole Lie algebra. In a direct

sum L = L1 ⊕ L2, each Li is a proper ideal of L. A Lie algebra is simple if it contains no

proper non-trivial ideals, and is non-abelian. (This last condition excludes, for convenience,

the 1-dimensional abelian Lie algebra.)

Given two ideals A,B ⊆ L, their commutator is defined as [A,B] := Span{[a, b] : a ∈
A, b ∈ B}; the commutator of two ideals is again an ideal (this is an exercise in the Jacobi

41

identity). The derived series of L is defined as follows: L(0) := L, L(i+1) := [L(i),L(i)].

L(1) = [L,L] is called the derived or commutator subalgebra.

Definition 2.2.3. A Lie algebra L is solvable if the derived series terminates at L(k) = 0

for some k.

Each step in the derived series, L(i)/L(i+1) is abelian, so solvable Lie algebras are “iter-

ated extensions of abelian Lie algebras.”

Every Lie algebra L has a unique maximal solvable ideal, called the (solvable) radical

and denoted RadL; this follows from the lemma that the sum (not necessarily direct) of two

solvable ideals is again solvable. A Lie algebra is semisimple if RadL = 0, or equivalently if

L contains no abelian ideals. L/RadL is always semisimple.

In order to state one of the main structural theorems of Lie algebras in characteristic

zero, we define semidirect products and derivations. A derivation on a Lie algebra L is a

linear map d : L → L such that d([u, v]) = [u, d(v)] + [d(u), v]. Note the similarity with the

product rule for differentiation. Since a derivation is a linear map, we may compose two

derivations as linear maps; then defining [d1, d2] := d1 ◦ d2 − d2 ◦ d1 makes the collection of

derivations of L into a Lie algebra denoted Der(L).
Given two Lie algebras L1,L2 and a homomorphism ϕ : L2 → Der(L1), we define the

semi-direct product L1 ⋊ϕ L2 as follows. The underlying vector space is the direct sum of

L1 and L2. On each of these subspaces, the Lie bracket is defined as it was originally. If

v ∈ L1 and d ∈ L2 we define

[v, d] := ϕ(d)(v).

Extending by linearity and skew-symmetry, we find

[v1 + d1, v2 + d2] = [v1, v2] + ϕ(d2)(v1)− ϕ(d1)(v2) + [d1, d2]

where vi ∈ L1 and di ∈ L2.

Conversely, if a Lie algebra L has an ideal I and a subalgebra L′ such that L is the direct

sum of I and L′ as vector spaces, then L = I ⋊ L′, where the map L′ → Der I is given by

the Lie bracket in L.

42

The following two theorems are quite strong structural theorems. For example, nothing

even close to these holds in the case of finite groups, despite the similarity in the definitions

of all the notions (nilpotent, solvable, semidirect product). See Section 4.9.2 for more.

Theorem 2.2.4 (Levi’s Theorem, cf. §III.9, p. 91 of Jacobson [150]). Every Lie algebra in

characteristic zero is the semidirect product of a solvable Lie algebra by a semisimple one.

(That is, the semisimple one acts as derivations on the solvable one.)

The lower central series is defined by L0 := L and Li+1 := [L,Li]. Note that here we

take the commutator of Li with the whole of L, rather than just with Li (as in the derived

series). Hence the lower central series decreases more slowly than the derived series.

Definition 2.2.5. A Lie algebra L is nilpotent if the lower central series terminates at

Lk = 0 for some k.

Theorem 2.2.6 (see Corollary II.7.1 on p. 51 of Jacobson [150]). A Lie algebra in charac-

teristic zero is solvable if and only if its derived subalgebra is nilpotent.

Remark 2.2.7. Since solvable Lie algebras are iterated extensions of abelian ones (see

above), and considering Theorem 2.2.4, we may say that abelian and simple Lie algebras

form the “building blocks” of all Lie algebras in characteristic zero. More generally, abelian

and semisimple Lie algebras form the building blocks, over any field.

Over any algebraically closed field of characteristic zero, such as Q or C, semisimple Lie

algebras—those with no abelian ideals—are the same as direct sums of simple Lie algebras.

Furthermore, over algebraically closed fields of characteristic zero, the simple Lie algebras

have been completely classified for nearly a century. They fall into four infinite families,

referred to as type An (sln+1, consisting of all trace zero (n + 1) × (n + 1) matrices), Bn

(so2n+1, consisting of all (2n+1)×(2n+1) skew-symmetric matrices M = −MT), Cn (sp2n

consisting of all 2n × 2n matrices M satisfying JM = −MT J where J =

(

0 In

−In 0

)

),

and Dn (so2n), and there are five exceptional simple Lie algebras, known as e6, e7, e8, f4,

and g2. This “A,B,C,D,E,F,G” classification is sometimes referred to as the Cartan–Killing

classification.

43

Cartan subalgebras

Cartan subalgebras are a key tool in understanding (non-nilpotent) Lie algebras. The nor-

malizer of a subalgebra H ⊆ L is the largest subalgebra of L in which H is an ideal; it is

denoted NL(H). Equivalently, the normalizer of H is the set of elements that send H into

itself: NL(H) = {x ∈ L : (∀h ∈ H)[[x, h] ∈ H]}. A Cartan subalgebra of a Lie algebra L is

a subalgebra H that is nilpotent and self-normalizing, that is, NL(H) = H. In particular,

this implies that H is not an ideal of L unless L is nilpotent, in which case H = L. Cartan
subalgebras are rarely unique.

The adjoint representation adL x : L → L is defined by (adL x)(y) = [x, y]. As ad x is a

linear map, it makes sense to takes its powers (ad x)k(y) = [x, [x, . . . , [x, y]]] (k times).

A Cartan subalgebra is split (over F) if all the eigenvalues of adL(h) lie in F for every

h ∈ H. Having a split Cartan subalgebra is the generalization to Lie algebras of the property

of a matrix being diagonalizable over F. It is possible for a Lie algebra to have some Cartan

algebras that are split and others that are not; we discuss this issue further when it becomes

relevant, in Section 4.9.1.

Representations

A representation of a Lie algebra L is a homomorphism ρ : L → Mn for some n. A repre-

sentation is faithful if this homomorphism is injective. Two representations ρ1, ρ2 : L → Mn

are equivalent if there is an invertible n × n matrix g such that ρ1(v) = gρ2(v)g
−1 for all

v ∈ L.
Equivalence of representations is similar to, but not the same as, conjugacy of matrix

Lie algebras. Given two representations ρ1, ρ2 : L → Mn, their images Li := im(ρi) are

matrix Lie algebras. The representations ρi are equivalent if they are conjugate as maps,

whereas the matrix Lie algebras forget the maps and only care about their images. In fact,

Lemma 4.4.3 shows that L1 and L2 are conjugate matrix Lie algebras if and only if ρ1

and ρ2 are equivalent up to an automorphism of L, that is, ρ1 is equivalent to ρ2 ◦ α for

some automorphism α : L → L. These automorphisms are what cause all the computational

difficulties, and allow the equivalences with graph isomorphism and code equivalence.

44

Given two representations ρi : L → Mni for i = 1, 2, their direct sum ρ1 ⊕ ρ2 : L →
Mn1+n2 is defined by the block-matrix:

(ρ1 ⊕ ρ2)(v) =

(

ρ1(v) 0

0 ρ2(v)

)

.

A representation is called decomposable if it is (equivalent to) a non-trivial direct sum;

otherwise it is called indecomposable.

The set Mn of n × n matrices acts on the vector space Fn by the usual matrix-vector

multiplication. Given a subset S ⊆ Mn, if V ⊆ Fn is a subspace such that S · V ⊆ V , then

V is called an S-invariant subspace. The 0 subspace and the whole space Fn are S-invariant

for any S.

A representation ρ : L → Mn is called irreducible if 0 and Fn are the only im(ρ)-invariant

subspaces. Otherwise a representation is called reducible. Note that a decomposable repre-

sentation is reducible, but the converse need not be true, as illustrated by the example:

{(

1 x

0 1

)

: x ∈ F

}

.

A representation is completely reducible if it can be decomposed into a direct sum of

irreducible representations. Every representation can be decomposed into indecomposable

representations; in a completely reducible representation these indecomposables must also

be irreducible.

A matrix Lie algebra L ⊆ Mn, can be viewed as the image of a faithful representation of

L, namely, take ρ : L → Mn to be the inclusion (i. e., identity) map. Via this identification,

we also apply the terms (in)decomposable and (ir)reducible to matrix Lie algebras. If L
is a completely reducible matrix Lie algebra, then it is equivalent (conjugate) to a matrix

Lie algebra consisting of block-diagonal matrices, where the restriction to each block is

irreducible.

Theorem 2.2.8 (see Theorem III.10 on p. 81 of Jacobson [150]). A matrix Lie algebra L
over a field of characteristic zero is completely reducible if and only if L is isomorphic to the

direct sum of an abelian, diagonalizable Lie algebra and a semisimple Lie algebra.

45

Inner and Outer Automorphisms

The collection of automorphisms of a Lie algebra L form a group Aut(L) under composition of

maps. Given a Lie algebra L and v ∈ L, the Jacobi identity implies that the map adv : L → L
defined by adv(u) := [v, u] is a homomorphism of Lie algebras. If adkv := adv ◦ · · · ◦ adv is

the zero map for k sufficiently large, then exp(adv) := I + adv +
1
2 ad

2
v + · · ·+ 1

(k−1)!
adk−1

v

is an automorphism of L in characteristic zero (since we need to divide by k − 1). Auto-

morphisms arising in this way are called inner automorphisms. The inner automorphisms

form a normal subgroup Inn(L) ≤ Aut(L). The quotient group Aut(L)/ Inn(L) is called the

outer automorphism group and is denoted Out(L).
The outer automorphism groups of the simple Lie algebras are completely known:

Out(sln) = S2 Out(sp2n) = 1

(n 6= 4) Out(so2n) = S2 Out(so2n+1) = 1

Out(so8) = S3 Out(e7) = 1

Out(e6) = S2 Out(e8) = 1

Out(f4) = 1

Out(g2) = 1

The action of Out(sl2) on the representations of sl2 is trivial, despite the fact that Out(sl2) ∼=
S2. The action technically takes a representation to its dual, but for sl2, the dual of a

representation is equivalent to that representation.

Twisting representations by automorphisms

Given an automorphism α : L → L and a representation ρ : L →Mn, we get another repre-

sentation ρ◦α : L α→ L ρ→Mn, given by (ρ◦α)(v) = ρ(α(v)). Since α is an automorphism, it

is, in particular, onto, so im(ρ ◦ α) = im(ρ). However, ρ ◦ α and ρ need not be equivalent as

representations, despite having the same image. We call ρ◦α the twist of the representation

ρ by the automorphism α.

In many cases, twisting by inner automorphisms in fact leads to equivalent representa-

tions. For example, abelian Lie algebras have no inner automorphisms, since ad v = 0 for

all v. Additionally, when the characteristic is zero, twisting a representation of a semisimple

46

Lie algebra by an inner automorphism leads to an equivalent representation (see De Graaf

[97, Lemma 8.5.1.]). In particular, direct sums of abelian and semisimple Lie algebras have

this property, including all completely reducible algebras in characteristic zero.

In these cases, we find that the outer automorphism group Out(L) acts on the set of

representations-up-to-equivalence. If α ∈ Out(L), we denote the image of ρ under the action

of α by ρα. Equivalently, let α∗ ∈ Aut(L) be a representative of α ∈ Out(L); then ρα

is the equivalence class of ρ ◦ α∗; this equivalence class is independent of the choice of

representative α∗, since twisting by inner automorphisms in this situations does not change

ρ up to equivalence.

Tensor products of representations

Given an n×m matrix A and p×q matrix B, their tensor, or Kronecker, product A⊗B has

size np×mq, and its entries are all possible products of an entry from A and an entry from

B. If we treat the rows of A ⊗ B as indexed by [n] × [p] and similarly its columns indexed

by [m]× [q], then we have

(A⊗B)(rA,rB),(cA,cB) = ArA,cABrB ,cB .

As with the direct sum, we may extend this operation from single matrices to representa-

tions. For associative algebras this is straightforward (the matrix of a tensor product of

representations is the tensor product of the representations); in order for the tensor product

of representations of a Lie algebra to still be a representation of the Lie algebra, we must

instead use the “derivative” of the most obvious (non-)definition, which we now describe.

If ρ1 : L →Mn1 and ρ2 : L →Mn2 are two representations of a Lie algebra L, then their

(internal) tensor product ρ1 ⊗ ρ2 : L → Mn1n2 is defined by

(ρ1 ⊗ ρ2)(x) = ρ1(x)⊗ In2 + In1 ⊗ ρ2(x),

where I is the identity matrix. It is easily verified that with this definition, the tensor

product of representations of L is again a representation of L.

47

Finally, if ρi : Li → Mni are two representations of two Lie algebras L1,L2, then their

(external) tensor product ρ1 ⊗ ρ2 : L1 ⊕ L2 →Mn1n2 is defined by

(ρ1 ⊗ ρ2)(x1 + x2) = ρ1(x1)⊗ In2 + In1 ⊗ ρ2(x2)

where xi ∈ Li for each i = 1, 2. For future reference we record the following standard

proposition.

Proposition 2.2.9. Let L1 and L2 be two semisimple Lie algebras over any algebraically

closed field of characteristic zero. Then the irreducible representations of the direct sum

L1 ⊕ L2 are exactly the (external) tensor products of the irreducible representations of L1

with the irreducible representations of L2.

Proof. This follows from the complete reducibility of representations of semisimple Lie alge-

bras and their weight theory—as in any of the standard references mentioned at the beginning

of this section—and the discussion of tensor products of weight spaces as in Chapter III of

Jacobson [150].

48

CHAPTER 3

A TUTORIAL AND SURVEY OF GEOMETRIC

COMPLEXITY THEORY

This chapter is intended to be a self-contained introduction to the Geometric Complexity

Theory program (initiated in 2001 by Mulmuley and Sohoni [207]). The only prerequisites

are some familiarity with complexity theory and a very basic familiarity with groups, rings,

and vector spaces, as in Chapter 2; all other material will be covered as needed.

3.1 Introduction

Geometric Complexity Theory (GCT) was developed by Ketan Mulmuley and Milind Sohoni

[207] as an approach to fundamental lower bounds questions in complexity theory, such as

P versus NP, using algebraic geometry and representation theory. The GCT program has

attracted an increasing amount of attention over the last several years, and researchers have

started making progress on some of the subproblems of and problems related to GCT.

Despite the deep and beautiful mathematics behind GCT, we believe it is possible to un-

derstand the structure of the GCT program, the flavor of the mathematics involved, and what

it may tell us about complexity without first learning algebraic geometry and representation

theory at the research level. We aim to present this material while still conveying some of the

technical aspects of GCT, which necessitates establishing some mathematical terminology

along the way. This mathematics is established in clearly marked “Background” sections.

For readers already familiar with the necessary mathematics, we hope the remainder of this

chapter serves as a useful overview.

Given the pace of progress and the large quantity of sometimes-overlapping papers on

GCT, finding where to start, identifying the key ideas, and grabbing hold of the narrative of

GCT can be a daunting task, especially in the face of the required background knowledge of

complexity theory on the one hand and algebraic geometry and representation theory on the

49

other hand. The goal of this survey is to provide a single source with a consistent narrative

that highlights the main points of GCT.

While we would like to include only proven facts and crisp conjectures, we feel it is

important to also sometimes include philosophical or more heuristic motivation. GCT is a

program towards lower bounds; very few, if any, researchers believe that super-polynomial

lower bounds will come out of GCT any time soon. As such, it is very difficult if not

impossible to tell only from proven facts what the way forward is. As always in mathematics,

philosophical justification and analogies are important tools that may help guide us.

This survey is organized in a perhaps slightly unusual manner. Each section views GCT

from a different “height”: first we give the 1,000-foot view, then the 100-foot view, then the

10-foot view, and finally the view from the ground. It is our hope that readers may descend

as far as they like towards the details and still gain profitably from the reading. Additional

background sections are included as we get further into the details, though we remark that

for this survey none of the background is particularly onerous to anyone who has at least

a passing familiarity with groups, vector spaces, and polynomials. Current or very recent

results related to GCT are included where appropriate.

3.1.1 Outline

From 1,000 feet, we can see the general plan of attack of GCT, and are able to discuss

to what extent algebraic geometry and representation theory may be necessary for lower

bounds. From 100 feet, we can see the complete details of the translation from complex-

ity theory to algebraic geometry, though even at that level we do not actually need any

notions from algebraic geometry! At such a close distance we are also able to distinguish

between algebraic and Boolean complexity, and we discuss the relationship between the two

and how GCT proposes to move from its current algebraic setting to the final Boolean set-

ting. From 10 feet away we can really see the details of how symmetry will be used, and

discussion the fundamental phenomenon of characterization by symmetries. We show how, if

symmetry-characterization plays as crucial a role in GCT as is hypothesized, then symmetry-

characterization alone is enough to avoid the Razborov–Rudich natural proofs barrier. We

also show how symmetry-characterization is already known to have an effect on complexity:

Kayal [159] has shown that a certain problem on polynomials that is NP-hard in general

50

can be done in randomized polynomial time for the permanent and determinant, by taking

advantage of their symmetry-characterization. It is this algorithm that we generalize in our

study of matrix isomorphism of Lie algebras in Chapter 4.

Finally, once we’re on the ground we can see more about the (algebraic) geometry of

the algebraic varieties arising in GCT, even still without actually using really any algebraic

geometry. We discuss essentially the only known example of a function known to lie in

the boundary of the orbit closure of determinant [177], and show that from the complexity

point of view that problem is essentially equivalent to the determinant. We also show that

the Mulmuley–Sohoni Conjecture 3.3.4, which is a priori a strengthening of the original

permanent versus determinant conjecture, is formally much closer to the original permanent

versus determinant conjecture than it appears on the surface. These latter two results, while

not difficult, have not appeared before.

We also discuss a concrete connection between the varieties arising in GCT and the

down-to-earth linear algebra problem of understanding the linear subspaces sitting inside the

collection of matrices with zero determinant (or permanent). This is a very concrete problem

which, although it has been studied sporadically in the last 100 or so years by the techniques

of linear algebra and algebraic geometry, does not necessarily need algebraic geometry for

its study, and may be an approachable and enjoyable problem for some complexity theorists

to try their hand at.

3.2 The 1,000-foot view

Here we outline the basic GCT plan of attack. Although the machinery of GCT is currently

most well-developed in the algebraic setting, from 1,000 feet up we can barely see the distinc-

tion between algebraic and Boolean complexity; we will return to this issue in more detail

Section 3.3.3. The only prerequisite for this section is some familiarity with the landscape

of complexity.

3.2.1 The plan of attack

There are two major phases to the GCT approach: the first, which was already completed in

the first paper on GCT [207], is to translate complexity questions to questions in algebraic

51

geometry and representation theory. This step already suggests the exciting possibility of

new lower bounds methods, incorporating techniques and tools from algebra, algebraic and

differential geometry, representation theory, and algebraic combinatorics.

The second phase is a suggestion of how to go about resolving the representation-theoretic

conjectures that arise from the first phase. To describe the approach without going into

representation theory, we use an analogy. The very high-level view from this analogy is as

follows—be warned that this is such a high level as to make it almost sound naive, but we

hope it helps ground the more detailed plan of GCT. To prove that NP 6⊆ P/poly, first

construct a nontrivial algorithm A such that A(0n) computes the circuit-size complexity of

SAT up to length n, which we denote SAT≤n, then by analyzing the properties of A, show that

A(0n) grows faster than any polynomial in n. Rather than applying this idea to NP versus

P/poly directly, an analogous strategy is applied to various problems in representation

theory. Of course GCT goes much deeper than this, and the depth and details are what turn

this naive-sounding plan into something that could rightfully be called a program towards

lower bounds. We will spend the rest of the chapter on these details.

We emphasize here the role of the algorithm and its nontriviality. Continuing with the

above analogy to NP versus P/poly, if instead of an algorithm we had merely asked for a

function, then this would be nothing more than a restatement of NP 6⊆ P/poly, which is

what we set out to prove in the first place. And if we omit the word “nontrivial,” then there

is an obvious brute-force algorithm A that computes the circuit-size complexity of SAT≤n

as above. However, the brute-force nature of such an algorithm suggests that analyzing it

is, again, little more than analyzing a thinly veiled reformulation of the original problem.

We need the algorithm A to reflect deeper properties of NP and circuit-size than merely the

fact that circuit-size of a function on a finite domain is finite1.

Instead of finding an algorithm which computes circuit-size directly, GCT is currently

aimed at finding an algorithm that will produce witnesses that SAT≤n is not computed by

circuits of size nk. Finding such an algorithm is currently broken down into three steps:

1. Translate complexity questions to questions in algebraic geometry;

1. One formalization of this need is the relativization barrier (see Section 2.1.6) since both the
NP-completeness of SAT and the brute-force algorithm for computing circuit-size complexity of
SAT≤n relativize.

52

2. Translate algebro-geometric questions to questions in representation theory;

3. Find an algorithm that computes the answers to the representation-theoretic ques-

tions, and then by analyzing this algorithm finally resolve the representation-theoretic

questions.

The first step was achieved by Mulmuley and Sohoni [207]. The second step is classical

mathematics, applied to the algebro-geometric questions raised by Mulmuley and Sohoni.

The third step is where the work remains.

We will talk more about the details of these steps in a moment, but even at this level of

description we can provide some commentary.

3.2.2 On the necessity of algebraic geometry, representation theory, and

algorithms

For questions of algebraic complexity, such as permanent versus determinant, the transla-

tion to algebraic geometry is seamless and provides necessary and sufficient conditions for

the complexity-theoretic conjectures to hold. It may of course be possible to resolve these

algebro-geometric questions by non-algebro-geometric methods, such as algebraic or differ-

ential topology, or even possibly combinatorics, but to resolve the complexity questions is

completely equivalent to resolving the algebro-geometric questions.

When we move from algebraic complexity to Boolean complexity, the necessity of alge-

braic geometry is a more subtle question, which we return to in Section 3.3.3.

In the setting of algebraic complexity, though, it may be possible to resolve complexity

questions by resolving algebro-geometric questions alone, without recourse to representation

theory. However, there is some formal evidence that representation theory may indeed be

necessary for these particular algebro-geometric questions.

The way in which Mulmuley and Sohoni propose to use representation theory can be

used to show a separation of complexity classes, but we do not know how—and indeed it

may not be possible—to use the representation theory to show an inclusion instead. The

GCT program in its narrowest sense, which attempts to use representation theory, thus

seems aimed at resolving lower bounds questions only in one direction. However, because

of the equivalence of complexity questions and certain questions in algebraic geometry, the

53

study of these algebraic varieties—which might rightfully be called geometric complexity

theory (rather than the Geometric Complexity Theory Program)—does allow the possibility

of resolving complexity questions in either direction.

It may also be possible to resolve the representation-theoretic questions directly, without

finding an algorithm for them and then analyzing it. I view the suggestion to look for

an algorithm more as a way to guide our thinking than as a necessary proof technique. I

think searching for algorithms may be a useful guide for several reasons: viewing a problem

algorithmically provides an additional concrete target to aim for, beyond simply gaining

understanding until we can solve the problem completely. Additionally, that concrete target

can serve as a useful intermediate goal; finding a nontrivial algorithm can often be a good

indicator of progress on the mathematical problem, even before the problem is completely

resolved.

Finding nontrivial algorithms for a mathematical problem often requires understanding

the purely mathematical structure of the problem better. Put another way, mathematical

properties that can be exploited algorithmically can often also be exploited mathematically;

by searching for better algorithms, we thus help focus our attention on properties that may

ultimately be useful to prove the sought-after conjectures.

Furthermore, finding an algorithm for these questions can be viewed as an attempt to

reverse-engineer the structure of an analogous but more well-understood representation-

theoretic problem, the Littlewood–Richardson problem. For the Little-wood–Richardson

problem, its mathematical structure was discovered first, and then later that structure was

exploited algorithmically—in particular, to show that a certain integer linear programming

problem associated with the Littlewood–Richardson problem could in fact be solved by its

rational relaxation. The hope is that there is analogous, but most likely more difficult,

structure in the representation-theoretic problems arising in GCT, and that by first finding

an algorithm we will be putting ourselves on the right track.

Finally, as a sanity check we may ask whether such an algorithm should exist at all. If we

ask specifically about a polynomial-time algorithm for the representation-theoretic problems

arising in GCT, the answer is unclear. However, one consequence of such an algorithm is

known to hold, assuming that the complexity-theoretic conjectures we are attempting to

prove in fact hold:

54

Theorem 3.2.1 (Mulmuley [206]). If the permanent of an n × n matrix over a field F

cannot be computed by poly(n)-size arithmetic circuits over F, then there is a probabilistic

polynomial-time algorithm A over F that outputs a single set of counterexamples against all

polynomial-size circuits. In other words, A(0n) outputs a set of matrices {M1, . . . ,Mk} that,

with high probability over the randomness of A, if C is any arithmetic circuit over F of

polynomial size, then there is some i such that C(Mi) 6= perm(Mi).

Furthermore, if arithmetic circuit identity testing can be black-box derandomized, then A

can be made to run in deterministic polynomial time.

A similar theorem holds for an analogous problem capturing NP that we discuss in

Section 3.3.3. This can be taken as evidence that it is at least plausible that polynomial-

time algorithms exist for the representation-theoretic questions arising in GCT. Even from

a more skeptical point of view, had this theorem not held it would have been a strong

indication that efficient algorithms for the relevant representation theory problems should

also not exist.

The current fastest algorithms for these representation-theoretic problem use the nat-

ural reduction to Gröbner bases. Computing Gröbner bases is in general EXPSPACE-

complete [193, 195] (see [194] for a survey)—that is, complete for exponential space, whose

best known time bound is doubly exponential 22
O(nk)

—so EXPSPACE is the current best

upper bound for the complexity of these representation-theoretic problems. A polynomial-

time algorithm for the representation-theoretic problems—which, themselves, we do not

expect to be EXPSPACE-complete—would certainly be nontrivial. Indeed, one of the mo-

tivations for the original definitions of polynomial-time was to be able to formally show that

some algorithm is “better” than brute force.

Mulmuley refers to the above result as the “Flip Theorem” [206]; its proof for the per-

manent is closely related to downward self-reducibility, and a generalization that has arisen

in GCT called “characterization by symmetries,” which allows a flip theorem to be proven

for NP as well. We discuss characterization by symmetries in Section 3.4.

In summary, there is some evidence that the representation-theoretic techniques sug-

gested by Mulmuley and Sohoni may be necessary, there is some evidence that nontrivial,

polynomial-time algorithms for these representation-theoretic problems should exist, and

finding such algorithms, although not strictly necessary, may be a good guide for progress

55

in the area. As with any guide, we should make sure that the search for algorithms does

not blind us to other possibilities for fruitful angles of attack, but it may nonetheless be

productive to follow the guide while we can.

3.2.3 The plan of attack II: a few details

Here we give some of the details of the above steps are implemented. Without actually

delving into algebraic geometry and representation theory, we still hope to give the general

flavor of these translations. In Section 3.3 we give the full details of the translation from

complexity theory to algebraic geometry—still without much need for any actual algebraic

geometry.

Step 1: translate complexity questions to algebraic geometry. Suppose we wish

to show that P 6= NP. The GCT approach constructs, for each complexity class, and for

each input length n, a set of points in some high-dimensional vector space—typically the

dimension is exponential in the input size—which happens to be an algebraic variety. We

will refer to these sets as varieties, but for now the technical definition of algebraic variety

is irrelevant. Call these varieties XP,n and YNP,n. These varieties will be constructed in

such a way that NP ⊆ P if and only if YNP,n ⊆ X
P,nk for some k and all sufficiently large

n. In a very real sense, the points of these varieties correspond to other functions in their

respective complexity classes. In Section 3.3 we will see what this means in more detail. It is

important to note that these varieties are constructed in such a way that an inclusion of the

varieties is both necessary and sufficient for an inclusion between the complexity classes, so an

(algebraic) complexity question is completely equivalent to an algebraic geometry question.

Step 2: translate algebro-geometric questions to representation theory. The

natural way in which these varieties are constructed leads to the varieties being symmetric

under an action of the general linear group GLn of all n × n invertible (complex) matri-

ces. Because of this large group of symmetries, tools from group theory—most notably

representation theory—can be applied to help understand these varieties. Although the rep-

resentation theory does not obviously capture all the structure of these varieties and their

inclusion relationships, there is a purely representation-theoretic statement which implies,

for example, that Y
NP,nk is not contained in XP,n for each k and infinitely many n, and

hence that P 6= NP (in an algebraic setting, see Section 3.3.3).

56

3.3 The 100-foot view: from computational reductions to orbit

closures

In this section we construct the algebraic varieties associated to the permanent (i.e. #P

or VNP) and determinant (i.e. GapL, VPws, or VQP). Although the sets we are con-

structing are indeed algebraic varieties—and hence algebraic geometry is indispensable for

their study—this section can be completely understood without any algebraic geometry. The

only additional prerequisite for this section, beyond that required for the 1,000-foot view, is

a basic familiarity with group actions with the notion of the closure of a subset of Cn. We

give a brief review in the first subsection.

3.3.1 Background: group actions and orbits

Groups very often arise as the symmetries of some other mathematical object, such as a set,

relation, graph, topological space, vector space, or other algebra (including other groups!),

in which case we say that the group acts on the set (graph, vector space, etc.). In fact, this

is their raison d’être; historically groups first arose this way, and it took nearly a century

before the abstract notion of a group as a set with a binary operation satisfying certain

axioms was put forth (see, e. g. [278]).

For example, consider the symmetry group of an equilateral triangle: this consists of all

rigid motions of the plane—generated by rotations, translations, and reflections—which send

the triangle to itself. There are six such motions: the identity, which we denote 1, rotation

by π/3 around the center of the triangle, rotation by 2π/3, and reflections over any of the

three main axes of the triangle. Let’s denote rotation by π/3 by ρ and reflection over the

y-axis by σ. As an abstract group, this is simply the dihedral group of order 6, which can be

expressed as the group generated by two formal elements, r and s, subject to the constraints

r3 = s2 = 1 and srs = r−1. When we want this abstract group to act on the triangle, we

must specify, for each group element, how it acts: we must associate to r the rotation ρ by

π/3, and to s the reflection σ.

Here is another example, perhaps more familiar to complexity theorists: let Gn denote

the set of all graphs on n vertices labeled 1, . . . , n. Any permutation of {1, . . . , n} induces

a permutation on the set of graphs, by relabeling vertices. For example, let G1 be the

57

undirected graph on 3 vertices with a single edge {1, 2} (see Figure 3.1); let G2 be the

undirected graph on three vertices with a single edge {2, 3}. These are distinct elements of

G3; the permutation 1 7→ 2 7→ 3 7→ 1, denoted (123), sends G1 to G2. Although G1 and

G2 are distinct labeled graphs, they are clearly isomorphic, and (123) is one isomorphism

between them. The symmetric group Sn thus acts on Gn by taking a graph to an isomorphic,

but possibly distinct, copy.

1 2

3

G1
1 2

3

G2

Figure 3.1: The action of Sn on n-vertex graphs is by isomorphisms

An action of a group G on a set (graph, vector space, etc.) X generalizes and formalizes

the above examples: an action is a group homomorphism α : G→ Aut(X), where by Aut(X)

we mean the automorphism group of X , whatever type of structure X may be. For example,

if X is simply a set, then we may take Aut(X) to be the group of all permutations of

X , sometimes denoted Sym(X) and referred to as “the symmetric group on X .” If X is a

graph, then Aut(X) consists of the graph automorphisms of X ; if X is a group, then Aut(X)

consists of the group automorphisms of X . If X is a vector space, then Aut(X) consists of

the invertible linear maps from X to X , sometimes denoted GL(X) and referred to as “the

general linear group on X .”

If α : G→ Aut(X) is an action of a group G on a set (graph, vector space, etc.) X , and

α is understood from context, then we may write g(x), thinking of g as an automorphism

on X via α, or more simply g · x or gx.

The fact that α is a homomorphism is equivalent to the following two conditions: 1)

the identity acts trivially—1x = x for all x ∈ X—and 2) the action of a product gh is the

composition of the actions of g and h—(gh) · x = g · (h · x) for all g, h ∈ G and x ∈ X .

Some authors present group actions as maps G × X → X satisfying axioms corresponding

58

to conditions (1) and (2); the two viewpoints are equivalent, and often used interchangeably

when convenient.

As another example, let G = {1, τ} be the cyclic group of order two, with τ2 = 1, and

let X = {a, b, c} be a set with three elements. There are
(3
2

)

= 3 distinct ways G can act

nontrivially on X . Since the identity must act trivially, we need only specify the action of

τ . One action is given by τ 7→ (ab), that is, τ(a) = b and τ(b) = a. Another action is given

by τ 7→ (bc), and yet another is given by τ 7→ (ac). Finally, if τ acts trivially as well, fixing

each element of X , then all of G acts trivially, and the action is called “trivial.”

One of the most important concepts in group actions is that of the orbit of an element

of the set X being acted on. The orbit of x ∈ X is the set of all images of x under all

group elements; it is often denoted G · x := {g · x : g ∈ G}. In the previous example, when

τ 7→ (ab), the orbit of a is {a, b}, the orbit of b is {a, b}, and the orbit of c is the singleton

{c}. In the example of the equilateral triangle above, the orbit of a corner of the triangle

consists of all three corners of the triangle; even if we only used rotations this would be the

case. The orbit of the center of an edge of the triangle consists of the centers of all three

edges. The orbit of a point on an edge that is neither a corner nor the center of the edge

consists of six points (see Figure 3.2).

Figure 3.2: Orbits of points on an equilateral triangle under the action of the dihedral group.
Each shape (square or circle) corresponds to a single orbit.

In the example of Sn acting on the set of all graphs on n vertices, the orbit of a single

graph consists of all graphs isomorphic to it.

59

One feature to note from these examples is that the relation of “being in the same

orbit” is an equivalence relation; in the case of Sn acting on Gn this is the familiar fact

that isomorphism is an equivalence relation. This is a general feature of the orbits of group

actions:

Proposition 3.3.1. For any group action on a set X, the relation of “being in the same

orbit” is an equivalence relation on X.

Proof. Suppose a group G acts on a set X . First, every point lies in its own orbit: x ∈ Gx,

since G has an identity element and the identity must act trivially. Next we show symmetry:

if x ∈ Gy then x = gy for some g ∈ G. But then g−1x = g−1gy = 1y = y, so y ∈ Gx.

Finally we show transitivity: suppose x ∈ Gy and y ∈ Gz; then x = g1y and y = g2z for

some g1, g2 ∈ G. Then x = g1y = g1g2z, so x ∈ Gz.

We see from the proof of this proposition that the three axioms for groups—identity, in-

verse, and associativity—exactly mirror the three axioms for equivalence relations—reflexiv-

ity, symmetry, and transitivity. This reflects the fact that group actions are a fundamental

part of the nature and origin of groups.

One feature we have not yet seen is the idea of an orbit closure. When a finite group acts

on a topological space in which each individual point is a closed set, then every orbit is closed,

since every orbit is a finite set. But when an arbitrary group acts on a topological space, its

orbits need not be closed. For example, consider the group C∗ of nonzero complex numbers

with multiplication as the group operation. C∗ acts on C by complex multiplication. Since

C is a field, the orbit of any nonzero z ∈ C consists of all nonzero complex numbers. But the

set of all nonzero complex numbers is not a closed subset of C: its closure also includes zero.

This is perhaps the simplest example of a non-closed orbit; we will encounter many more

such examples in Geometric Complexity Theory, and the ones arising in complexity tend

not to be so simple. In fact, as we will see in Sections 3.4 and 3.5, the core of the geometric

approach to complexity theory lies in understanding the relationship between certain orbits

and their closures.

60

3.3.2 Equivalence of lower bounds and orbit closure containment

In this section we discuss how questions in algebraic complexity theory translate faithfully to

questions regarding orbits and their closures, that is, the questions from the two seemingly

different areas are equivalent. In the next section we discuss how this applies to questions

of Boolean complexity. We discuss the permanent versus determinant problem as a model

problem, though the treatment applies to many other problems.

Here is the high-level dictionary of the translation from classical complexity to orbit

closures. The dictionary will be explained in detail throughout the remainder of this section,

but we present it here for reference and to give its flavor.

Classical Complexity Geometric Complexity

Function f to be computed ↔ point in the space of functions
Equivalent functions f ∼ g ↔ points in the same orbit
Reduction between equivalent functions ↔ action of group element
Reduction between arbitrary functions ↔ action of limits of group elements
f ≤ g ↔ f lies in the orbit closure of g

Valiant’s work [269] suggests the permanent versus determinant problem as an algebraic

analog of P versus NP; we discuss the exact nature of this analogy in the next section, but

for now it suffices that this is a central open question in algebraic complexity. The permanent

versus determinant problem asks whether there is a map from n × n matrices X to m×m

matrices Y such that the entries of Y are constants or linear combinations of the entries of

X , making perm(X) = det(Y) and with m polynomially bounded in n. If this holds, we

say the permanent is a p-projection of the determinant. By completeness results of Valiant

[269] and Malod and Portier [191], the permanent versus determinant question is equivalent

to the question of whether VNP ⊆ VPws.

We will rephrase the permanent versus determinant question in terms of orbits of a

certain group action on a vector space, namely, the vector space of degree m homogeneous

polynomials in m2 variables. The function detm is a single point of this vector space.

Inconveniently, permn is not, since it has lower degree and fewer variables. To remedy this

problem we instead consider without loss of generality, as we’ll explain shortly, the “padded

permanent.”

61

Definition 3.3.2. (Padded2) Let f(X) be a homogeneous polynomial of degree n in the

variables X = (x1, . . . , xk). Then the m-padded version of f is f times a new variable to the

m−n power. In particular, the m-padded version of f is homogeneous of degree m, and has

the form zm−nf(X), where z is a new variable, independent from those in X . When m is

clear from context, we refer to the padded version of f , without specifying m.

If f is any polynomial of degree n, not necessarily homogeneous, then the m-padded

version of f is the sum of the m-padded version of the homogeneous components of f . That

is, if f = fn+ fn−1+ · · ·+ f0, where each fi is either zero or homogeneous of degree i, then

the m-padded version of f is zm−nfn + zm−(n−1)fn−1 + · · ·+ zmf0.

Lemma 3.3.3. Let f be any polynomial of degree n, and let g be a homogeneous polynomial

of degree m ≥ n. Then f is an affine projection of g if and only if the m-padded version of

f is a projection of g.

A polynomial f is an affine projection of g if f(X) = g(A(X)) where X = (x1, . . . , xk),

and the entries of A(X) are affine linear combinations of the entries of X , that is, A(X)j

is of the form cj +
∑

i cijxi. This is a natural generalization of the notion of projection

defined above. Note that if f and g are both homogeneous, as in the case of permanent and

determinant, then f is an affine projection of g if and only if f is a projection of g: any term

cj as above only contributes to terms in g(A(X)) of strictly lower degree than deg f , and

since f is homogeneous these terms must cancel, so we might as well have left them out in

the first place.

Proof of Lemma 3.3.3. Suppose f(X) = g(A(X)), where the entries of A(X) are affine linear

combinations of the variables X = (x1, . . . , xk). Let Ã(X) be the same as A(X), except every

constant term is multiplied by the new variable z. Then since g is homogeneous of degree

m, and the entries of Ã(X) are now homogeneous linear combinations of variables, g(Ã(X))

2. This definition is fairly obvious and not particularly deep. We nonetheless give a formal
definition because we use the term frequently and want the reader to have an easy reference for its
meaning. This term was introduced by Kadish and Landsberg [154]. Prior to their paper, the term
“blasted” was coming into use, especially during the Brown-ICERM Workshop on “Mathematical
Aspects of P vs. NP and its Variants,” August, 2011 [130]. When applied to the permanent,
“blasted” had a double-meaning: the one given to “padding” in the definition here, and an indica-
tion of the difficulty or frustration of working with the permanent, as in “those blasted meddling
kids!” Nonetheless, we prefer “padded” as it is more descriptive.

62

is homogeneous of degree m. It can then be verified that g(Ã(X)) = zm−nfn(X) + · · · +
zmf0(X), where fd(X) is the homogeneous component of f of degree d, by direct computation.

Conversely, if zm−nfn(X) + · · · + zmf0(X) is a projection of g, then substituting z = 1

shows that f(X) is an affine projection of g.

When discussing permanent versus determinant we use a specific convention for the

variable z used in the padding. There is nothing special in this choice of parameter—any

choice of padding parameter works for any function, as long as it is not one of the original

variables of the function—but this convention will simplify some of the ensuing discussion.

Let Y be an m×m matrix of variables, and let Y |n be the n× n upper-left sub-matrix (see

Figure 3.3). Then we take the padded permanent to be permn(Y |n) times the lower-right

variable ym,m to the m− n power. As ym,m is not in the upper-left submatrix Y |n, ym,m is

a valid choice for the padding parameter z.

ym,m

Y |n
Y

Is ym−n
m,m permn(Y |n) a projection of detm(Y)?

Figure 3.3: The padded permanent.

We denote the m2-dimensional vector space of m × m matrices by Mm(C), and we

denote the space of degree m homogeneous polynomials of m2 variables by Polym(Mm(C))

for mnemonic reasons, them2 variables corresponding to the entries ofm×mmatrices (in the

literature this space is often denoted Symm(Mm(C)∗) or Sm(Mm(C)∗), using notation that

is more standard from multilinear algebra and representation theory). Both the determinant

and the padded permanent are points of Polym(Mm(C)).

Moreover, by the above argument, the permanent is a p-projection of the determinant if

and only if there is a linear map A : Mm(C) →Mm(C) such that

ym−n
m,m permn(Y |n) = detm(A(Y)).

63

We denote the space of all linear maps Mm(C) → Mm(C) by End(Mm(C)), the endo-

morphisms of Mm(C). Although End(Mm(C)) is not a group, since it contains non-

invertible linear maps, it is still closed under composition of maps, and has an action on

Polym(Mm(C)); we have already been using this action implicitly: if A ∈ End(Mm(C)) and

f(X) ∈ Polym(Mm(C)) then (A · f)(X) = f(AT (X)). Again, although End is not a group,

the notion of orbit still makes sense, and we use the same notation as for group actions. Be

warned, however, that since End contains non-invertible elements, the End-orbits no longer

necessarily form a partition of the space. However, each End-orbit is a union of group orbits,

as we discuss below. The permanent is thus a p-projection of the determinant if and only

if the padded permanent lies in the endomorphism-orbit of the determinant, or in symbols:

ym−n
m,m permn(Y |n) ∈ End(Mm(C))·detm(Y). Since the endomorphism orbit, as with a group

orbit, is closed under multiplication by elements of End(Mm(C)), the padded permanent is

in the endomorphism orbit of determinant if and only if the entire endomorphism orbit of the

padded permanent is contained in that of the determinant. Thus the permanent versus de-

terminant question is exactly equivalent to this containment question about endomorphism

orbits.

Next we move from the endomorphism orbit to the orbit under an actual group, enabling

the use of group-theoretic techniques in the study of the permanent versus determinant

question. The same operation as above gives an action of the group GL(Mm(C))—all in-

vertible elements of End(Mm(C))—on Polym(Mm(C)). Recall that GL(Mm(C)) is dense in

End(Mm(C)): for any A ∈ End(Mm(C)) that is not invertible, there is a sequence {Ai}∞i=1

of invertible m2 × m2 matrices—elements of GL(Mm(C))—such that limi→∞Ai = A. As

a consequence, the group orbit GL(Mm(C)) · detm is a dense subset of the endomorphism

orbit End(Mm(C)) · detm. Understanding this group orbit is thus an important first step in

understanding the permanent versus determinant problem.

Finally, we come to the principal objects of study in Geometric Complexity Theory:

the closure of the orbit GL(Mm(C)) · detm in the usual topology on the vector space

Polym(Mm(C)). Following notation introduced by Landsberg [176, Chapter 13], we denote

this closure by

Detm := GL(Mm(C)) · detm = End(Mm(C)) · detm.

Since the group orbit is dense in the endomorphism orbit, the endomorphism orbit is con-

64

tained in Detm. The orbit closure Detm is in fact strictly larger than the endomorphism

orbit of detm—that is, the endomorphism orbit is not a closed subset of Polym(Mm(C))—

though at this point in the exposition it is probably not clear why. We discuss techniques

for understanding the boundary of Detm, the points in the orbit closure that are not in the

orbit, in Section 3.5.

If we denote Permn
m the orbit closure of the m-padded permanent of n × n matrices,

then one of the conjectures currently focused on in GCT is:

Conjecture 3.3.4 (Mulmuley and Sohoni [207]). Permn
m 6⊆ Detm when m is polynomially

bounded in n. In other words, the padded permanent is not the limit of a sequence of points

in the GL(Mm(C))-orbit of detm—that is, points linearly equivalent to detm—when m is

polynomial in n.

This is a strengthening of the original permanent versus determinant conjecture, which,

as we have shown above, was about the containment of endomorphism orbits, rather than

orbit closures. The notion of the padded permanent being in the orbit closure of deter-

minant, and hence being a limit of functions in the orbit of determinant, is a notion of

approximation; although this kind of approximation appears to be different from other kinds

studied in complexity theory, it nonetheless provides a complexity-theoretic interpretation

of Conjecture 3.3.4.

Every point in the orbit closure is, by definition, a limit of points in the orbit. There

is a well-defined sense of “how accurately” a sequence of points in the orbit approaches

its limit. In Section 3.5 we make this notion of accuracy precise, and show that if the

padded permanent lies in the orbit closure of the determinant, and is approached by its

limiting sequence at polynomial accuracy, then the permanent is actually a projection of a

polynomially larger determinant. In particular, showing that the permanent does not lie

in the “polynomial-accuracy” portion of the orbit closure Det is equivalent to the original

permanent versus determinant conjecture.

The main advantage of using the orbit closures instead of the endomorphism orbits is that

the orbit closures are, by construction, closed subsets of Polym(Mm(C)). In particular, they

are algebraic varieties, so they may be studied using the powerful techniques of algebraic

geometry and representation theory.

65

A similar situation has long been studied in the context of matrix multiplication. With-

out going into too much detail, the notion of “tensor rank”—within a constant factor of

the number of essential multiplications needed to compute matrix multiplication—roughly

corresponds to an orbit containment question, while the notion of “border rank” exactly cor-

responds to an orbit closure containment question. In the history of matrix multiplication

orbit closures, in the guise of border rank, have played an important role in both upper and

lower bounds (see the survey [175] and references therein). This suggests orbit closures and

the correspondent notion of approximation as useful, fundamental measures of complexity.

We now discuss how this construction completes the analogy we mentioned at the outset.

Any function that lies in the orbit of the determinant has the same complexity as the

determinant, since it only differs from the determinant by a linear change of variables.

By the argument earlier, we saw that a function f is a p-projection of the determinant if

and only if the padded version of f lies in the endomorphism orbit, or more generally the

“polynomial-accuracy” portion of the orbit closure, of the determinant. Thus we see that

the group action in GCT plays the role of reductions in classical complexity. The group

orbit of the determinant corresponds to functions equivalent to determinant—roughly, to

the VPws-complete functions. The endomorphism orbit corresponds to functions reducible

to determinant, as does the “polynomial-accuracy” portion of the orbit closure, and the full

orbit closure corresponds to functions approximable by the determinant.

3.3.3 Algebraic versus Boolean complexity

Much of the current work in GCT and most of the currently available expositions we are

aware of are about algebraic analogs of P versus NP, rather than P versus NP itself. In

this section we discuss the nature and utility of these analogies, as well as how GCT can

also approach the usual, Boolean P versus NP problem. One outgrowth of this discussion,

mentioned below, suggests why algebraic geometry may be a good toolkit to use in complexity

theory, both algebraic and Boolean.

General considerations

Broadly speaking, algebraic complexity is the study of the complexity of algorithmic problems

with the restriction that the algorithms treat algebraic objects as single, indivisible units.

66

For example, arithmetic circuits over a field F—such as the real numbers, complex numbers,

or a finite field—are only allowed to use the field operations: addition and multiplication.

They cannot “look inside” the field elements and extract their bits for free. Many algorithmic

problems of interest in computer science are algebraic in nature, and most natural approaches

to such problems are algebraic in nature. Finding lower bounds against algebraic algorithms

would tell us that most natural approaches to these problems will not work efficiently. It is

also hoped that lower bounds for algebraic algorithms or circuits would give us insight into

techniques that could be used for lower bounds in the usual Boolean model of computation.

There are also several more concrete connections between algebraic and Boolean com-

plexity; two of the most prominent connections are:

• Certain algebraic separations are consequences of Boolean ones, so the algebraic sepa-

rations are natural and necessary first targets. In particular, P/poly 6= NP/poly

implies PC 6= NPC in the BSS model [90, Corollary 4], and also, assuming the

Generalized Riemann Hypothesis, VPC 6= VNPC in Valiant’s theory [69, Chap-

ter 4]. Bürgisser [69] also showed that, without GRH, NC/poly 6= P/poly implies

VPC 6= VNPC.

• A celebrated result of Kabanets and Impagliazzo [153] shows that the following three

facts cannot be simultaneously true: arithmetic circuit identity testing is in P, NEXP

⊆ P/poly, and the permanent can be computed by polynomial-size arithmetic circuits.

Typically this is phrased more positively, in that derandomizing efficient algorithms for

arithmetic circuit identity testing implies the Boolean separation NEXP 6⊆ P/poly or

the algebraic separation that the permanent does not have polynomial-size arithmetic

circuits.

The permanent versus determinant problem, or equivalently theVNP versusVPws prob-

lem, is often suggested as an algebraic analog of P versus NP. This analogy is strengthened

by Malod and Portier’s [191] characterization of the determinant as complete for VPws—

polynomial-size, polynomial-degree, weakly-skew arithmetic circuits—and Venkateswaran’s

characterization of P by skew circuits [272].

However, the permanent of integer matrices is complete for the counting class #P, which

is at least as hard as the entire polynomial hierarchy [261], and hence is thought to be much

67

harder thanNP. Also, the determinant of integer matrices isGapL-complete [273, 93, 262]3,

hence lies in NC2, which is thought to be much smaller than all of P. In this sense,

the permanent versus determinant problem is closer to NC2 versus PH or GapL versus

GapP—a counting analog of NL versus NP—than P versus NP. Since GapL ⊆ FNC2 ⊆
FP ≤ NP ⊆ PH ≤ GapP, the permanent versus determinant conjecture is a natural and

necessary consequence of P 6= NP, and so may be a good stepping stone to P versus NP,

but does not seem to tightly capture P versus NP itself.

P versus NP in Geometric Complexity Theory

However, GCT may provide more than stepping stones and analogies in the move from

algebraic to Boolean complexity. First, instead of permanent and determinant, Mulmuley

and Sohoni [207] construct functions that more closely capture P and NP, in that separating

these functions (over finite fields) would show NP 6⊆ P/poly.

Second, the algebraic nature of algebraic geometry means that its techniques often trans-

fer from topological fields like R and C to arbitrary, and in particular finite, fields. Many

known results in algebraic complexity use heavily the topological nature of R and C, for

example, seminal lower bounds on sorting in the algebraic decision tree model [253, 48], and

lower bounds on approximating roots of polynomials in the BSS model [248, 197, 198, 199].

One distinguishing feature of GCT is that it is attempting to use more purely algebraic tech-

niques, which have a better chance of transferring to finite fields and hence to the Boolean

case.

Even though the techniques of algebraic geometry more easily transfer from C to finite

fields, the representation theory involved admittedly becomes more complicated and less well-

understood. In a still-unpublished manuscript, Mulmuley [205] shows which mathematical

properties of the algebraic varieties and which techniques should be useful over finite fields,

beyond just representation theory.

We now describe the functions Mulmuley and Sohoni construct [207] for P/poly andNP.

These functions are often left out of expositions of GCT not because they are particularly

3. The typical sources cited for this can be difficult to acquire. Other proofs of GapL-
completeness of the determinant appear in Bürgisser [69, Chapter 2] and Mahajan and Vinay
[189].

68

complicated, but because the permanent and determinant are more familiar, and the overall

structure of the program is the same whichever pair of functions is used, so long as the

functions have certain nice properties. However, to give a feel for how natural these functions

are, and to discuss how they might aid in moving from algebraic to Boolean complexity, we

describe them here.

For P/poly, consider a layered arithmetic circuit with n inputs and n levels, with n

gates on each level except the last, which has a single output gate. Each gate on one level

has every gate in the previous level as an input. The gates on the first level are the input

gates, with values given by the variables x1, . . . , xn. The function computed at any other

gate k is defined by fk :=
∑

x
(k)
i,j fifj , where the sum is over all pairs of gates (i, j) in the

level preceding the level of k, and each x
(k)
i,j is an independent variable. Let Hn(X) denote

the function computed by the output node, where X = {x1, . . . , xn} ∪ {x(k)i,j }i,j,k. We may

think of the variables x
(k)
i,j as weights on the wires of the circuit; by setting the weights

to appropriate constants we can control which circuit H is really computing. If (fn)
∞
n=1

is a family of functions computed by polynomial-size arithmetic circuits, then (fn) is a p-

projection of Hn, by setting the weights x
(k)
i,j of Hn appropriately. Thus the function family

(Hn) is complete for the class of polynomial-size arithmetic circuits over an arbitrary field,

including the Boolean field F2 in which case this class is exactly P/poly.

The function constructed by Mulmuley and Sohoni [207] captures NP in some ways

better than the permanent does, though it does not capture NP as exactly as Hn captures

P/poly. The input to this function will be two n× n matrices X0, X1. For a binary string

s of length n, let Xs denote the matrix whose i-th column is that of X0 if si = 0 and is

that of X1 if si = 1, for each 1 ≤ i ≤ n. Then Mulmuley and Sohoni suggest the study of

E(X) :=
∏

s∈{0,1}n det(Xs). Although this is an exponential product of determinants, and

so might seem closer to NEXP than NP, we discuss why this is a potentially good function

to capture NP.

The function E(X) shares many nice properties with the permanent and determinant—

such as characterization by symmetries (see Section 3.4)—but more closely capturesNP than

the permanent does. First, Gurvits [136, pp. 450–451] showed that, if X0 and X1 are integer

matrices, then testing whether E(X) is zero is NP-complete (Boolean NP), by a reduction

from the subset-sum problem. For the permanent, testing zero or nonzero is in P on positive

69

integer matrices; however, testing whether the permanent of an arbitrary integer matrix is

zero is not even known to be inNP. Although this may seem like a slight difference, positivity

often a very powerful restriction (see, e. g., [268, 135, 134], [130, Section 3] and references

therein). Second, over a finite field of order q, E(X)q is {0, 1}-valued, and computing

E(X)q is in NP. In contrast, over finite fields computing the permanent (or its q-th power,

to make it {0, 1}-valued) is complete for ModkP, which by Toda’s Theorem [261] is as hard

as the entire polynomial hierarchy. It is still an open question whether computing E(X)q

over Fq is NP-complete, but at least it is known to be in NP. In particular, if one could

show that it was not a p-projection of Hn, and hence not computable by polynomial-size

arithmetic circuits, this would show NP 6⊆ P/poly. No such statement is known to follow

from showing that the permanent over a finite field is not computable by polynomial-size

arithmetic circuits.

Despite not being NP-complete, computing E(X) is closely related to another problem

thought to be difficult, namely the problem of telling whether a system of polynomial equa-

tions has a common root. Even over F2 and when the equations all have degree at most

3, the problem is NP-complete by reduction from 3SAT. If we restrict to homogeneous

polynomials, the problem is not known to be NP-complete, but it would be very surprising

if the homogeneous case were in P. Mulmuley and Sohoni [207, p. 525] show that E(X) is

exactly the resultant of a system of homogeneous polynomial equations, so E(X) vanishes

if and only if the system of homogeneous equations has a solution. Hence, even over finite

fields where we do not know that E(X) is NP-complete, deciding the vanishing of E(X) is

as hard as solving systems of homogeneous polynomials, which is not expected to be in P.

3.4 The 10-foot view: characterization by symmetries

Up to this point, we could have used any pair of functions complete for two complexity

classes and asked about the inclusion relationship between their orbit closures. If that

were all there were to the GCT program, it would be little more than a restatement of

the original complexity questions in an algebraic setting. Before we get to the real meat

of the GCT program—the algebraic geometry and representation theory that really make

GCT a program, rather than just a restatement—we can highlight one more important

70

feature of GCT without having to wade through any deep mathematics: characterization by

symmetries.

Symmetry-characterization is a conjecturally crucial part of the GCT program. It is this

property that may enable us to better understand certain functions—like permanent and

determinant—and their orbit closures more than other ones of similar complexity. In partic-

ular, in Section 3.4.3, we show that if symmetry-characterization ends up playing as funda-

mental a role in GCT as it is conjectured to, it will automatically avoid the Razborov–Rudich

natural proofs barrier. Symmetry-characterization also has other complexity-theoretic con-

sequences that we discuss in the next few sections.

3.4.1 Background: stabilizers in group actions

Suppose G is a group acting on a set (graph, vector space, etc.) X (see Section 3.3.1). For

any point x ∈ X , its stabilizer or symmetry group (sometimes in the literature also isotropy

group) is {g ∈ G : gx = x}; this is often denoted StabG(x) or Stab(x) when G is clear from

context, or Gx. It is an easy exercise to see that this is a group—if you are not familiar with

this fact it is also a helpful and possibly illuminating exercise.

If G acts on a set X , we sometimes refer to X as a G-set. When X is a vector space and

G acts by linear transformations, we call X a (linear) representation of G. If X and Y are

both G-sets, then a map f : X → Y is called G-equivariant if f commutes with the action of

G; in other words, it doesn’t matter if we first act by G on X and then apply f , or first apply

f and then act by G on Y . In symbols, for each g ∈ G and each x ∈ X , f(g · x) = g · f(x),
where on the left hand side g · x is the action of G on X and on the right hand side g · f(x)
is the action of G on Y . Two G-sets are said to be equivalent or isomorphic as G-sets if

there is a G-equivariant isomorphism between X and Y . For example, if X and Y are sets,

this is just a G-equivariant bijection; if X and Y are vector spaces, this is a G-equivariant

bijective linear map, etc.

If X is a G-set and x ∈ X , then the orbit Gx ⊂ X is also a G-set, in fact, it is the

smallest G-subset of X containing x (or, if you like, the G-set “generated by” x).

If H is a subgroup of G, then the coset space of H in G is the set of cosets gH = {gh :

h ∈ H} for g ∈ G, and is denoted G/H := {gH : g ∈ G}. The coset space G/H has a

natural G-action on it, namely the action by left multiplication: g′ · gH = (g′g)H . Since the

71

trivial coset H is a point of G/H , and every coset is of the form gH for some g ∈ G, it is

clear that G/H consists of a single orbit under the natural action of G.

Since group actions are perhaps some of the most important aspects of groups, it should

not be surprising that one of the most important, if not the most important, elementary

theorems of group theory relates the orbits of a group action to its stabilizers.

Proposition 3.4.1 (Orbit–Stabilizer Theorem). Suppose ρ : G → Aut(X) is an action of

the group G on the set (graph, vector space, etc.) X, and let x ∈ X. Then the orbit Gx is

equivalent as a G-set to the coset space G/ StabG(x). In particular, |Gx|| StabG(x)| = |G|.

Another way to phrase the Orbit–Stabilizer Theorem is that every single-orbit G-set is

(equivalent to) a coset space. Since every G-set is partitioned into G-orbits, this says that

the possible actions of G are completely determined internally to G, by its subgroups and

their coset spaces. Or, perhaps more poetically but less accurately, the only group actions

are actions on themselves.

Proof. We claim that the G-equivalence between Gx and G/ StabG(x) is given by

gx 7→ g StabG(x)

First, we show that this map is well-defined. Suppose g1x = g2x for some g1, g2 ∈ G. Then

g−1
2 g1x = x, so g−1

2 g1 ∈ StabG(x). But then g−1
2 g1 Stab(x) = Stab(x), so g1 Stab(x) =

g2 Stab(x).

Next, we show that this map is G-equivariant. Let g′ ∈ G. Then g′(gx) = (g′g)x ↔
(g′g) Stab(x) = g′(g Stab(x)).

Finally, we show that the map is bijective. Surjectivity follows from the fact that the

map is G-equivariant and that both Gx and G/ Stab(x) consist of single G-orbits. To show

injectivity, suppose g1 Stab(x) = g2 Stab(x). Then g−1
2 g1 ∈ Stab(x), so g−1

2 g1x = x, hence

g1x = g2x.

There is also, as one might expect, a relationship between the stabilizer of a point x ∈ X

and the stabilizer of another point gx in its orbit:

Proposition 3.4.2 (Definition of orbit types). Let X be a G-set. Then StabG(gx) =

g StabG(x)g
−1.

72

If H and K are two subgroups of G, then G/H and G/K are equivalent as G-sets if

and only if H and K are conjugate within G. Conjugacy classes of subgroups may thus be

referred to as the “orbit types” of G.

Proof. The first statement follows from the observation that if s ∈ Stab(x), then gsg−1(gx) =

gs(g−1g)x = gsx = gx, where the final equality follows from the definition of Stab(x).

For the second statement, suppose that f : G/H → G/K is a G-equivalence. Then

f(H) = gK for some g ∈ G. Since the two cosets spaces consist of single orbits and f is

G-equivariant by assumption, the value of f(H) completely determines f , since f(gH) =

gf(H). Suppose a ∈ H . Then aH = H , so f(aH) = f(H) = gK. But also we must have

f(aH) = af(H) = agK. So we have agK = gK. Multiplying on the right by g−1, we get

agKg−1 = gKg−1. Since gKg−1 is a subgroup of G, this means that a ∈ gKg−1. Every

step in this chain of reasoning is reversible, so we get that H = gKg−1.

Conversely, if H = gKg−1, then similar reasoning to the above shows that defining

f(aH) = agK gives a well-defined G-equivalence between G/H and G/K.

3.4.2 Symmetry-characterization and self-reduction: the Flip Theorem

Characterization by symmetries

There are several possible definitions of symmetry-characterization, some of which have so

far proven more useful than others, but before we get to the possible definitions we motivate

them with the example of the determinant.

It follows from basic linear algebra that det(XT) = det(X) and det(AXB) = det(X)

whenever det(A) = 1/ det(B). Thus we refer to the transformations X 7→ XT and X 7→
AXB with det(A) = 1/ det(B) as symmetries of the determinant. It has also long been

known [114] that these are the only symmetries of the determinant, and moreover, the

determinant is the only function with these symmetries (up to scalar multiples, which is

unavoidable since α det(X) obviously has the same symmetries as det(X) for any α ∈ C\{0}).
What this means is that if f(X) is any other homogeneous polynomial of degree n in the

n2 variables of the matrix X = (xij)
n
i,j=1 such that f(XT) = f(X) and f(AXB) = f(X)

whenever det(A) = 1/ det(B), then f must be a scalar multiple of the determinant. In this

sense, the determinant is characterized by its symmetries.

73

In fact, the symmetry-characterization of the determinant is essentially equivalent to the

existence of the Gaussian elimination algorithm for computing the determinant. To illustrate

this we give the full proof:

Proposition 3.4.3 (Symmetry-characterization of the determinant). If f(X) is any degree

n homogeneous polynomial in the n2 variables of the matrix X = (xij) such that f(AXB) =

f(X) for all (A,B) such that det(A) = 1/ det(B), then f(X) = α det(X) for some nonzero

α ∈ C.

Note that we do not need the symmetry f(XT) = f(X) in the statement of the propo-

sition: it follows for free. In fact, our proof will show that this result holds over any alge-

braically closed field.

Proof by Gaussian elimination. Suppose f is as described in the statement of the proposi-

tion. Let α = f(I), I the n×n identity matrix. Note that, since f is homogeneous of degree

n, f(βI) = βnα, so that on scalar matrices βI, f already agrees with α det.

We will evaluate f at X = C for some matrix C of complex numbers by performing

Gaussian elimination on C. There are three types of steps in the Gaussian elimination

algorithm, each of which corresponds to an elementary matrix:

• Multiply the i-th row by a nonzero constant β. The corresponding elementary matrix

is Mi,β which is the identity matrix except that its i-th diagonal entry is replaced by

β.

• Swap rows i and j. The corresponding elementary (permutation) matrix is Pij , which

is the identity matrix except rows i and j have been swapped.

• Add β times row j to row i (j 6= i). The corresponding elementary matrix Aij,β =

I + βEij where Eij is the matrix with a 1 in the (i, j) position and zeroes everywhere

else.

Let C0 = C, and let Cs be C after the s-th step of Gaussian elimination. We will define a new

sequence of matrices C ′
s such that C ′

0 = C0 = C, f(C ′
s+1) = f(C ′

s), det(C
′
s+1) = det(C ′

s),

and the final step C ′
smax is a scalar matrix assuming C was invertible.

74

Before defining the sequence C ′
s, let us show how the result follows. Suppose C is in-

vertible. Then we have C ′
smax = βI for some β, so we have f(C ′

smax) = f(βI) = αβn =

α det(C ′
smax). But then from the equalities f(C ′

s+1) = f(C ′
s) and det(C ′

s+1) = det(C ′
s) it

follows by induction that

f(C) = f(C ′
0) = α det(C ′

0) = α det(C).

Finally, since f and det are polynomials, they are in particular continuous functions. The

invertible matrices are dense in the set of all matrices, and since the identity f(C) = α det(C)

holds for all invertible matrices, it follows by continuity that this identity holds for all

matrices.

To finish the proof, we define the sequence C ′
s and show that is has the desired properties.

Let C ′
0 = C0 = C.

• If Cs+1 = Mi,βCs, then let C ′
s+1 := Mi,βC

′
s(β

−1/nI). Note that det(β−1/nI) =

β−1 = 1/ det(Mi,β), so by assumption we have f(C ′
s+1) = f(Mi,βC

′
sβ

−1/nI) = f(C ′
s).

By the same reasoning, we have det(C ′
s+1) = det(C ′

s).

• If Cs+1 = PijCs, then let C ′
s+1 := PijC

′
sβI where det(βI) = −1 (we may take β = −1

if n is odd, and β =
√
−1 if n is even). As before, we have det(βI) = −1 = 1/ det(Pij),

so f(C ′
s+1) = f(C ′

s) and det(C ′
s+1) = det(C ′

s).

• If Cs+1 = Aij,βCs, then let C ′
s+1 := Aij,βC

′
s. Since det(Aij,β) = 1, we can multiply

by I on the right to see, as in the previous two cases, that f(C ′
s+1) = f(C ′

s) and

det(C ′
s+1) = det(C ′

s).

Finally, if C was invertible, then Csmax is the identity matrix. It is easily verified that

at each step Cs differs from C ′
s only by multiplication by a scalar matrix, so that C ′

smax is

scalar, as promised.

The only special facts we used about C were the argument by continuity—which can be

replaced by a degree argument over a general field F so long as |F| > n—and the use of

β−1/n and
√
−1. Hence, the proof goes through over any algebraically closed field.

Now we come to the definition of symmetry-characterization. Looking back at the de-

terminant, it may seem somewhat unfair or asymmetric that we only consider those f(X)

75

such that f(X) = f(XT) and f(AXB) = f(X) whenever det(A) = 1/ det(B)—that is,

we seem to be “cheating” by building the determinant into its own definition of symmetry-

characterization. Why aren’t we instead considering those f such that f(X) = f(XT) and

f(AXB) = f(X) whenever f(A) = 1/f(B)?

The answer comes from the viewpoint of group actions. Recall the action of GL(Mn(C))

on Polyn(Mn(C)) from Section 3.3.2. The symmetries of the determinant form a subgroup

of GL(Mn(C)); for example, the symmetry X 7→ XT is given by an n2 × n2 permutation

matrix that permutes the basis of Mn(C) by Eij 7→ Eji (where Eij is the matrix with a 1

in the (i, j) position and zeroes everywhere else). Similarly, for each pair of n× n invertible

matrices A and B, the map X 7→ AXB can be realized as an element of GL(Mn(C)), that

is, an n2 × n2 invertible matrix.

We denote the symmetry group of the determinant within GL(Mn(C)) by

StabGL(Mn(C))(detn) (see Section 3.4.1 for more on this notation). What we have really said

above is that if f is any other point in Polyn(Mn(C)) that is also fixed by every element

of StabGL(Mn(C))(detn), then f is a scalar multiple of detn. Since GL(Mn(C)) acts on

Polyn(Mn(C)) by linear transformations, this scalar multiple is the best we could hope

for. The fact that StabGL(Mn(C))(detn) involves the determinant in its description—since

it includes all maps X 7→ AXB such that det(A) = 1/ det(B)— is a property special to

the determinant, but is not inherent to the notion of symmetry-characterization that we are

interested in.

Definition 3.4.4 (Symmetry-characterization). A homogeneous polynomial f of degree d

on n variables is symmetry-characterized if it is the only such homogeneous polynomial that

is fixed by f ’s symmetries, up to scalar multiplication. In other words, if g ∈ Polyd(Cn) is

such that A · g = g for all A ∈ StabGL(Cn)(f), then g = αf for some scalar α.

For example, since the permanent and determinant are degree n on n2 variables, we work

in Polyn(Cn2) = Polyn(Mn(C)).

There is another possible definition of symmetry-characterization which is sometimes

confused for this one, and although the other possibility is natural, it is not what we are

interested in. This other possibility, which is weaker than the notion defined above, is to say

that a function f is symmetry-characterized if it is the only function with its stabilizer; in

other words, any function g that is not a scalar multiple of f must have Stab(g) 6= Stab(f).

76

In contrast, Definition 3.4.4 says that not only are there no other functions g with Stab(g) =

Stab(f), but there aren’t even other functions g with Stab(g) ⊇ Stab(f). This is a distinction

which, in specific cases seems to cause no trouble, but some conjectures regarding symmetry-

characterized functions may not apply to the weaker notion of symmetry-characterization

mentioned in this paragraph.

A function f that is symmetry-characterized also has the property that its orbit is

the unique orbit (as always, up to scalar multiplication) with its orbit type (see Proposi-

tion/Definition 3.4.2). Saying that a function f has the property that its orbit is the unique

orbit with its orbit type is again a different possible definition of symmetry-characterization.

However, it differs from Definition 3.4.4 in two respects. First, it has the same issue as the

possible alternative definition discussed above; in particular Definition 3.4.4 implies not only

that Gf is the unique orbit with its orbit type, but that no other orbit type is a supergroup

of the orbit type of f . Second, it is conceivable that Gf is the unique orbit of its type, but

that the orbit Gf contains more than one function that is fixed by StabG(f). Despite being

weaker than Definition 3.4.4, this consequence regarding orbit types may still be useful to

consider.

It is easy to generalize the notion of symmetry-characterization to any group action—

when the group action is not linear, we can avoid the caveats about scalar multiples—

including actions on spaces other than Polyd(Cn), such as the space of all polynomials of de-

gree ≤ d. In this thesis we will only have occasion to consider the linear notion of symmetry-

characterization, though we will occasionally use it within spaces other than Polyd(Cn).

The proof of the symmetry-characterization of the determinant is of a very special form.

To give the flavor of other symmetry-characterization results, we now discuss the symmetry-

characterization of the permanent and E(X) (from Section 3.3.3 and Mulmuley–Sohoni

[207]).

Proposition 3.4.5. The permanent of n × n matrices is symmetry-characterized over any

field F with |F| > n.

Proof. The symmetries of the permanent we need in this proof are:

1. perm(AXB) = perm(X) whenever A and B are both permutation matrices

77

2. perm(AXB) = perm(X) whenever A and B are diagonal matrices and the product

of the nonzero entries of A with the nonzero entries of B is 1. (Since A and B are

diagonal, this product happens to be equal to perm(AB) and det(AB).)

These transformations, together with perm(X) = perm(XT), in fact generate the full sym-

metry group of the permanent [192], but for this proof all we need to know is that the

above transformations are symmetries of the permanent. The remaining symmetries of the

permanent, including the transpose, will come for free.

Suppose f(X) is a homogeneous polynomial of degree n having the symmetries listed

above. LetMi,β be the diagonal matrix whose i-th diagonal entry is β and all other diagonal

entries are 1. Then f(Mi,βXMj,β−1) = f(X) for all i, j and all β 6= 0. Suppose a term

contains the variable xk,j ; consider the preceding identity for any i 6= k. This identity implies

that the term must also contain at least one entry from the i-th row. Since this is true for

every i 6= k, and the term already contains a variable from the k-th row, the term, and hence

every term, must contain at least one variable from each row. Since f is homogeneous of

degree n, every term contains of exactly one variable from each row. Similarly, every term

of f must involve exactly one entry from each column. That is, every monomial of f must

look like x1,π(1) . . . xn,π(n) for some permutation π. In particular, the monomials of f are a

subset of the monomials of the permanent.

If f is zero we are done, so we assume f is nonzero. Then f contains some nonzero term

αx1,π(1) . . . xn,π(n) for some permutation π. Let σ be any other permutation and let Pσ be

the corresponding permutation matrix. Then f(X) = f(XPσ) implies that f also contains

the monomial x1,σ(π(1)) . . . xn,σ(π(n)) with the same coefficient, α. Since this is true for every

permutation, every such monomial appears, and they all have the same coefficient α. Hence

f(X) = α perm(X).

Proposition 3.4.6 (Theorem 5.1 of Mulmuley [206]). The function E(X(0), X(1)) (see Sec-

tion 3.3.3) is symmetry-characterized within the space of homogeneous polynomials of degree

n2n divisible by det(X(0)) det(X(1)).

For symmetry-characterization here, the space of homogeneous polynomials of fixed de-

gree d ≥ 2n divisible by det(X(0)X(1)) is indeed a vector space: it consists of all functions

det(X(0)X(1))f(X) with deg f = d − 2n. The ambient group action we consider is the

78

natural action of StabGL(Cn×2n)(det(X
(0)X(1)))) on this space. This stabilizer is exactly

StabGL(Mn(C))(det(X
(0))) × StabGL(Mn(C))(det(X

(1))) ⋊ Z/2Z, where the Z/2Z acts by

swapping X(0) and X(1). (Because of the symmetries of E(X), we could have equally well

considered the space of homogeneous polynomials of degree n2n on n×2n variables divisible

by det(X(0)). However, then the ambient group, namely StabGL(Cn×2n)(det(X
(0))), would

not have been reductive, which would introduce additional complications in the ensuing

representation theory.)

The proof of symmetry-characterization of E(X) involves some basic algebraic geometry

that we do not want to go into here. A key ingredient is that E(X(0), X(1)) is symmetric

under E(AX(0), AX(1)) = E(X(0), X(1)), whenever det(A) = 1. Other symmetries of E(X)

include E(X(1), X(0)) = E(X(0), X(1)) and E(X(0)Pπ, X
(1)Pπ) = E(X(0), X(1)) for any

permutation matrix Pπ.

The Flip Theorem

Fortnow, Pavan, and Sengupta [110], building off of a learning algorithm of Bshouty et al.

[64] showed that if NP 6⊆ P/poly, then for every exponent k and every length n, there is a

set of at most poly(n) formulas {ϕ1, . . . , ϕpoly(n)} such that every circuit of size ≤ nk differs

from SAT on at least one of these formulas. In other words, for every small circuit C there is

some i such that either ϕi is satisfiable and C(ϕi) = 0, or ϕi is unsatisfiable and C(ϕi) = 1.

This set of formulas can be found in ZPPNP, which is the complexity of Bshouty et al.’s

learning algorithm.

Atserias [18] gave a similar result also based on Bshouty et al.’s learning algorithm:

Atserias removes the NP oracle from the complexity of constructing the set of formulas, but

at the cost that the algorithm to do the constructing now depends on the circuit C. More

precisely, if NP 6⊆ P/poly then for each L ∈ P/poly, there is a probabilistic polynomial-

time oracle algorithm A such that AL(0n) outputs a small set of formulas {ϕ1, . . . , ϕk} with

k ≤ poly(n) such that L differs from SAT on some ϕi.

Generally speaking, these results say that if NP 6⊆ P/poly, then this complexity sepa-

ration can be effectively witnessed. We refer to such results in general as “flip theorems:”

they say that if some function is hard—e. g., SAT does not have polynomial-size circuits—

79

then another function must be easy—e. g., a function that witnesses the hardness of SAT by

constructing counterexamples against small circuits.

We note that the non-computability of the halting problem furnishes another such flip

theorem: there is an algorithm D such that if M is any machine purporting to solve the

halting problem, then D(M) outputs the description of a machine M ′ for which M(M ′)

incorrectly computes whether or notM ′ halts. Note that the “effectiveness” of a flip theorem

is desirably of the same level as the complexity separation being witnessed: in the case of the

halting problem, showing that there is a set in CE that is not computable, the witnessing

procedure D is computable.

Nothing quite so strong is known for NP versus P/poly. In particular, although At-

serias’s algorithm runs in probabilistic polynomial time, and hence within FP/poly, the

algorithm depends on the language L ∈ P/poly being diagonalized against. In contrast,

Fortnow, Pavan, and Sengupta’s algorithm is independent of the language being diagonalized

against, but has the higher complexity ZPPNP.

In geometric complexity theory, we get the stronger result that the witnesses do not

depend on L and the algorithm constructing the witnesses has low complexity. For example,

recall Theorem 3.2.1, which we now give two proofs of:

Proof of Theorem 3.2.1 via downward self-reducibility. The downward self-reducibility of

the permanent follows from its Laplace expansion:

perm(X) =
n
∑

i=1

xn,i perm(X(n|i))

where by X(n|i) we mean the square (n − 1) × (n − 1) submatrix of X that results from

removing the n-th row and the i-th column of X . In particular, if C is an arithmetic circuit

computing permn(X), then by plugging in 1 for xn,n and 0 for all other xi,n and xn,i (i 6= n),

we get a circuit computing permn−1(X(n|n)). For any circuit C with n2 variables, call the

resulting circuit C|n−1.

Given a circuit C, it computes the permanent if and only if, C|1(X) = x1,1 and

C|k(X) =

k
∑

i=1

xk,iC|k−1(X) for all 2 ≤ k ≤ n.

80

By the Schwarz–Zippel Lemma [233, 280], these n identities may be tested by choosing

sufficiently many random matrices for X . These random matrices provide the set of coun-

terexamples promised in the theorem.

Proof of Theorem 3.2.1 via symmetry-characterization. By the symmetry-character-ization

of the permanent, an arithmetic circuit C computes the permanent if and only if C computes

a homogeneous degree n polynomial and C has the same symmetries as the permanent. These

two conditions can be tested by verifying the following circuit identities:

C(αX) = αnC(X)

C(Mi,αX) = αC(X)

C(X) = C(XT)

C(PπX) = C(X) for π = (12) and π = (12 · · ·n)

In the above identities, α is to be treated as a new variable,Mi,α is the identity matrix except

its (i, i) entry is replaced by α, and Pπ is a permutation matrix. The identities involving

Pπ need only be tested for permutations π from a generating set for Sn. As in the previous

proof, the random matrices used to verify these circuit identities serve as the set of universal

counterexamples.

The proof via symmetry-characterization has the advantage that it also works for the

function E(X) designed to capture the complexity class NP. In contrast, using, for example,

the downward self-reducibility of SAT, the best flip theorems that are known for NP are

the ones mentioned above due to Atserias [18] and Fortnow, Pavan, and Sengupta [110].

The only sense in which the Flip Theorem for E(X) may be weaker than these results is

that E(X) is not known to be NP-complete, so the Flip Theorem for E(X) does not follow

simply from the assumption that NP 6⊆ P/poly, but rather from the a priori slightly

stronger assumption that E(X) is not in algebraic P/poly.

Incidentally, the proof via symmetry-characterization also reduces the size of the set of

counterexamples—and the number of polynomial identity tests needed—from O(n) to O(1),

but we do not yet know of any immediately useful consequences of this reduction.

To get a flip theorem for E(X), one also needs the following two facts. First, testing if an

arithmetic circuit C computes a homogeneous function of degree n2n can be verified by the

81

circuit identity C(αX) = αn2
n
C(X), where α is a new variable. Note that α 7→ αn2

n
can

be computed by an arithmetic circuit of linear size by repeated squaring. Second, testing

if an arithmetic circuit C(X) computes a function that is divisible by det(Y), where Y is

any subset of the variables X , can also be verified by picking random values for Y such that

det(Y) = 0. If Y is an n × n matrix, this is easily achieved by picking completely random

values for the first n− 1 rows of Y—call these rows ~r1, . . . , ~rn−1—and then picking n addi-

tional random values a1, . . . , an−1 and making the last row of Y equal to
∑n−1

i=1 ai~ri. Since

this is no longer strictly an arithmetic circuit identity testing problem, a slightly stronger

derandomization assumption is needed in the flip theorem for E(X), but the randomized

result is the same as that for the permanent.

Both proofs of Theorem 3.2.1 only depend on the hard function being characterized by

some circuit identities, or slight generalizations of circuit identities in the case of E(X).

Mulmuley formalizes this notion in the following definition:

Definition 3.4.7 (Characterization by circuit identities, Definition 11.1 of Mulmuley [206]).

A family of polynomials (fn) is characterized by circuit identities if each fn is the only

nonzero polynomial over Q, up to scaling, that satisfies a poly(n) number of polynomial

identities with integral coefficients, each having a specification of poly(n) many bits and

containing O(1) terms. Each identity here is of the form g(f(X1), . . . , f(Xk)) = 0, where

g(u1, . . . , uk) is a polynomial computable by a constant-bit-size circuit over Z, and each Xi

can be computed from X by a Z-circuit of poly(n) bit-size.

If we only require that g be computable by poly(n)-bit-size Z-circuits, we say f is weakly

characterized by circuit identities.

Mulmuley calls this “characterization by symmetries,” but we reserve that term for Def-

inition 3.4.4, since that is more closely associated with actual symmetries, as opposed to

more general properties that can be characterized by circuit identities.

Under suitable conditions, such as those that hold for the determinant, permanent, and

E(X), symmetry-characterization in the sense of Definition 3.4.4 implies characterization by

circuit identities. Discussing these conditions in detail would take us too far afield into the

theory of algebraic groups, but we can at least mention two main ingredients: connected

algebraic subgroups of GLn, including the identity component of Stab(f), are generated by

82

at most n2 many one-parameter subgroups, and finite groups of order N are generated by at

most log2N elements, so as long as |G| ≤ 2poly(n), G is generated by poly(n) many elements.

Although characterization by circuit identities, and not necessarily symmetry-characteriz-

ation, is all that is needed for a flip theorem, it is not enough for other useful representation-

theoretic consequences It thus seems to us that symmetry-characterization is the more fun-

damental property for GCT.

3.4.3 Symmetry-characterization avoids the Razborov–Rudich barrier

Intuitively, the known barriers to complexity separations—relativization, algebraic relativiza-

tion, and Razborov–Rudich natural proofs (see Section 2.1.6)—all have a similar message:

any significant separation of complexity classes must really use properties of problems that

are very specific to those problems. These properties cannot relativize, even algebraically,

and they must either be non-constructive or not apply to very many functions. From the

intuitive point of view, it seems clear that any crucial use of symmetry-characterization will,

a priori, avoid these barriers.

For the Razborov–Rudich barrier, this intuition can be made precise: very few functions

are symmetry-characterized, so symmetry-characterization violates the largeness criterion.

We suspect that symmetry-characterization also violates the constructivity criterion, but we

leave that as an open question:

Open Question 3.4.8. Given a homogeneous degree d polynomial—for example, over a

finite field with the function given as a complete table, or over an arbitrary field as a list of

the coefficients attached to all monomials of degree d—what is the complexity of testing if

that function is symmetry-characterized?

Although it remains open whether there is a purely algebraic version of the Razborov–

Rudich barrier, we nonetheless present:

Proposition 3.4.9. Over C, the set of symmetry-characterized points in Polyd(Cn) has

measure 0 for d ≥ 2.

Proof. This follows almost immediately from Theorem A of Richardson [224], which says that

there is a subset S ⊆ Polyd(Cn) such that every point in S has the same orbit type (recall

83

Proposition/Definition 3.4.2 and the discussion after Definition 3.4.4) and the complement

of S has measure zero. Recall that the orbit of a symmetry-characterized point is the only

orbit of its orbit type, up to scaling. The dimension of a GL(Cn) orbit is at most n2, so the

dimension of an orbit and all its scalings together is at most n2 + 1. Thus, when d > 2, no

single orbit in the action of GL(Cn) on Polyd(Cn), together with its scalings, is large enough

for its complement to have measure zero, so no symmetry-characterized point belongs to

S.

The result of Richardson [224] also applies to the setting of E(X) namely, the action

of Stab(det(X(0)X(1))) on the space of degree n2n homogeneous polynomials divisible by

det(X(0)X(1)).

Over an arbitrary field—including finite fields, where the Razborov–Rudich natural proofs

barrier applies—we use the notion of characterization by circuit identities due to Mulmuley

[206, Definition 11.1]:

Proposition 3.4.10 (Mulmuley [206]). The number of functions on poly(n) variables over

a field F, weakly characterized by circuit identities (see Definition 3.4.7) is at most 2poly(n).

Proof. This result is, in some sense, built into Mulmuley’s definition of characterization by

circuit identities. Definition 3.4.7 bounds the size of the circuit identities in terms of bit-

length by poly(n), so there are only 2poly(n) possibilities for the circuit identities. (Note,

however, that not all sets of identities uniquely specify a single function.) Hence there are

at most this many functions characterized by circuit identities.

3.4.4 An algorithmic consequence of symmetry-characterization

Agrawal and Saxena [7] showed that testing whether two homogeneous polynomials lie in

the same GL-orbit is as hard as graph isomorphism; combined with a result of Kayal and

Saxena [161], this problem is also as hard as factoring integers. In contrast to this general

situation, using the symmetry-characterization of the permanent and determinant, Kayal

[159] showed that testing whether a function lies in the orbit of determinant or in the orbit

of permanent can be done in probabilistic polynomial time.

The basic idea is as follows; we give it in more detail in Section 4.6. Given a homogeneous

polynomial f of degree n on n2 variables, compute its symmetry group StabGL(Mn(C))(f).

84

By symmetry-characterization, f lies in the GL(Mn(C)) orbit of detn if and only if Stab(f)

is conjugate to Stab(detn). Then Kayal uses properties specific to the stabilizers of the

permanent and determinant to complete this final step.

Computing the symmetry group and testing whether two symmetry groups are conjugate

are a priori hard computational problems in algebraic geometry. However, by using the

theory of Lie algebras these problems may be reduced to simpler, though still nontrivial,

problems in linear algebra. In Chapter 4 we generalize Kayal’s result by tackling the problem

of conjugacy of Lie algebras of subgroups of GL directly. We show that in general this

problem is as hard as graph isomorphism, but that for a fairly wide range of cases, including

that of the Lie algebra of Stab(detn), the problem can be solved in polynomial time.

Although algorithmically testing if a point lies in the orbit of determinant and permanent

does not lead immediately to any lower bounds, Kayal [159, Section 5.2] points out an

interesting connection between affine-invariant properties of polynomials and lower bounds.

Finally, we mention that algorithmically determining if a point lies in the orbit of deter-

minant and permanent can be seen as a first step towards Mulmuley’s conjecture that it can

be determined in poly(n,m) time whether the padded permanent of an n× n matrix lies in

the orbit closure of the m×m determinant.

3.5 The view from the ground

Although understanding the GL(Mn(C))-orbit of the permanent and determinant is an im-

portant first step, the objects we are really interested in are the endomorphism orbits and

the orbit closures. Recall that in order to place a smaller permanent permn into the same

space as a larger determinant detm, we had to multiply the permanent by a trivial factor

to get the “padded permanent” zm−n permn. However, the padded permanent does not lie

in the GL-orbit of the determinant: the determinant is an irreducible polynomial—it can-

not be factored as the product of two non-constant polynomials—and the property of being

irreducible is preserved by the action of GL. In contrast, the padded permanent is easily

seen to be the product of zm−n and permn, hence it does not lie in the GL-orbit of the

determinant. This suggests a strong need for understanding the endomorphism orbits and

the orbit closures.

In this section we will discuss an elementary approach to understanding orbit closures.

85

3.5.1 Using the zeroes of a function to understand its orbit closure

Suppose we want to understand the orbit closure of the determinant (or the permanent,

E(X), matrix multiplication, etc.—almost nothing we say in this section will be specific

to the determinant). A first step is to understand its orbit; representation theory directly

suggests a method to understand the orbit. The crucial second step is to understand the

boundary of the orbit closure: those functions f that are the limit of functions equivalent to

the determinant, but such that f is not itself equivalent to the determinant. In this section,

our goal is to show:

understanding the boundary of the orbit closure of a function is essentially equiv-

alent to understanding the linear subspaces contained in the set of zeroes of that

function.

In particular, until recently almost all the known lower bounds [274, 201, 74, 72, 200]

on permanent versus determinant were essentially achieved by studying the zero set of the

determinant and permanent4, which is a subset of Mn(C). In contrast, in GCT we are

studying the orbit closures of these functions, which are subsets of the much larger space

Polyn(Mn(C)). But the message of this section is that there are further properties of the

zero loci of these functions—again, living in the much smaller space—which can give us a

wealth of information about the much higher-dimensional orbit closures.

Since we will be referring so frequently to the orbit and orbit closure of det here, we give

them shorter names: O = GL(Mn(C)) · detn for the orbit, and O for the orbit closure.

We also introduce here the projective point of view. We saw that the symmetry-

characterization of the determinant is only up to a constant scalar multiple, since the action of

GL(Mn(C)) on Polyn(Mn(C)) is linear. Most interesting properties of homogeneous polyno-

mials are preserved under (non-zero) scalar multiplication—their zero sets, their complexity,

4. We are only aware of one exception, namely Babai and Seress [36] proved a
√
2n− 6

√
n lower

bound by purely combinatorial methods. Around the same time, von zur Gathen had achieved
1.06n− 1 by geometric methods, and then Cai achieved the then-best bound of

√
2n by geometric

methods. Meshulam achieved the same bound as Cai by considering subspaces of matrices all of
which have rank at least k; in other words, (affine) linear subspaces of the complement of the zero
locus of k×k minors. Such zero loci are called determinantal varieties. Although this is not strictly
speaking the zero locus of the determinant, it has a distinctly similar geometric flavor.

86

etc. In some sense we only care about polynomials up to scalar multiplication. We refer to

this as the “projective” viewpoint.

Suppose f ∈ O. Then by definition there is a sequence of points fk ∈ O such that

limk→∞ fk = f . Since O is the orbit of the determinant, there must be a correspond-

ing sequence of elements Ak ∈ GL(Mn(C)) such that fk = Ak · det (recall the action of

GL(Mn(C)) on Polyn(Mn(C)) from Section 3.3). It is not hard to imagine that we may

replace the sequence Ak (k ∈ N) with a continuous family At ∈ GL(Mn(C)) (t ∈ C\{0})
such that limt→0At · det = f . Note that now we take the limit as t → 0 instead of t → ∞;

this is achieved simply by replacing t with 1/t. We would like to expand the entries of At

as Taylor series in t.

A classical result from algebraic geometry5 says that we may do much more: we may

take such a family At where the entries of At are polynomials in t. (We need to allow that

At /∈ GL(Mn(C)) for finitely many values of t, but this does not affect taking the limit as

t→ 0.) So we may write At = A(0) + tA(1) + · · ·+ tdA(d) with A(0) 6= 0, where each A(i) is

a linear map A(i) : Mn(C) →Mn(C).

We now want to expand ft(X) = det(At(X)) in terms of t. We may write ft(X) =

det(A(0)(X)) + tf (1)(X) + · · · + tDf (D)(X), where D may be as large as nd, since the

determinant has degree n. If det(A(0)(X)) 6= 0, then f(X) = limt→0 ft(X) = det(A(0)(X))

lies in the endomorphism orbit of determinant.

If det(A(0)(X)) = 0, then f does not lie in the endomorphism orbit. It is tempting to

think that in this situation f must be equal to zero, since we now have f = limt→0 t(f
(1)(X)+

tf (2)(X)+ · · ·+ tD−1f (D)(X)). However, for any fixed t, we may divide this expression by t

to instead get f (1)(X)+ tf (2)(X)+ · · ·+ tD−1f (D)(X), and we get a projectively equivalent

function. Thus we get a point f that is (projectively) in the orbit of determinant but not in

its endomorphism orbit.

Before proceeding further, we discuss one of the few known examples of such functions,

due to Landsberg, Manivel, and Ressayre [177]:

Proposition 3.5.1 (Proposition 3.5.1 of Landsberg, Manivel, and Ressayre [177]). Let

A(X) = 1
2(X − XT) and S(X) = 1

2(X + XT) be the antisymmetric and symmetric parts,

5. This is essentially part of the proof that the Zariski-closure of a Zariski-open set is the same
as its closure in the usual complex topology. See, for example, Theorem 2.33 of Mumford [208].

87

respectively, of the variable matrix X. Let Pf denote the Pfaffian of a matrix, and let Pfi(Y)

denote the Pfaffian of the matrix Y after removing the i-th row and column of Y . Then for

n odd, the function

PΛ(X) :=

n
∑

i,j=1

S(X)i,j Pfi(A(X)) Pfj(A(X))

lies in the orbit closure of detn(X), but not in its endomorphism orbit.

The function PΛ above is the projective limit limt→0 detn(At(X)) for At(X) = A(X) +

tS(X), where A and S are as defined in the proposition. In fact, it is exactly the limit as

t goes to 0 of 1
t detn(A(X) + tS(X)). Showing that this limit yields the expression in the

proposition is an exercise in derivatives of the determinant, specifically the Taylor series of in

t of det(At(X)), and the relationship between the determinant and the Pfaffian; this exercise

may also help give a better feel for what it means for a function to lie in the orbit closure of

determinant. Note that the constant term vanishes: det(A(X)) = 0 since the determinant

of an odd-dimensional antisymmetric matrix is always zero.

Here we see that the analogy put forth in Section 3.3.2 breaks down somewhat, though

we still believe the large-scale picture suggested by the analogy is accurate. The analogy

would suggest that, since PΛ lies in the boundary of the orbit closure of determinant, but

not in its orbit, that PΛ should have strictly lower complexity than the determinant. But

the next proposition suggests that their complexities are essentially the same.

This crack in the analogy was to be expected, however: Detn only deals with a single

determinant, whereas the notion of reduction used in complexity uses heavily the asymptotics

associated with the family (detn)
∞
n=1. The reductions in this next proposition reduce detn

to PΛ on inputs essentially twice as large; the fact that PΛ is not in the orbit of determinant

suggests that such a reduction is not possible without blowing up the size of the input by

a constant factor bounded away from 1. Also, here we are not using any of the complexity

aspects afforded by padding.

Proposition 3.5.2. Over any field, the function det(X)2 is a p-projection of PΛ. In the

Boolean model, the determinant of an integer matrix reduces to PΛ in DLOGTIME-uniform

TC0.

88

The exact weakness of the reduction used here is not critical, but for the statement to be

nontrivial the reduction should be significantly weaker than the determinant and PΛ. Since

the determinant is NL-hard—and so is PΛ, by the proposition—L reductions would suffice

for a nontrivial result. Note that DLOGTIME-uniform TC0 is contained in uniform NC1

which is contained in L.

We leave the following as an open question:

Open Question 3.5.3. Is the determinant a p-projection of PΛ?

Proof of Proposition 3.5.2. For the first claim, let X be an n× n matrix, and define

M(X) =









1

0 X

−XT 0









.

We claim that det(X)2 = PΛ(M(X)). The symmetric and antisymmetric part ofM(X) are:

S(M(X)) =
1

2
(M(X) +M(X)T) =









1

0 0

0 0









A(M(X)) =
1

2
(M(X)−M(X)T) =









0

0 X

−XT 0









.

Thus

PΛ(M(X)) =
∑

i,j

S(M(X))ij Pfi(A(M(X))) Pfj(A(M(X)))

= 1Pf1(A(M(X))) Pf1(A(M(X)))

=

(

Pf

(

0 X

−XT 0

))2

=
(

(−1)n(n−1)/2 det(X)
)2

= det(X)2

89

The penultimate equality is a standard relationship between the Pfaffian and the determi-

nant.

For the second claim, note that over integer inputs, the map X 7→ M(X) is a reduction

from det(X)2 to PΛ and each bit ofM(X) can clearly be computed fromX inDLOGTIME-

uniform AC0. All that remains to reduce det to PΛ over the integers is to compute integer

square roots. Hesse, Allender, and Barrington showed that computing integer roots can be

done in DLOGTIME-uniform TC0 [139, Corollary 6.5].

For n odd, the space of antisymmetric matrices is a large (in fact, maximal) linear

subspace of Mn(C) on which the determinant vanishes. Landsberg, Manivel, and Ressayre’s

example proceeds by taking this linear subspace of the zeroes of the determinant, and then

picking a way of approaching this subspace, namely A(X)+ tS(X) as t→ 0. The discussion

preceding Proposition 3.5.1 shows that every point in the orbit closure of determinant either

lies in the endomorphism orbit of determinant, or it arises by a similar construction: picking

a linear subspace of Mn(C) contained in the zeroes of determinant and picking a way of

approaching that subspace.

Note that, although every point in the orbit closure of determinant arises this way, the

correspondence between subspaces of the zeroes of determinant and points in the orbit closure

is most likely many-to-many.

3.5.2 The relationship between the Mulmuley–Sohoni Conjecture and

permanent versus determinant

In this section we use the ideas developed in the previous section to show that the Mulmuley–

Sohoni Conjecture 3.3.4 is actually much closer to the original permanent versus determinant

conjecture than it may at first appear. The main result is Proposition 3.5.4, which to our

knowledge is new.

In approaching a subspace of the zeroes of the determinant, there are two parame-

ters of interest: the order of vanishing—that is, the smallest v such that det(A(v)(X))

is not identically zero—and the order of approximation—that is, the largest D such that

A(D) : Mn(C) →Mn(C) is not the zero map.

90

The order of vanishing is a notion of how quickly a sequence approaches its limit. If At

is a sequence of invertible linear maps Mn(C) → Mn(C), then f = limt→0 det(At(X)) is in

the endomorphism orbit if and only if the order of vanishing is 0. Moreover, if the order

of vanishing is v, then the corresponding point in the orbit closure is determined entirely

by A(0), A(1), . . . , A(v), but not the higher-order terms. That is, two sequence At and A′
t

yield the same point in the orbit closure if they have the same order of vanishing v and their

expansions agree up to the v-th term. However, the higher-order terms may nonetheless be

necessary to ensure that At is invertible for all t (except possibly finitely many). The number

of higher-order terms needed is captured by the other parameter, the order of approximation.

The order of approximation is the notion of “how accurately” a sequence approaches the

point in the boundary of the orbit closure, mentioned in Section 3.3.2, or how much accuracy

is needed. In the context of matrix multiplication, Bini [53, Corollary 4.1] showed that if a

sequence of algorithms approximating matrix multiplication uses k essential multiplications

and approaches matrix multiplication with order of approximation d/3 then n × n matrix

multiplication can be computed exactly with (1 + d)k essential multiplications. We prove a

similar result for the determinant. This result brings the Mulmuley–Sohoni Conjecture 3.3.4

much closer to the original permanent versus determinant conjecture than had previously

been known:

Proposition 3.5.4. The permanent is a p-projection of the determinant if and only if the

padded n × n permanent lies in the orbit closure of detpoly(n) with order of approximation

poly(n). This holds over any infinite field.

Before giving the proof, we need an auxiliary definition for the key lemma.

Definition 3.5.5. A family of functions (fn(X)) is linearly closed if any linear combination
∑n

i=1 λifni(X
(i)) is a projection of some fm with m ≤ poly(n,maxi ni). Here the X(i)

represent independent sets of variables and the λi are constants.

Lemma 3.5.6. Suppose (fn) is a linearly closed family of polynomials; let p be the polynomial

bound in the definition of linear closure for (fn).

If g lies in the orbit closure of fn, deg fn = d, and g can be approximated by a sequence

g(X) = limt→0 fn(At(X)) with order of approximation D, then g is a projection of fp(Dd,n)

so long as the ground field F has size strictly greater than Dd.

91

The proof applies Bini’s use of interpolation to any linearly closed family instead of to

tensor rank. Tensor rank is not quite linearly closed in the above sense, but see the discussion

following the proof.

Proof. We have that g(X) + tet(X) = fn(At(X)) where At(X) = A(0)(X) + tA(1)(X)

+ · · ·+ tDA(D)(X), and et(X) is a polynomial in t and the entries of X of degree at most

Dd− 1. Let α1, α2, . . . , αDd+1 be distinct elements of F. Then the system















1 1 · · · 1

α1 α2 . . . αDd+1
...

...
. . .

...

αDd
1 αDd

2 . . . αDd
Dd+1





























y1

y2
...

ynd















=















1

0
...

0















has a solution yi = βi in F, since the determinant of the matrix is the classic Vandermonde

determinant, which is equal to
∏

i<j(αi−αj). By evaluating both sides of g(X)+ tet(X) =

f(At(X)) at t = αi for each i = 1, . . . , Dd and summing with weights βi, we then get

Dd
∑

i=1

βig(X) +

Dd
∑

i=1

βiαieαi(X) =

Dd
∑

i=1

βifn(Aαi(X))

g(X) + 0 =

Dd
∑

i=1

βifn(Aαi(X)).

The right hand side is a projection of
∑Dd

i=1 βifn(X
(i)). Since f is linearly closed, this

function is in turn a projection of fp(Dd,n).

Proof of Proposition 3.5.4. This theorem in fact holds for any function family in place of

the permanent. Malod and Portier showed that the determinant is linearly closed [191,

Proposition 7]. Apply Lemma 3.5.6 to fn = detn. Then we have d = deg detn = n. By

hypothesis, the order of approximation D is also polynomial in n; then the theorem follows

directly from the lemma.

We can generalize the notion of linearly closed families to families of sets of functions,

rather than just families of functions.

92

Definition 3.5.7. Let Fn be a set of functions for each n. The family (Fn)
∞
n=1 is linearly

closed if any linear combination
∑n

i=1 λifni with fni ∈ Fni is a projection of some fm ∈ Fm

with m ≤ poly(n,maxi ni).

It is clear that if we let Fn be the set of bilinear functions on n variables with tensor

rank at most n, then Fn is linearly closed in this generalized sense. It is not difficult to

see that Lemma 3.5.6 also applies to this generalized notion of linear closure. Hence, with

this definition, Lemma 3.5.6 shows that Bini’s technique actually applies in a strictly more

general setting that includes both Bini’s original result on matrix multiplication and our

result on permanent versus determinant.

In the case of matrix multiplication, it is known that the exponent of matrix multiplication

can be defined either as the rate of polynomial growth of the tensor rank of n × n matrix

multiplication or, equivalently, by using border rank. One might hope that similar techniques

could be used to show that the Mulmuley–Sohoni Conjecture 3.3.4 is exactly equivalent to

the permanent versus determinant conjecture. In the case of matrix multiplication the result

on border rank uses the tensor power trick. Unfortunately, because there is as yet no analog

to the tensor power trick for the permanent and determinant, Proposition 3.5.4 is the best

we have been able to prove.

93

CHAPTER 4

MATRIX ISOMORPHISM OF MATRIX LIE ALGEBRAS

This chapter is based on the author’s conference paper [129]. The following are notable

additions that did not appear there: in Section 4.6 we show how our results have implica-

tions for linear equivalence to matrix multiplication and iterated matrix multiplication,

in addition to determinant (the latter already being in [129]); in Section 4.8 we show that

twisted code equivalence Karp-reduces to graph isomorphism, which we had pre-

viously speculated [129]; in Section 4.7 we show how our results resolve the complexity of

(abstract) Lie algebra isomorphism for a certain class of Lie algebras, as well as dis-

cussing the relationship between Lie algebra isomorphism and matrix isomorphism

of matrix Lie algebras more generally; in Section 4.9.1 we discuss the issues involved

and ideas for extending our results to other fields; and finally, in Section 4.9.2, we discuss

connections between algorithmic problems on Lie algebras and on finite groups.

4.1 Introduction

A matrix Lie algebra over a field F is a set of n × n matrices closed under the following

operations: multiplication by scalars from F, matrix addition, and a multiplication-like

operation denoted [A,B] := AB − BA. Lie algebras are an important tool in areas as

diverse as differential equations [213, 252], particle physics [122], group theory [116, 77, 214],

and the Geometric Complexity Theory program [207].

In complexity theory, Kayal [159] has recently used Lie algebras in the so-called affine

equivalence problem, which arises in many areas of complexity: factoring integers, permanent

versus determinant, matrix multiplication, lower bounds for depth-three circuits, and several

more (see [159, §1.1]). Kayal essentially used matrix isomorphism of Lie algebras to

give a randomized polynomial-time algorithm to decide when a function can be gotten from

the determinant by an invertible linear change of variables. This is the affine equivalence

problem for the determinant.

94

The following are examples of Lie algebras, which should help give their flavor, and intro-

duces some of those Lie algebras on which we prove results, namely abelian, diagonalizable,

and (semi-)simple (see Section 2.2.4 for definitions):

1. The collection of all n× n matrices.

2. The collection of all diagonal n× n matrices is a Lie algebra of dimension n. Any two

diagonal matrices D1, D2 commute. Since D1D2 − D2D1 = 0 this is a Lie algebra.

Any Lie algebra in which all matrices commute is called abelian.

3. In fact, any collection of diagonal matrices that is closed under taking linear combi-

nations is a Lie algebra, for the same reason as above. Furthermore, if D is such a Lie

algebra, then ADA−1 is as well, since conjugating by A preserves the fact that all the

matrices in D commute. Any Lie algebra conjugate to a set of diagonal matrices is

called diagonalizable.

4. The collection of all n × n matrices with trace zero. Since tr(AB − BA) = 0 for any

A,B, this is also a Lie algebra. This is an example of a simple Lie algebra.

5. The collection of all 2n × 2n matrices of the form

(

C 0

0 D

)

where C,D are n × n

matrices and trC + trD = 0.

Two matrix Lie algebra L1,L2 are matrix isomorphic if there is an invertible matrix A

such that L1 = AL2A
−1. Although it was not phrased this way, a randomized reduction from

affine equivalence for the determinant to matrix isomorphism of Lie algebras

that are abstractly isomorphic to example (5) is implicit in Kayal [159]. However, where he

uses properties very specific to the Lie algebras associated to permanent and determinant

that can be computed using randomization, and does not use the full strength of matrix

isomorphism, we are able to instead use a deterministic approach to the more general

problem of matrix isomorphism of Lie algebras.

4.1.1 Results

We show that certain cases of matrix isomorphism of Lie algebras are solvable in

polynomial time. We also show that extending these cases is difficult, as such an extension is

95

equivalent to graph isomorphism in one case and at least as hard as graph isomorphism

in the other case. One of these cases is strong enough to mostly derandomize Kayal’s result

[159] on affine equivalence for the determinant (see Section 4.6 for details).

Our results hold in a computational model with field operations at unit cost. Some of

our algorithms and reductions also use an oracle for factoring single-variable polynomials,

and these are referred to as f-algorithms and f-reductions. See Section 4.1.2 for details, as

well as the implications of f-algorithms for usual algorithms.

For simplicity we state all our results over algebraically closed fields of characteristic zero,

though many of our results may extend to finite fields of sufficiently large characteristic under

additional natural assumptions; see Section 4.9.1 for an outline of these extensions.

We now give the formal definition of matrix isomorphism of Lie algebras. Since

Lie algebras are closed under taking linear combinations, we can give them as input to

algorithms by providing a linear basis (see Section 4.3 for more details).

Problem: Matrix isomorphism of matrix Lie algebras (MatIsoLie)

Input: Two Lie algebras L1 and L2 of n×n matrices, given by basis elements.

Output: An invertible n × n matrix A such that AL1A
−1 = L2, if such A

exists, otherwise “the Lie algebras are not matrix isomorphic.”

Our main result is an equivalence between matrix isomorphism of semisimple Lie

algebras and graph isomorphism, which also yields an efficient algorithm for certain

cases of matrix isomorphism of semisimple Lie algebras because of the structure of

the reduction. In characteristic zero, a Lie algebra is semisimple if and only if it is a direct

sum of simple Lie algebras. Simple Lie algebras are one of the two main building blocks of all

Lie algebras, and are analogous to simple groups. Example (4) above is a simple Lie algebra;

see Section 2.2.4 for the full definition, and the discussion leading up to Remark 2.2.7 for

what we mean by “building blocks.”

Theorem 4.4.1. Over algebraically closed fields of characteristic zero, graph isomor-

phism ≤m semisimple MatIsoLie ≤f
m graph isomorphism. In particular, the two

problems are f-Karp-equivalent.

96

Theorem 4.4.7. Over algebraically closed fields of characteristic zero, semisimple MatI-

soLie of n× n matrices can be solved by a poly(n)-time f-algorithm1 when the Lie algebras

have only O(logn) simple direct summands.

Despite the O(logn) restriction, Theorem 4.4.7 is already strong enough to mostly de-

randomize Kayal’s result (Corollary 4.6.4 below). Also, note that even a single simple Lie

algebra can have unbounded dimension, as in example (4), let alone a semisimple one with

O(logn) simple summands. Theorem 4.4.8 gives another class on which MatIsoLie is

solvable in polynomial time.

Abelian Lie algebras are the remaining building blocks of all Lie algebras, together with

the simple Lie algebras. Recall the definitions of abelian and diagonalizable from examples

(2) and (3) above, respectively. Abelian Lie algebras are considered fairly trivial from the

Lie-theoretic perspective, so our next observation, that matrix isomorphism of abelian

diagonalizable Lie algebras is equivalent to linear code equivalence, may be

somewhat surprising at first sight.

A d-dimensional linear code of length n over a field F is a d-dimensional subspace of

Fn. Linear codes are represented algorithmically by giving bases for them as subspaces.

The symmetric group Sn acts on Fn by permutation of coordinates: for π ∈ Sn and ~α =

(α1, . . . , αn) ∈ Fn, π · ~α = (απ(1), . . . , απ(n)). Sn then acts on subspaces V ⊆ Fn by

π · V = {π · v : v ∈ V }. The linear code equivalence problem is: given two linear codes

C1, C2, determine whether there is a permutation π ∈ Sn such that π · C1 = C2.

Proposition 4.2.1. Over any field, linear code equivalence ≤m abelian diagonal-

izable MatIsoLie ≤f
m linear code equivalence. Lie algebras of n × n matrices of

dimension d are reduced to d-dimensional codes of length n, and vice versa. In particular,

graph isomorphism ≤m abelian diagonalizable MatIsoLie.

For codes over F2, linear code equivalence was known to be at least as hard as

graph isomorphism [216]; we extend their proof to show that linear code equivalence

over any field is at least as hard as graph isomorphism. Combining this proposition with

an algorithm of Babai [27, Theorem 7.1], we get the following algorithmic corollary:

1. See Section 4.1.2.

97

Corollary 4.2.2. Over any field, abelian diagonalizable MatIsoLie of n×n matrices

can be solved by a poly(n)-time f-algorithm when the Lie algebras have dimension O(1).

We also combine the abelian diagonalizable and semisimple cases together, to show results

on MatIsoLie when the Lie algebras are the direct sum of an abelian diagonalizable Lie

algebra and a semisimple one:

Corollary 4.5.2. MatIsoLie of n × n matrices can be determined in poly(n) time when

the Lie algebras are a direct sum of an O(1)-dimensional abelian diagonalizable Lie algebra

and a semisimple Lie algebra with O(logn) simple direct summands.

Since abelian is a special case of abelian-plus-semisimple, this more general case is at

least as hard as linear code equivalence, and hence graph isomorphism, when we

drop the quantitative restrictions of the above theorem.

Finally, we mention that there are significant relationships between Lie algebras and asso-

ciative algebras. A fair amount of work has been done on algorithms for associative algebras

(see, for example, Friedl and Rónyai [113], Ivanyos and Rónyai [147], the survey by Rónyai

[226] and references therein), though we believe matrix isomorphism of associative

algebras per se has not been previously studied.

4.1.2 A note on finding roots of single-variable polynomials

The reductions from graph isomorphism and linear code equivalence to various

subcases of matrix isomorphism of Lie algebras require no additional assumptions.

However, the reductions in the opposite direction seem to require diagonalizing matri-

ces. Diagonalizing a matrix is equivalent to factoring a single-variable polynomial, under

polynomial-time many-one reductions over F (say, using the Blum–Shub–Smale notion of

Turing machines over a field [58]). The problem of factoring univariate polynomials over

fields is well-studied; its complexity depends on the ground field, which we discuss here. See

the survey by Kaltofen [155] for more details and history.

In the settings in which we need to diagonalize a matrix, it will always be under the ex-

plicitly stated assumption that the eigenvalues lie in the ground field F. This assumption can

be weakened somewhat—to, say, a polynomial-degree extension field of F—but we include

this assumption for simplicity. This assumption seems necessary for the use of factoring

98

polynomials, as a generic polynomial of degree n has a splitting field of degree n! over the

ground field.

Matrices over F whose diagonalizations require a degree n! extension are easily seen to

arise in abelian diagonalizable MatIsoLie whenever such an extension of F exists. In

contrast, we are not aware of whether such cases can arise in semisimple matrix Lie algebras.

Throughout this paper, an f-algorithm over a field F is an algorithm over F (in the

sense of Blum–Shub–Smale [58]) with an oracle for factoring univariate polynomials over

F. Thus once the coefficients of a degree n polynomial have been written down, in n steps

the coefficients may be replaced by the roots. We similarly define f-reductions. We denote

polynomial-time BSS many-one reductions by ≤m and polynomial-time BSS many-one f-

reductions by ≤f
m.

We now discuss known results on the complexity of factoring polynomials.

Although we will not be considering such fields, there are fields where the arithmetic

operations are computable but finding roots of polynomials is not computable [271] (see also

[115]). Van der Waerden constructed a field in which the problem “Is there an n such that

E(n)?” for any “effectively computable” predicate E(n) of the natural numbers reduced to

the problem of factoring polynomials in that field. A remarkable aspect of this result is that

it was published in 1930, before the notion of algorithm or reduction had been formalized

by any of Church, Turing, Herbrand, or Gödel.

Over the finite field Fq, polynomials of degree n can be factored deterministically in

poly(n, q) many field operations [50]. However, the Boolean input size is poly(n, log q) as field

elements may be represented with log q bits; much work has gone into finding deterministic

algorithms that are polynomial in the bit-size of the input, but the best known is still a

randomized (Las Vegas-type) algorithm taking an expected poly(n, log q) field operations.

For example, see Berlekamp [51] and Bach and Shoup [37].

Over Q or algebraic number fields, polynomials can be factored in polynomial time. The

key algorithm for factoring polynomials over Q is due to Lenstra, Lenstra, and Lovász [181].

The reduction from algebraic number fields to Q was essentially known to Kronecker [172],

with an improvement due to Trager [264] that is presented along with timing analysis in

Landau [174]. Similar results were found independently by Chistov and Grigoryev [79] and

A. Lenstra [180].

99

Over fields such as R and C, roots of course cannot be computed exactly, but efficient

approximation algorithms are known [210]. Specifically, given a polynomial f of degree

n with complex coefficients whose magnitudes are bounded by 2m, and an approximation

parameter ℓ, one can find by NC arithmetic circuits over C (in terms of ℓ+ n+m) a set of

n numbers z1, . . . , zn such that each root of f is within 2−ℓ of one of the zk. A similar result

can be achieved in the Boolean model, where the zi are now “rational” complex numbers,

that is, of the form a+ ib with a, b ∈ Q, and the cost of the algorithm is measured in terms

of bits.

For the purposes for which we use f-algorithms, approximation is good enough as long as

distinct roots can be distinguished. This requires that the distance between distinct roots

be at least 2−nc for some polynomial nc. While we have not been able to guarantee this in

general—so the complexity of our f-algorithms over C, once the factoring oracle is removed,

remains open—we suspect that the structure of matrix Lie algebras can be leveraged so that

the matrices we need to diagonalize always satisfy this property.

To summarize, with the current state of the art, polynomial-time f-algorithms have the

following complexities:

• Over Fq, poly(n, q) deterministic time, or poly(n, log q) randomized time.

• Over Q and algebraic number fields, polynomial time in the bit-length.

• Over R and C, approximation algorithms exist in both the algebraic and the Boolean

models, but the exact complexity of our f-algorithms over C remains unknown, due

to the possibility of distinct roots that are exponentially close together. See Open

Question 4.9.3.

4.1.3 Outline

Although it is independent of our main result, we begin in Section 4.2 with the abelian

diagonalizable case, as a warm-up that can be understood without any background on Lie

algebras. There we also introduce the notion of weights, which generalize the notion of

eigenvalue from a single matrix to an entire algebra of matrices.

Our main results require more knowledge of Lie algebras; any necessary background

that is not presented here can be found in Section 2.2.4. In Section 4.4 we prove our

100

Main Theorem 4.4.1 and its Corollaries 4.4.7 and 4.4.8 on semisimple MatIsoLie over

algebraically closed fields of characteristic zero. In Section 4.5 we prove Corollary 4.5.2 on

direct sums of abelian diagonalizable and semisimple Lie algebras.

In Section 4.6 we show how to use the above machinery to essentially derandomize Kayal’s

result on affine equivalence for the determinant. We also show how to get similar

algorithms for affine equivalence to matrix multiplication and iterated matrix multiplication;

we note that although the determinant is equivalent to iterated matrix multiplication from a

complexity point of view, they are not affinely equivalent, so results on affine equivalence

for the two problems are not immediately interchangeable.

In Section 4.8 we show that twisted code equivalence Karp-reduces to graph

isomorphism. This result is not strictly needed for the application to Lie algebras, but it

is a natural generalization of the ideas used in a lemma needed for Theorem 4.4.1.

In Section 4.9.1 we discuss how our results might be extended to other fields. In Sec-

tion 4.9.2 we discuss connections between problems on Lie algebras and problems on finite

groups. In the final section, we discuss how close the abelian-plus-semisimple case is to the

general case, directions toward the general case, and other future work, including potential

ways to solve important special cases of the affine equivalence problem efficiently without

having to efficiently solve graph isomorphism.

4.2 Warm-up: diagonalizable Lie algebras and linear code

equivalence

In this section we show that matrix isomorphism of abelian diagonalizable Lie

algebras is at least as hard as linear code equivalence under many-one reductions,

and is equivalent to linear code equivalence under many-one f-reductions. In partic-

ular, diagonalizable matrix isomorphism of Lie algebras is at least as hard as

graph isomorphism. The reduction to linear code equivalence allows us to solve

abelian diagonalizable matrix isomorphism for constant-dimensional Lie algebras

by a polynomial-time f-algorithm, using an algorithm of Babai [27, Theorem 7.1] for linear

code equivalence.

101

We defined linear codes and their equivalences in Section 4.1 just prior to the statement

of Proposition 4.2.1 there.

Proposition 4.2.1. Over any field, linear code equivalence ≤m matrix isomor-

phism of abelian diagonalizable Lie algebras ≤f
m linear code equivalence.

Lie algebras of n × n matrices of dimension d are reduced to d-dimensional codes of length

n, and vice versa.

Before proving this theorem we give some of its consequences.

Corollary 4.2.2. Over any field, abelian diagonalizable MatIsoLie of n×n matrices

can be solved by a poly(n)-time f-algorithm when the Lie algebras have dimension O(1).

Proof. Babai (see [27, Theorem 7.1]) showed that, over any field F, equivalence of d-dimen-

sional linear codes of length n reduces to
(n
d

)

instances of d × (n − d) edge-colored

bipartite graph isomorphism. Each such instance can be solved in poly(n) ·min{d!, (n−
d)!} time, so when d = O(1) linear code equivalence can be solved in polynomial time.

Using the f-reduction of Proposition 4.2.1, d-dimensional diagonalizable MatIsoLie can

be solved by an f-algorithm in polynomial time when d = O(1).

Corollary 4.2.3. graph isomorphism ≤m matrix isomorphism of abelian diago-

nalizable Lie algebras.

Proof. Petrank and Roth [216] showed that graph isomorphism polynomial-time many-

one reduces to linear code equivalence over F2. Over an arbitrary field we use the same

reduction, but an extension of their proof is required, which we give in Lemma 4.2.4 below.

Proposition 4.2.1 then shows that matrix isomorphism of abelian diagonalizable

Lie algebras is at least as hard as graph isomorphism, under many-one reductions.

Lemma 4.2.4. Graph isomorphism polynomial-time many-one reduces to linear code

equivalence over any field F.

Proof. Given a graph G, we construct the generator matrix for a code over F such that two

graphs are isomorphic if and only if the codes are equivalent. Let M(G) = [Im|Im|Im|D]

102

where m = |E(G)|, Im is the m×m identity matrix, and D is the incidence matrix of G:

De,v =







1 if v ∈ e

0 otherwise

The Hamming weight of a vector over F is the number of non-zero entries. The following

claim is essentially the crux of Petrank and Roth’s argument, but generalized so as to apply

over any field.

Claim: up to permutation and scaling of the rows, M(G) is the unique generator matrix

of its code which satisfies the following properties:

1. it is a |E| × (3|E|+ |V |) generator matrix;

2. each row has Hamming weight ≤ 5;

3. any nondegenerate linear combination of two or more rows has Hamming weight ≥ 6

A linear combination of k rows is nondegenerate if all k of its coefficients are nonzero.

Proof of claim: First, M(G) satisfies (1)–(3). The only part to check is (3): in the first

3m columns, any nondegenerate linear combination of k ≥ 2 rows will have 3k ≥ 6 nonzero

entries. Next, let C denote the code generated by the rows of M(G). By (2) and (3) the

rows of M(G) are the unique vectors in C (up to scaling) of Hamming weight ≤ 5. Hence if

M ′ is any other generator matrix of C satisfying (1)–(3), its rows must be scaled versions of

the rows of M(G) in some order. This proves the claim.

Now, suppose thatM(G1) andM(G2) generate equivalent codes. Then there is a nonsin-

gular matrix S and a permutation matrix P such that M(G1) = SM(G2)P . By the claim,

S = ∆S′ where ∆ is diagonal and S′ is a permutation matrix. However, since the first 3|E|
columns of M(G1) and M(G2) only contain 0, 1-entries, ∆ = I. The rest of the proof of the

reduction, including the other direction, proceeds exactly as in Petrank and Roth [216].

Proof of Proposition 4.2.1. Let (A1, . . . , Ad), (B1, . . . , Bd) be two spanning sets of diagonal-

izable Lie algebras over F. Using the root-finding oracle and standard techniques in linear

algebra, the Ai can be simultaneously diagonalized in polynomial time, so we may now as-

sume that the Ai are in fact diagonal, rather than merely diagonalizable. Similarly for the

Bi. Let A, resp. B, denote the Lie algebras spanned by the Ai, resp. Bi.

103

Claim: If A and B are diagonal, then they are matrix isomorphic if and only if they are

matrix isomorphic via a permutation matrix.

Here is how the result follows from the claim. By “flattening out” the entries of the

diagonal matrices into “row” vectors the claim shows that d-dimensional matrix isomor-

phism for diagonal Lie algebras of n × n matrices is polynomial-time many-one equivalent

to d-dimensional code equivalence for codes of length n. The root-finding oracle is only

needed for one direction, to diagonalize the Lie algebras. Thus the claim will complete the

proof of the theorem.

Proof of claim: Suppose CAC−1 = B. Since A and B are both diagonal, C must

preserve the eigenspaces of every matrix in A. The formalization of this notion will allow

us to prove our claim. Let λi : A → F be the linear function λi(A) = Aii. We can think

of λi as a “simultaneous eigenvalue for the space A of matrices,” generalizing the notion of

an eigenvalue of a single matrix. Such functions are called weights in Lie theory, and they

will play a significant role here and in the case of semisimple Lie algebras. Analogous to an

eigenspace corresponding to an eigenvalue, there are weight spaces corresponding to weights.

Namely, if λ : A → F is a weight, the corresponding weight space is

Vλ(A) := {v ∈ Fn : Av = λ(A)v for all A ∈ A}

It is these weight spaces that C must preserve in order for CAC−1 to be diagonal. For

example, if every weight space is 1-dimensional—or equivalently, if for every pair of indices

1 ≤ i < j ≤ n there is some matrix A ∈ A with Aii 6= Ajj—then C must be the product of a

permutation matrix and a diagonal matrix. Since diagonal matrices commute, conjugating

A by a diagonal matrix has no effect, and we may discard it; hence C may be taken to be a

permutation matrix.

More generally, C may send v ∈ Vλ1 into Vλ2 if and only if CVλ1 = Vλ2 . Within each

weight space, C may act in an arbitrary invertible manner. In other words, C is composed

of invertible blocks of dimension dimVλi , the pattern in which these blocks appear is a

permutation, and that permutation may send i 7→ j if and only if dimVλi = dim Vλj .

However, if C ′ has the same permutation pattern as C but all the blocks in C ′ are the

identity, then CAC−1 = C ′AC ′−1. Hence, without loss of generality, we may take C to be

a permutation matrix, proving the claim.

104

4.3 Basic algorithms for Lie algebras and their representations

In this section we describe the basic algorithms for working with Lie algebras and their rep-

resentations, over algebraically closed fields of characteristic zero. Many of these algorithms

are present in De Graaf’s book [97], which is an invaluable resource in this regard. However,

De Graaf explicitly [97, p. vi] omits any complexity analysis, so we re-present the necessary

algorithms here in order to analyze their complexity, except when this has already been done

in the literature. We refer to the theorems in De Graaf [97] for the proofs of correctness, as

to do otherwise would result in reproducing much of the content of De Graaf’s book.

4.3.1 Describing Lie algebras and representations as input to algorithms

An abstract Lie algebra is specified in an algorithm by giving a basis for it as a vector space,

say v1, . . . , vd, and its structure constants c
(k)
ij :

[vi, vj] =
n
∑

k=1

c
(k)
ij vk.

Because of the bilinearity of the bracket, the structure constants are enough to determine the

value of the bracket on any elements of the Lie algebra: [
∑

αivi,
∑

βjvj] =
∑

ijk αiβjc
(k)
ij vk.

Each of the axioms of a Lie algebra translates into a condition on the structure constants,

for example, skew-symmetry is equivalent to c
(k)
ij = −c(k)ji for all i, j, k.

A linear map between Lie algebras ϕ : L → L′ is specified by giving, for each basis

element vi of L′, the coefficients of the image of vi in the basis {v′1, . . . , v′d} of L′. In other

words, if ϕ(vi) =
∑

j aijv
′
j , then ϕ is specified by the constants aij , as is typical for linear

maps in general. In particular, a representation ρ : L → Mn(F) is a linear map between Lie

algebras. If we take the standard basis for Mn(F), then the above corresponds to defining ρ

by giving, for each basis element vi of L, a matrix Ai ∈Mn(F) such that ρ(vi) = Ai.

Given a matrix Lie algebra L ⊆Mn(F), we may compute its structure constants and thus

get an abstract isomorphic copy L′ of L, with L′ specified by structure constants, as follows.

Suppose the matrix Lie algebra is given to us by a basis of matrices {A1, . . . , Ad}. For each
pair i 6= j, compute the matrix [Ai, Aj] = AiAj −AjAi and write it as a linear combination

of the Ak. This involves multiplying matrices and then solving a system of linear equations.

105

Then the structure constants of L are given by the c
(k)
ij defined by [Ai, Aj] =

∑

k c
(k)
ij Ak.

Now, the abstract copy L′ of L can be defined simply as a d-dimensional vector space with

standard basis v1 = (1, 0, . . . , 0), v2 = (0, 1, 0, . . . , 0), . . . , vd = (0, 0, . . . , 1), and structure

coefficients c
(k)
ij . The isomorphism between L and L′ is then given by Ai ↔ vi.

4.3.2 Abstract isomorphism of semisimple Lie algebras

In this section we consider semisimple Lie algebras over algebraically closed fields of charac-

teristic zero.

Theorem 4.3.1 (De Graaf [97]). Let L be a semisimple Lie algebra over an algebraically

closed field of characteristic zero, given by structure constants.

Then there is a polynomial-time f-algorithm that decomposes L into its direct sum decom-

position L =
⊕

iLi where each Li is simple, and identifies the type (in the Cartan–Killing

classification) of each Li.

In particular, given two such Lie algebras by structure constants, there is a polynomial-

time f-algorithm that determines whether they are isomorphic, and finds an isomorphism if

one exists.

Proof. The proof proceeds as in De Graaf [97].

Phase I: compute a split Cartan subalgebra. De Graaf, Ivanyos, and Rónyai [94]

show that a Cartan subalgebra can be computed in polynomial time in the bit-length over

algebraic number fields (see also the algorithm “CartanSubalgebraBigField” in De Graaf [97,

p. 67]). Their algorithm is arithmetic in nature, and clearly works in polynomially many

arithmetic steps over any field of characteristic zero. Since we have assumed the ground field

is algebraically closed, all Cartan subalgebras are split (recall the definition of split Cartan

subalgebra from Section 2.2.4).

Phase II: decompose L into root spaces. Suppose H is the split Cartan subalgebra

computed in Phase I above. Let {h1, . . . , hr} be a basis for H. Using the root-finding oracle,

find a basis of {h′1, . . . , h′r, x′1, . . . , x′k} for which {h′1, . . . , h′r} is a basis for H and adL h′1
is diagonal in this basis. If adL h1 had any repeated eigenvalues, it is possible that the

other adL hi are not yet diagonal within each eigenspace of adL h1. Repeat this procedure

recursively on each adL hi in turn until they are all diagonal. Then we have the Cartan

106

decomposition L = H⊕α Lα where each Lα is the root space relative to H with root α.

That is, x ∈ Lα if and only if [h, x] = α(h)x for all h ∈ H.

Phase III: decompose L into direct summands. This follows the algorithm “Direct-

SumDecomposition” from De Graaf [97, p. 129], which in turn is taken from a paper of De

Graaf’s [95]. Remarks 8 and 9 of that paper show that the algorithm works for semisimple

Lie algebras in characteristic zero, and that the algorithm runs in polynomial time with a

root-finding oracle.

Phase IV: compute the type of each simple summand. De Graaf [95, Section 4]

shows how to compute the type, in the Cartan–Killing classification, of a simple Lie algebra.

In De Graaf [95], a very nice method is used in order to give a polynomial-time algorithm—

in the bit-length, Boolean model—for isomorphism of semisimple Lie algebras over Q with

structure constants in Q. There, he reduces coefficients modulo p for a prime p with certain

properties, in order to avoid the blow-up that may occur from root-finding. However, in the

algebraic model with a root-finding oracle we don’t need to go to such lengths, and indeed

if the structure constants are not in Q then such an algorithm does not even seem to make

sense (what does it mean to reduce a complex number modulo p?). Instead, once we have

our Cartan decomposition of L, it is straightforward linear algebra to compute the Cartan

matrix, the root system, and canonical generators.

Finally, the algorithm “CanonicalGenerators” of De Graaf [97, p. 182] constructs a

canonical generating set for a semisimple Lie algebra, by solving a few linear equations,

once the Cartan decomposition has been found. The isomorphism between two isomorphic

semisimple Lie algebras is given by mapping the canonical generating set of one to the

canonical generating set of the other.

4.3.3 Equivalence and decomposition of representations

The results in this section are surely not new; although they are straightforward algorithmic

applications of known results on the representations of semisimple Lie algebras, we have been

unable to find explicit references to these algorithmic consequences, so we include their proofs

here. Later, we use Proposition 4.3.2 to solve the decision version of matrix isomorphism

of Lie algebras for semisimple and completely reducible Lie algebras.

Proposition 4.3.2. Let F be an algebraically closed field of characteristic zero.

107

Given a semisimple matrix Lie algebra L ⊆ Mn(F), there is a polynomial-time BSSF

f-algorithm to determine the types—equivalently, highest weights—of the representations ap-

pearing in L together with their multiplicities.

Proof. L is given to us by a spanning set of matrices {X1, . . . , Xd}. Compute a Cartan subal-

gebra H of L, compute a matrix A0 simultaneously diagonalizing every h ∈ H , and compute

a canonical set of generators of L, using the algorithms of De Graaf, as in Theorem 4.3.1.

Conjugate L by A0, so that H becomes diagonal, which we assume hereafter.

Compute a set of positive simple roots, with their corresponding matrices in L. Let W

be the intersection of the kernels of these root matrices.

By the standard theory of highest weights (see, for example, Jacobson [150] or Fulton

and Harris [116]), W consist of all the highest weight vectors in Fn. As H is diagonal, we

can choose a basis of W consisting of weight vectors for H. To do this, intersect W with

each weight space Vλ in turn, for all weights λ that are present. Call the resulting space Wλ,

so that W =
⊕

λWλ. Then the irreducible representation λ appears in L with multiplicity

dimWλ.

4.4 Semisimple Lie algebras and graph isomorphism

Theorem 4.4.1. Over algebraically closed fields of characteristic zero, graph isomor-

phism ≤m matrix isomorphism of semisimple Lie algebras ≤f
m graph isomor-

phism.

Proof. We break the proof into four lemmas. By Lemma 4.4.3, matrix isomorphism of

semisimple Lie algebras is equivalent to deciding whether two completely reducible rep-

resentations of a semisimple Lie algebra are equivalent up to outer automorphism. By

Lemma 4.4.4, the latter problem reduces to a special case of twisted code equivalence

with multiplicities, which we refer to as Problem A. Finally, Lemma 4.4.5 reduces

Problem A to graph isomorphism, and Lemma 4.4.6 reduces graph isomorphism to

matrix isomorphism of semisimple Lie algebras.

The polynomial factorization oracle is only used in two places, both times to diagonalize

a Cartan subalgebra:

108

• in Lemma 4.4.3, to find an abstract isomorphism between semisimple Lie algebras in

order to reduce to outer equivalence of representations; and

• in Lemma 4.4.4, via Proposition 4.3.2, to find the highest weight spaces of a represen-

tation.

In both of these cases, if we were given a Chevalley basis of the Lie algebra and its rep-

resentation we would not need to solve polynomial factorization. A Chevalley basis is a

particularly nice basis; for our purposes the properties we need are that it consists of a basis

of a Cartan subalgebra, together with a basis of the rest of the Lie algebra such that the

Cartan subalgebra is diagonal in this basis in the adjoint action. Similarly, the relevant

property of a Chevalley basis of the representation is that it is a basis of Fn such that the

matrices in the given Cartan subalgebra act diagonally on that basis.

Lemma 4.4.2. Let C be a class of Lie algebras over any field, and let LieIso(C) denote the

problem of finding isomorphism between abstract Lie algebras in C. Then matrix isomor-

phism of Lie algebras for Lie algebras in C is PLieIso(C)-equivalent2 to—nearly just a

restatement of—the following problem:

Problem: Equivalence of representations up to automorphism

Input: Two faithful representations ρ1, ρ2 : L →Mn of an abstract Lie algebra

L from the class C.
Output: An automorphism α ∈ Aut(L) such that ρα1 is equivalent to ρ2, or

“the two representations are not equivalent up to automorphism.”

Proof. Suppose L1,L2 ⊆Mn(F) are two matrix Lie algebras over any field F. Their structure

constants are easily computed as in Section 4.3.1, and then, by assumption, we can determine

whether L1 and L2 are isomorphic as abstract Lie algebras, and if so, find an isomorphism

f : L1 → L2. If not, they are not matrix isomorphic. By computing the structure constants

2. The reduction from equivalence of representations up to automorphism to matrix

isomorphism is polynomial-time many-one, and polynomial-time in the bit-length whenever that
notion makes sense, for example over finite fields, Q, and number fields. The reduction in the
opposite direction is as efficient as finding isomorphisms between abstract Lie algebras in C. More
precisely, the reduction from matrix isomorphism to equivalence of representations up

to automorphism is polynomial-time many-one with an oracle for finding isomorphisms between
abstract Lie algebras in C.

109

as in Section 4.3.1, we get an abstract Lie algebra L together with an isomorphism ρ1 : L →
L1. Let ρ2 = ρ1 ◦ f ; then ρ2 is an isomorphism L → L2, as abstract Lie algebras. Since ρ1

and ρ2 are abstract isomorphisms they are injective, and since Li ⊆Mn(F), each ρi is in fact

a faithful representation of L. We claim that the ρi are equivalent up to an automorphism

of L if and only if the Li are matrix isomorphic.

Suppose L2 = AL1A
−1 for some invertible matrix A. Let cA : Mn(F) → Mn(F) be

defined by cA(X) = AXA−1. Then α = ρ−1
2 ◦ cA ◦ ρ1 is a map from L to L (see Figure 4.1).

Since the ρi are isomorphisms, and cA|L1 : L1 → L2 is an isomorphism, the composition α

L
L1

L2

⊆Mn(F)

⊆Mn(F)

ρ1

ρ2
cA

Figure 4.1: Two matrix isomorphic faithful representations of a Lie algebra L yield an
automorphism of L by going around the triangle clockwise: ρ−1

2 ◦ cA ◦ ρ1.

is an automorphism of L. Then ρ2 ◦ α = ρ2 ◦ ρ−1
2 ◦ cA ◦ ρ1 = cA ◦ ρ1, which is by definition

equivalent to ρ1.

Conversely, suppose ρ1 ◦ α is equivalent to ρ2 for some automorphism α. Then there is

an invertible matrix A such that ρ2 = cA ◦ ρ1 ◦ α. Then we have

L2 = im(ρ2) = im(cA ◦ ρ1 ◦ α) = cA(im(ρ1 ◦ α)).

Since α is an automorphism it is onto, so im(ρ1 ◦ α) = im(ρ1) = L1, and we have L2 =

AL1A
−1.

The preceding argument gives a reduction from matrix isomorphism of Lie alge-

bras to equivalence of representations up to automorphism. The reduction in

the other direction is as follows: suppose L is a Lie algebra and ρ1, ρ2 : L →Mn(F) are two

faithful representations. We reduce this to the instance of matrix isomorphism of Lie

algebras given by Li = im(ρi) (i = 1, 2). The proof that this is a reduction is identical to

the proof above.

110

Lemma 4.4.3 (De Graaf3). Let F be an algebraically closed field of characteristic zero. Then

matrix isomorphism of semisimple Lie algebras over F is f-equivalent to—nearly just

a restatement of—the following problem:

Problem: Outer equivalence of Lie algebra representations

Input: Two faithful representations ρ1, ρ2 : L → Mn(F) of a semisimple (ab-

stract) Lie algebra L.
Output: An outer automorphism α ∈ Out(L) such that ρα1 is equivalent to ρ2,

or “the two representations are not equivalent up to automorphism.”

Proof. For semisimple Lie algebras, abstract isomorphisms can be found by a polynomial-

time f-algorithm (see Theorem 4.3.1). By the previous lemma, we only have to reduce

the problem of equivalence of representations up to automorphism to the above

problem, which deals explicitly with outer automorphisms. The same reductions from the

previous lemma apply, but by using more structural results we can show that only outer

automorphisms need to be considered.

Suppose L2 = AL1A
−1 for some invertible matrix A. Let cA : Mn → Mn be defined

by cA(X) = AXA−1. As in the previous lemma α = ρ−1
2 ◦ cA ◦ ρ1 is an automorphism of

L such that ρ2 ◦ α is equivalent to ρ1. By a standard result (see, for example, De Graaf

[97, Lemma 8.5.1]), inner automorphisms of a semisimple Lie algebra extend to equivalenes

of its representations. In particular, ρ2 ◦ α only depends on the image of α in the outer

automorphism group α. Thus ρα2 is equivalent to ρ1.

Conversely, suppose ρα1 is equivalent to ρ2 for some outer automorphism α. Let α ∈
Aut(L) be a representative of α; the action of α on ρ2 is well-defined, by the result mentioned

previously (see De Graaf [97, Lemma 8.5.1]). As in the previous lemma, there is an invertible

matrix A such that ρ2 = cA ◦ ρ1 ◦ α, and then L2 = AL1A
−1.

The reduction in the opposite direction requires nothing further than in the previous

lemma.

3. This lemma is essentially present in De Graaf’s book [97], especially the content leading up to
the discussion at the end of his Section 8.5. However, De Graaf’s discussion is presented in terms
of weights and the choice of Cartan subalgebra, whereas the aspect we wish to highlight requires
no mention of these topics, and can be explained by completely elementary means.

111

Lemma 4.4.4. Over an algebraically closed field of characteristic zero, outer equivalence of

semisimple Lie algebra representations f-reduces to the following problem:

Problem: Problem A

Input: Two r × s integer matrices M1,M2; a partition of the columns into

consecutive ranges [1, . . . , k1], [k1+1, . . . , k1+ k2], . . . [k1+ · · ·+ kt−1+1, . . . , s];

for each range, a group Gℓ acting on the integers appearing in the corresponding

columns, where each Gℓ is abstractly isomorphic to one of: 1, S2, or S3.

Output: A permutation π ∈ Sr, a permutation σ ∈ Sk1 × Sk2 × · · · × Skt,

and for each column an element gj in the group Gℓ associated to that column

range, such that for all i, j, M1(i, j) = gj(M2(π(i), σ(j))), or “the matrices are

not equivalent.” In other words, after applying π to the rows, σ to the columns,

and each gj to the values of the entries in the j-th column, M1 and M2 become

equal.

Proof idea. The columns ofMi correspond to the simple summands of the matrix Lie algebra

Li (i = 1, 2). The rows correspond to the irreducible representations appearing in Li. Each

irreducible representation of Li is a tensor product of irreducible representations of the

simple summands of Li (Proposition 2.2.9). Each entry of Mi encodes the corresponding

irreducible representation of a simple summand of Li. The irreducible representations of a

simple Lie algebra can be described by combinatorial objects, which in turn we encode as

integers. The columns of Mi are partitioned according to the abstract isomorphism type

of the simple summands. The groups acting on the integers in Mi are in fact the outer

automorphism groups of the simple summands, acting on the irreducible representations of

the simple summands. For example, M1 might look like:

L1,1⊕ · · · ⊕L1,k1
⊕ L2,1⊕ · · · ⊕L2,k2

⊕ · · · ⊕Lt,kt

ρ1,1 0 · · · 7 3 · · · 0 · · · 1

ρ1,2 1 · · · 0 4 · · · 12 · · · 0
...

...
...

...
...

...

ρ1,r 0 · · · 1 15 · · · 6 · · · 8

where each Li,j is simple, and Li,j and Li′,j′ are abstractly isomorphic if and only if i = i′.

112

Proof. Let L be a semisimple Lie algebra, and let ρ1, ρ2 : L → Mn(F) be two faithful rep-

resentations of L. Compute the direct sum decomposition of L into simple ideals, as in

Theorem 4.3.1; suppose it is L = L1,1 ⊕ · · · ⊕ L1,k1
⊕L2,1 ⊕ · · · ⊕ L2,k2

⊕ · · · ⊕ Lt,kt where

each Li,j is a simple summand of L, and the Li,j are grouped by isomorphism type, so that

Li1,j1 and Li2,j2 are isomorphic if and only if i1 = i2. For each i, let Li be a simple Lie

algebra isomorphic to Li,j for all j.

To each ρi we will associate a matrixMi, as well as the other data necessary for Problem

A. The columns correspond to the direct summands Li,j, and the column partition is along

the isomorphism types of the summands.

Next, we define the permutation groups Gℓ. To each simple type Lℓ, we fix once and for

all an encoding of its representations as integers; both the encoding and decoding should be

polynomial-time. That this can be done follows from the standard description of the repre-

sentations of the simple Lie algebras. The integer 0 will always stand for the (trivial) zero

representation. The permutation action of Out(Lℓ) on the representations of Lℓ, encoded as

integers, can be easily computed, as follows. Given α ∈ Out(Lℓ) and an integer, convert it to

the corresponding representation as above. This representation is a linear map Lℓ →Mn(F)

for some n. Pre-compose this map with a representative α ∈ Aut(Lℓ) of α; this can be done

because the outer automorphisms of all simple Lie algebras are known explicitly and are

easy to compute (see Section 2.2.4). For example, the unique outer automorphisms of sln,

the trace zero matrices, is given by the map A 7→ −AT . The outer automorphism groups

of simple Lie algebras are all trivial, S2, or S3. Finally, convert this new, “twisted-by-α”

representation back to an integer. The group Gℓ associated to the ℓ-th isomorphism type

(=ℓ-th column grouping) is then Out(Lℓ), and the action on the integers is the action just

described.

Finally, we describe the rows and the entries of the matrices Mi. Decompose the repre-

sentations ρi into their direct sum decompositions ρi = ρi,1 ⊕ · · · ⊕ ρi,r, where each ρi,r is

an irreducible representation of L. The q-th row of Mi corresponds to the irreducible rep-

resentations ρi,q. An irreducible representation of a direct sum of Lie algebras is the tensor

product of the restrictions to each summand (see Proposition 2.2.9). Hence, the represen-

tation ρi,q is specified by a representation of each summand L·,·, that is, an integer in each

column.

113

Since the outer automorphism group of L is

t
∏

i=1

Out(Li) ≀ Ski =
(

t
∏

i=1

Out(Li)
ki

)

⋊

(

t
∏

i=1

Ski

)

,

the representations ρ1, ρ2 are equivalent up to an outer automorphism if and only if there

is a permutation of the columns (=direct summands of the Lie algebra), for each column

an element gℓ ∈ Gℓ (=an outer automorphism of each direct summand), and a permutation

of the rows (=irreducible constituents of ρi) that will make M1 equal to M2. Conversely,

any such equivalence of M1 and M2 according to Problem A corresponds to an outer

automorphism of L that makes ρ1 and ρ2 equivalent.

Lemma 4.4.5. Problem A ≤m graph isomorphism.

Proof of Lemma 4.4.5. First, if the permutation groups Gℓ are all trivial, then we can take

each Mi as the bipartite adjacency matrix of a vertex-colored and edge-colored bipartite

graph. The vertices corresponding to the columns are colored according to their part in

the column partition; we refer to these vertices as column-vertices. The edges are colored

by the integer entries of each Mi. It is clear that the Mi are equivalent if and only if

the corresponding vertex- and edge-colored bipartite graphs are bipartite-color-isomorphic,

that is, isomorphic by an isomorphism which preserves the two parts of the bipartition and

preserves each color class of vertices and each color class of edges.

To handle the permutation groups Gi we make one additional step in the reduction. Since

there is one Gi for each column i, we must encode its action on the edge-labels incident to

the column-vertex i. To do this we add a “color palette” gadget for each column-vertex,

which will encode both the edge-labels, as well as enforcing the action of Gi on these labels.

That is, the color palette will be such that the way automorphisms of the resulting graph

act on the encoding of the edge-labels is exactly the same as Gi acts on them.

To encode the edge-labels with the color palette, we divide each edge by a new vertex,

and attach this new vertex to the vertex of the color palette which encodes the appropriate

edge color. We only need color palettes capable of encoding permutation actions of the

trivial group, S2, and S3.

Gi trivial. If some Gi is trivial, the corresponding color palette is simply a line of vertices

with a marked vertex at the end. The marked vertex prevents reversing the order of the line,

114

and the different vertices in the line encode the different edge labels on the edges incident

to column-vertex i.

Gi
∼= S2. S2 has two possible orbit types (=transitive actions): a single fixed point, or an

orbit of size two. The color palette is the disjoint union of two graphs corresponding to the

two possible orbit types. Each of these graphs has its own marked vertex at the end. One of

these two graphs is simply a line as in the previous case: the vertices of this line correspond

to those edge-labels that are fixed by the action of S2. The other graph is the disjoint union

of two lines, each of which is joined at the end to the marked vertex. The action of S2 swaps

the i-th vertex of one of these lines with the i-th vertex of the other. This enforces that the

action of the edge group Gi either swaps all of the edge labels (that is, via the nontrivial

element of S2) or none of them.

For the sake of the next case, it is useful to think of this color palette as gluing together

in a line multiple copies of the “color gadget” consisting of two disconnected vertices.

Gi
∼= S3. S3 has four orbit types: 1) the trivial action, 2) the action on two points by

which odd permutations swap the points and even permutations fix them, 3) the natural

action of S3 on three points, and 4) the regular action of S3 on itself (6 points). However,

these last three orbit types must be linked, since if an element of S3 swaps two points

according to (2), it must also have some action according to (3) and (4). Thus the color

palette in this case is the disjoint union of two palettes: the trivial, line palette as before,

and a more complicated palette encoding the actions (2)–(4).

This more complicated palette is given by a “color gadget,” multiple copies of which are

glued together in a line, as in all the other cases. The color gadget is as in Figure 4.2.

1

2

3

A12

A23

A

B21

B32

B

Figure 4.2: Color gadget encoding the action of the groups acting on the columns. In
twisted code equivalence these are the twisting groups; from the Lie algebra point of
view these are the outer automorphism groups of the simple direct summands.

115

Multiple copies of this color gadget are glued together along three lines, one connecting

the “1” vertices, one connecting the “2” vertices, and one connecting the “3” vertices. At

one end of these lines, every vertex in the color gadget is connected to a new marked vertex,

to prevent the line from being swapped end-to-end.

A set of edge colors corresponding to an orbit of type (2) is encoded by the A and B

vertices.

A set of edge colors corresponding to an orbit of type (3) is encoded by the vertices 1, 2,

and 3.

A set of edge colors corresponding to an orbit of type (4) is encoded by the vertices A12,

A23, A31, B21, B32, and B13. A31 and B13 are not labeled in the diagram due to space, but

there are directed edges 3 → A31 → 1 and 1 → B13 → 3.

It remains to show that this color gadget really works as desired. Let us examine the

automorphisms of the color gadget. We claim that the automorphism group is S3, that it

acts on the vertices 1, 2, 3 in its natural action (3), it acts on the Aij ’s and Bji’s together

in its regular action (4), and it acts on A,B in its odd-even action (2).

1, 2, and 3 are the only vertices with in-degree and out-degree 1, so at most they can

be swapped among each other. Hence the automorphism group is at most S3. To show

the above claim, it suffices to show that the generating set (123) and (12) of S3 provides

automorphisms of the color gadget that act as described.

Consider first (123). It acts on 1, 2, and 3 as described by the cycle notation: 1 7→ 2 7→
3 7→ 1. To be an automorphism, it is then forced to send A12 7→ A23 7→ A31 7→ A12 and

B21 7→ B32 7→ B13 7→ B21. Note that (123) cannot possibly swap the Aij ’s and the Bji’s,

since the directed edges determine an orientation that is preserved by (123). Moreover, its

action on these vertices is exactly the action of (123) by right multiplication on S3 itself.

This implies that (123), and hence all the even permutations, fix the vertices A and B.

Next, consider (12). Since (12) reverses the orientation determined by the directed edges,

it must swaps the Aij ’s and Bji’s, as follows: A12 ↔ B21, A23 ↔ B13, and A31 ↔ B32.

This also implies that A ↔ B. Hence odd permutations swap A and B. Finally, the action

of (12) on the Aij ’s and Bji’s is in accordance with the right regular action of (12) on S3,

116

compatible with that of (123) above. We can put this together through the correspondence:

() ∼ A12

(123) ∼ A23

(132) ∼ A31

(12) ∼ B21

(13) ∼ B32

(23) ∼ B13

In Section 4.8 we show how the above color palettes can be replaced in a black-box fashion

by a construction due independently to Bouwer [62] and Babai [20]. We presented the above

construction anyways, as we came to it independently and it helps give the flavor of the color

palettes. We also use their construction to extend the above result to show that the general

problem of twisted code equivalence, as defined in Codenotti [83], Karp-reduces to

graph isomorphism.

Lemma 4.4.6. Over any field of characteristic zero, graph isomorphism ≤m matrix

isomorphism of semisimple Lie algebras.

The key issue in the following proof is keeping the dimensions of the matrix Lie algebras

polynomially bounded. For example, a natural approach using the bipartite adjacency matrix

fails in this regard: having k nonzero entries in a single row of the adjacency matrix leads to

a representation of dimension at least 2k, and since the general bipartite graph has vertices

of degree more than O(logn), this would not be polynomial. We instead use the incidence

matrix of a graph, which has only two nonzero entries per row.

Proof. Let G1, G2 be two graphs with no isolated vertices, and let Di be the 0-1 incidence

matrix of Gi, where the rows correspond to edges and the columns correspond to vertices.

The Gi are isomorphic if and only if there is a permutation of the rows and the columns

that makes the Di equal. Then (D1, D2) is an instance of Problem A where the column

partition is trivial, and the column groups Gℓ are also trivial. We show how to reduce such

117

an instance of Problem A to outer equivalence of Lie algebra representations,

and hence to semisimple MatIsoLie. Note that the reduction from outer equivalence

to MatIsoLie is deterministic, as it simply takes each representation to its image.

Given an instance of Problem A as above—in particular, it only contains the entries

0 and 1, it contains exactly two non-zero entries per row, every column contains a non-zero

entry (=no isolated vertices in the graphs), and the column partition and column groups

are all trivial—let L = sl⊕n
2 , where n is the number of vertices of the Gi (=columns of the

matrices) and sl2 is the simple Lie algebra of 2×2 trace zero matrices. Let a 1 in the matrix

Di correspond to the standard representation of sl2, which is faithful and has dimension

2. We note that which representation we chose for “1” is immaterial since all nontrivial

representations of sl2 are faithful, and each row is the tensor product of only constantly

many—in fact, 2—representations. Then, by reversing the reduction in Lemma 4.4.4, we

get an instance of outer equivalence of Lie algebra representations. Here we are

implicitly using the fact that an irreducible representation of a direct sum of semisimple Lie

algebras, such as sl⊕n
2 , is the tensor product of its representations on the summands (see

Proposition 2.2.9), in this case the n copies of sl2.

Since each column contains a non-zero entry—equivalently, the Gi have no isolated

vertices—these representations are faithful. Since each row contains exacty two 1’s, the

corresponding irreducible representation has dimension 32 = 9, hence the representations we

get are matrices of dimension 9m× 9m, where m is the number of edges of Gi. Since sl⊕n
2

is generated by 3n elements, the representations can be specified by 3n× (9m)2 numbers—

actually fairly small integers, bounded in absolute value by 4—which is polynomial in the

size of the original graphs.

Finally, Out(sl2) acts trivially on the representations of sl2 up to equivalence, so the

corresponding column groups are trivial, as desired.

Theorem 4.4.7. Over an algebraically closed field of characteristic zero, Matrix isomor-

phism of semisimple Lie algebras of n× n matrices can be solved by an f-algorithm in

polynomial time, when the Lie algebras consist of O(logn) simple direct summands.

Proof. If there are only O(logn/ log log n) simple summands, then an elementary brute-force

approach to Problem A works in poly(n) time, since the number of outer automorphisms

is at most
(

c logn
log logn

)

! ·6O(logn/ log logn) ≤ poly(n). However, when there are O(logn) simple

118

summands, the number of outer automorphisms can be as large as nO(log n), so we instead use

a more sophisticated approach to twisted code equivalence, due to Babai, Codenotti,

and Qiao [28] (see Codenotti [83, Theorem 4.2.1]). Problem A is in fact a special case

of twisted code equivalence with multiplicities; on the instance of Problem A

corresponding to semisimple Lie algebras with O(logn) simple summands, their algorithm

runs in poly(n) time.

Translating between their terminology and ours, the size of the code is the number of

rows of the Mi, which is the number irreducible representations of the Li, which is at most

n, the size of the original matrices. The total length of the code is the number of simple

summands, which is at most O(logn) by assumption. The code alphabets that they call

Γi are the integers labelling the irreducible representations of the simple summands Li.

The twisting groups (=column groups) are the outer automorphism groups of each simple

summand Li. As our twisting groups all have bounded size, the size of the code is at most n,

and the total length of the code is at most O(logn), their algorithm runs in poly(n) time.

Theorem 4.4.8. Over an algebraically closed field of characteristic zero, matrix isomor-

phisms of semisimple Lie algebras of n×n matrices can be solved by a polynomial-time

f-algorithm, when the Lie algebras consist of O(logn/ log log n) irreducible representations,

and unboundedly many simple direct summands, at most O(log(n)) of which have nontrivial

outer automorphism actions on the representations appearing.

In Section 2.2.4 we list the simple Lie algebras and their outer automorphism groups, and

mention which have trivial actions on all of their representations. Two of the four infinite

families of simple Lie algebras have this property, as well as four of the five exceptional

simple Lie algebras. However, even if the outer automorphism group acts nontrivially on

representations, it may nonetheless fix the particular representations appearing in the given

matrix Lie algebra; we take advantage of this possibility in Corollary 4.6.3.

Proof. In this case, the Mi in the instance of Problem A have O(logn/ log log n) rows.

Although the size of the automorphism group may be more than polynomial, there are only

polynomially many row permutations, so we only have to handle the outer automorphisms

exhaustively in each column, but not the permutations between the columns. Specifically, try

each combination of outer automorphisms of each column; since there are at most O(logn)

119

columns with nontrivial outer automorphism actions, and the outer automorphism group of

a simple Lie algebra has size at most 6, there are only poly(n) possibilities. For each such

possibility, try each of the
(

logn
log logn

)

! ≤ poly(n) many permutations of the rows, and for

each check whether the set of columns of M1 is equal to the set of columns of M2.

4.5 Completely reducible Lie algebras

In this section, we describe how the algorithms and reductions for the abelian diagonalizable

and semisimple cases fit into a single general framework and can be combined to handle the

case of a direct sum of an abelian diagonalizable matrix Lie algebra with a semisimple matrix

Lie algebra. In characteristic zero, this class of matrix Lie algebras is exactly the class of

completely reducible matrix Lie algebras. We have already used heavily the assumption that

all representations that we work with are completely reducible, that is, that they can be

written as a direct sum of irreducible representations (see Section 2.2.4). In characteristic

zero, the class we study in this section is the largest class of Lie algebras with this property

(Theorem 2.2.8).

Lemma 4.5.1. Lemma 4.4.3 applies to the class of abelian Lie algebras and the class of Lie

algebras that are a direct sum of an abelian Lie algebra and a semisimple Lie algebra.

Proof. The proof of Lemma 4.4.3 only required two ingredients: that the isomorphism prob-

lem for abstract Lie algebras of the class under consideration be efficiently solvable, and

that twisting a representation by an inner automorphism leads to an equivalent representa-

tion. Both of these ingredients hold for abelian Lie algebras: two abelian Lie algebras are

abstractly isomorphic if and only if they have the same dimension, and abelian Lie algebras

have no non-trivial inner automorphisms.

Similarly, let L be a direct sum A ⊕ S where A is abelian diagonalizable and S is

semisimple. The isomorphism problem for this class of Lie algebras is solvable efficiently

by Theorem 4.3.1. Finally, Inn(L) = Inn(A) × Inn(S) ∼= Inn(S) since abelian Lie alge-

bras have no non-trivial inner automorphisms. Hence twisting a representation by an inner

automorphism leads to an equivalent representation.

Although it was not phrased this way above, we can now see that the algorithms and

equivalences for matrix isomorphism of diagonalizable Lie algebras in fact follow

120

the same lines as those for semisimple Lie algebras. The main difference is that the outer

automorphism group of a d-dimensional abelian Lie algebra is the full general linear group

GLd of d × d invertible matrices—leading to linear code equivalence—whereas the

outer automorphism group of a semisimple Lie algebra is close to Sn—leading to graph

isomorphism.

Furthermore, we can view Babai’s reduction (see [27, Theorem 7.1]) from linear code

equivalence to graph isomorphism as a sort of “list normal form” algorithm for the

action of GLd by automorphisms. Since GLd acts by change of basis, we would like reduced

row echelon form to be a normal form for this action. However, since one may permute the

coordinates in linear code equivalence, computing reduced row echelon form requires

first picking the pivots. Babai’s algorithm picks these pivots in all
(n
d

)

possible ways, reduces

to row echelon form, and then uses graph isomorphism to handle the permutation action

on the remaining (non-pivot) coordinates of the code.

Combining these techniques together yields:

Corollary 4.5.2. Over an algebraically closed field of characteristic zero, matrix iso-

morphism of a direct sum of an abelian diagonalizable a-dimensional Lie algebra with a

semisimple Lie algebra of s simple direct summands, and where the matrix Lie algebra has

r irreducible representation constituents reduces to
(r
a

)

instances of Problem A of size

r× (s+ a). In particular, matrix isomorphism of such Lie algebras of n× n matrices can

be solved in poly(n) time under any of the following conditions:

• r = O(logn/ log logn), a = O(logn/ log log n), s unbounded, and the number of simple

summands with non-trivial outer automorphism action is at most O(logn);

• r = O(logn), a = O(logn/ log log n), and s = O(logn);

• r unbounded, a or r − a is O(1), s = O(logn).

Proof. In this case, the abelian summand A of the Lie algebra is exactly the center, which

may be computed by solving a linear system of equations, and the semisimple part S is

a Levi complement, which may be computed in polynomial time as in Proposition 4.7.1.

Diagonalize A. Determine the highest weight space W for S, as in Theorem 4.3.2. Consider

the restriction of A to W ; as the restriction of A to any irreducible representation consists

121

of scalar matrices, the restriction of A to the highest weight of an irreducible representation

completely determines A on that representation. In particular, the restriction of A to W is

a linear code of dimension a and length r.

For each of the
(r
a

)

choice of pivots for the restriction of A to W , put that portion of A
into reduced row echelon form, as discussed prior to the theorem. Finally, we get an instance

of Problem A as in Lemma 4.4.4. In addition to one column for each simple summand of

S, there is also a column for each dimension of A, and the weight we put into that column

is the eigenvalue from the reduced row echelon form of A on the corresponding irreducible

representation of S.
For the first set of parameters in the statement of the Corollary, we use the brute-force

approach on the rows and outer automorphisms within each column, as in Theorem 4.4.8,

noting that
(r
a

)

≤ poly(n) when both r and a are O(logn/ log logn). For the remaining

two sets of parameters, we use the algorithm for twisted code equivalence [28] as

before. This algorithm runs in time 2O(s+a) poly(r, s, a), which is poly(n) for the settings

of parameters described, and we use it
(r
a

)

times, which is again poly(n) for the parameters

described.

4.6 Application to equivalence of polynomials

In this section, we show how our results on completely reducible matrix Lie algebras may be

applied to the linear equivalence problem for matrix multiplication—which is new—and the

determinant—for which we mostly derandomize a result of Kayal’s.

We say that a function f is characterized by the continuous part of its stabilizer if any

function g that is fixed by Stab(f)0 is a scalar multiple of f , where Stab(f)0 denotes the

connected component of the identity of the symmetry group of f .

Lemma 4.6.1. Over an algebraically closed field of characteristic zero, let f be a polynomial

that is characterized by the continuous part of its stabilizer. Then for any function g, g is

linearly equivalent to αf for some scalar α if and only if Lie(Stab(g)) and Lie(Stab(f)) are

matrix isomorphic.

Proof. By Proposition 3.4.2, if g is linearly equivalent to αf then there is an invertible

matrix A such that A Stab(g)A−1 = Stab(αf) = Stab(f); in particular, the same holds of

122

the identity components of the stabilizers: A Stab(g)0A
−1 = Stab(f)0. Conversely, since f

is characterized by the continuous part of its stabilizer, if A Stab(g)0A
−1 = Stab(f)0, then

Stab(Ag)0 = Stab(f)0, so by symmetry-characterization Ag = αf for some scalar α.

We are implicitly working in some larger matrix Lie group G acting on the relevant space

of polynomials. Any connected Lie subgroup of G is completely determined by its matrix Lie

algebra, so A Stab(g)0A
−1 = Stab(f)0 if and only if ALie(Stab(g)0)A

−1 = Lie(Stab(f)0),

that is, if and only if Lie(Stab(g)0) and Lie(Stab(f)0) are matrix isomorphic. Finally, since

the Lie algebra only depends on the connected component of the identity, Lie(Stab(f)) =

Lie(Stab(f)0), and similarly for g.

Corollary 4.6.2. Given the Lie algebra of the symmetry group of a bilinear function f

from Cn2 × Cn2 to Cn2, one can determine whether f is bilinearly equivalent to matrix

multiplication in poly(n) time with an oracle for finding the roots of univariate polynomials.

Consequently, given f as a black box, there is a poly(n)-time Las Vegas f-algorithm to

determine whether f is bilinearly equivalent to matrix multiplication.

For bilinear functions f1, f2 : V ×U →W , f1 and f2 are bilinearly equivalent if there are

invertible matrices A ∈ GL(V), B ∈ GL(U), C ∈ GL(W) such that Cf1(Ax,By) = f2(x, y)

for all (x, y) ∈ V × U . In the case of matrix multiplication, we take V ∼= U ∼= W ∼= Cn×n.

Proof. The Lie algebra of the stabilizer of n×n matrix multiplication is completely reducible,

connected, and is abstractly isomorphic to F2 ⊕ sln ⊕ sln ⊕ sln. Moreover, matrix multipli-

cation is characterized by the continuous part of its stabilizer. This all follows immediately

from the viewpoint whereby the matrix multiplication tensor is essentially In ⊗ In ⊗ In,

where In is the n × n identity matrix (see, for example, Bürgisser and Ikenmeyer [71]). By

Lemma 4.6.1, any f is equivalent to matrix multiplication if and only if the Lie algebra of

its stabilizer is matrix isomorphic to that of matrix multiplication. By Corollary 4.5.2 we

can test if the Lie algebra of the symmetry group of f is matrix isomorphic to that of matrix

multiplication.

The final consequence follows from Kayal’s randomized algorithm for computing the Lie

algebra of the stabilizer of a polynomial [159].

A similar result holds for iterated matrix multiplication, but we must use much more of

the structure of the Lie algebra of its stabilizer. Iterated matrix multiplication is the function

123

that takes m k×k A1, . . . , Am to the trace of their product tr(A1A2 · · ·Am); we denote this

function IMMk
m. Ben-Or and Cleve showed that IMM3

n is complete for polynomial formula-

size, or equivalently algebraic NC1 [49].

Corollary 4.6.3. Given the Lie algebra of the stabilizer of a multilinear function f : Ck2 ×
· · · ×Ck2 → C on m inputs of k× k matrices, one can determine whether f is multilinearly

equivalent to IMMk
m in poly(m, k) time with an oracle for finding the roots of univariate

polynomials.

Consequently, given f as a black box, there is a poly(n)-time Las Vegas f-algorithm to

determine whether f is equivalent to IMMk
m.

Proof. As with matrix multiplication, IMMk
m is characterized by the continuous part of its

stabilizer, which is the completely reducible Lie group GLk× · · ·×GLk /F
∗, so Lemma 4.6.1

applies. The Lie algebra of its stabilizer is abstractly isomorphic to sl⊕m
k ⊕ Fm−1. In

particular, our results do not apply directly, both because there are Θ(m) many simple

summands, each of which has a nontrivial action of its outer automorphism group on its

representations, and because the abelian part has dimension Θ(m). However, the techniques

used in our results still apply, but require further analysis of the representations appearing

in this matrix Lie algebra.

Towards this end, we describe the stabilizer and its Lie algebra more com-

pletely. The stabilizer is given by all transformations of the form (A1, A2, . . . , Am) 7→
(X−1

1 A1X2, X
−1
2 A2X

−1
3 , . . . , X−1

m AmX1). It is clear that the internal Xi’s all cancel when

we take the product. The outerX−1
1 andX1 do not cancel, but they preserve IMMk

m because

the trace is invariant under conjugation, which is exactly what X1 is doing. However, if the

Xi’s are scalar matrices whose product is the identity, then the above map not only fixed

IMMk
m, but was in fact the trivial map. This explains the single factor of F∗ that we mod

out by in the stabilizer.

The matrix Lie algebra of the stabilizer of IMMk
m then consists of m summands of slk,

where the i-th summand acts in its natural action on the columns of Ai−1, which we treat

as Fk, and in its dual action (by −XT) on the rows of Ai, which we treat as the dual of Fk.

Each F summand of the Lie algebra of the stabilizer corresponds to when some Xi is

scalar. Since Xi acts on both Ai−1 and Ai, the instance of Problem A we get looks like

this, where we use 1 for the standard representation on Fk, and −1 for its dual:

124

slk⊕ slk⊕ slk⊕ · · · ⊕slk⊕ F⊕ F⊕ · · · ⊕F

A1 −1 1 0 · · · 0 1 0 · · · 0

A2 0 −1 1 · · · 0 −1 1 · · · 0

A3 0 0 −1 · · · 0 0 −1 · · · 0
...

...
...

...
...

...
...

...

Am−1 0 0 0 · · · 1 0 0 · · · 1

Am 1 0 0 · · · −1 0 0 · · · −1

Here we have abused terminology slightly and used the input matrices Ai to label the irre-

ducible representations; each Ai is the standard representation of one slk summand tensored

with the dual representation of the next slk summand.

We show that the structure of the corresponding graph of the semisimple part combined

with the structure of the linear code of the abelian part are simple enough that we can solve

matrix isomorphism directly.

The graph corresponding to the semisimple part is an even-length cycle, where the vertices

are alternately labeled by Ai or slk. The edges alternate between having the label 1 and −1.

Suppose that L is any other matrix Lie algebra abstractly isomorphic to the one

above. Then the semisimple part of L is matrix isomorphic to the semisimple part of

Lie(Stab(IMMk
m)) if and only if the corresponding instance of Problem A yields a cyclic

bipartite graph, where each slk summand has exactly one 1 and one −1 in its column. This

is because, given any even-length cycle where alternating vertices are labeled by slk, and

each slk vertex is incident to one edge labeled 1 and one edge labeled −1, there is a choice

of outer automorphisms of the slk summands that will make the labels 1 and −1 alternate

all the way around the cycle.

Once we have put the slk summands of L and the irreducible representations of L into

this order, we then proceed to work on the abelian part. The abelian part consists of an Sn-

invariant linear code, as it is exactly the space of vectors in Fm the sum of whose coordinates

is zero. So the only remaining question is whether the two codes—one from Z(L) and one

from Z(Lie(Stab(IMMk
m)))—are equal. This is easily checked by basic linear algebra.

Corollary 4.6.4. Given the Lie algebra of the symmetry group of a polynomial f on n2

variables, one can determine whether f is linearly equivalent to detn in deterministic poly(n)

125

time with an oracle for finding roots of univariate polynomials.

Remark 4.6.5. Over algebraically closed fields of characteristic zero, this derandomizes

Kayal’s result [159] essentially as much as is currently possible. We will now show that com-

puting the Lie algebra of the symmetry group of a polynomial is in fact equivalent, under de-

terministic polynomial-time many-one reductions, to polynomial identity testing, and

hence cannot be derandomized without proving significant lower bounds [153]. Kayal [159,

Lemma 26] shows how to compute the Lie algebra of the symmetry group of a polynomial

given as a black-box, using the algorithm from [160] for computing the linear dependencies

between a set of polynomials. Kayal [160] noted that computing such linear dependencies

reduces to the search version of polynomial identity testing. The search and decision

versions of polynomial identity testing are equivalent for low-degree functions. Con-

versely, a polynomial is constant if and only if its symmetry group consists of all invertible

transformations of the variables. This holds if and only if the Lie algebra of its symmetry

group consists of all linear transformations of the variables. Once this has been determined,

evaluating the polynomial at any single point will determine whether it is zero or a non-zero

constant.

In some sense, we have thus derandomized Kayal’s algorithm as far as is possible in the

black-box setting without derandomizing polynomial identity testing. Kayal uses ran-

domization at several points, not just in the computation of the Lie algebra of the symmetry

group, and we derandomize those using our deterministic algorithm for matrix isomor-

phism of semisimple Lie algebras from Theorem 4.4.7.

Kayal’s algorithm [159] also uses the ability to diagonalize matrices as a subroutine,

which currently uses randomness over finite fields. We doubt that one can do without this

basic primitive. We thus have removed as much randomness as currently seems possible

from Kayal’s algorithm.

We also note that, even in the dense, non-black-box setting this represents an improve-

ment from 2O(n2) to 2O(n log n). The latter is essentially optimal, since a generic function

that is equivalent to detn will include nearly all monomials of degree n in n2 variables, of

which there are 2Θ(n logn). By the dense setting we mean the setting in which f is given by

a list of coefficients of all monomials of degree n in n2 variables (without loss of generality, f

is homogeneous of degree n). Naive derandomization of Kayal’s algorithm takes time 2O(n2),

126

since step (ii) of his Section 6.2.1 guesses a random element of a space of dimension Θ(n2).

Similarly, testing affine equivalence to the determinant can be solved using quantifier elim-

ination (see, e. g., Basu, Pollack, and Roy [42, Ch. 14]), again in time 2O(n2), because the

witness to equivalence is an n× n matrix together with an n-dimensional vector. However,

computing the Lie algebra of the symmetry group of f only requires solving a linear system

of n2 equations in a number of variables equal to the number of monomials possible, which

is roughly
(n2

n

)

≤ n2n = 2O(n logn).

Proof of Corollary 4.6.4. The Lie algebra of the symmetry group of detn is F ⊕ sln ⊕ sln,

which has only two simple factors plus a center of scalar matrices. By Corollary 4.5.2 we

can test if the Lie algebra of the symmetry group of f is matrix isomorphic to that of detn.

If it is, then act on f by the conjugating matrix so that the Lie algebra is now equal to

that of detn. One might expect to then have to check whether f(X) = f(XT), since this is

also part of the symmetry group of detn, however, this is not necessary, as the determinant

is characterized by the continuous part of its stabilizer (see Proposition 3.4.3). Note that

we have combined here all three main steps of Kayal’s algorithm into a single reduction to

matrix isomorphism of Lie algebras: Kayal uses only the Cartan subalgebra of the

Lie algebra to reduce to permutational and scaling equivalence, then solves permutational

equivalence and scaling equivalence separately.

4.7 Application to abstract isomorphism of Lie algebras

In this section, we discuss the relationship between matrix isomorphism of matrix Lie

algebras and abstract Lie algebra isomorphism.

Generally speaking, if for any class C of Lie algebras one can find a canonical faithful

representation of any Lie algebra in C efficiently, then the abstract isomorphism problem

reduces to the matrix isomorphism problem.

In particular, for Lie algebras with zero center, including semisimple Lie algebras, the

adjoint representation is a canonical faithful representation that is easily computable. Hence

abstract Lie algebra isomorphism Karp-reduces to matrix isomorphism of Lie al-

gebras for centerless Lie algebras, including semisimple.

127

The famous theorems of Ado [5] (characteristic zero) and Iwasawa [148] (positive char-

acteristic) state that every Lie algebra has a faithful finite-dimensional representation (see,

for example, Jacobson [150, Chapter VI] or De Graaf [97, Chapter 6]). De Graaf [96] shows

how to effectivize the Ado’s Theorem, so that the faithful representation is constructible.

However, the bounds on the dimension of the faithful representation are not yet polynomial,

so this does not give a polynomial-time reduction from Lie algebra isomorphism to ma-

trix isomorphism of Lie algebras. The best bound we are aware of is due to Burde

and Moens, and is exponential in the dimension of the solvable radical [68, Proposition 4.3].

For nilpotent Lie algebras of dimension n and nilpotency class c, De Graaf [96] gives the

constructive bound
(n+c

c

)

; in general c may be as large as n − 1 so this is still not polyno-

mial in general, but for fixed nilpotency class it is polynomial. However, even if the bound

were polynomial, it is not clear that De Graaf’s construction algorithm is “canonical” in the

sense that it may yield non-matrix-isomorphic representations of abstractly isomorphic Lie

algebras. See also Burde, Eick, and De Graaf [66] and Burde and Moens [67].

Finally, we note that, because of Levi’s Theorem, for a certain class of Lie algebras we

have already determined the complexity of abstract Lie algebra isomorphism. Recall

the definition of semidirect product of Lie algebras from Section 2.2.4. Levi’s Theorem says

that in characteristic zero, every Lie algebra L is the semidirect product of its radical R by

a semisimple subalgebra S ⊆ L. Any such semisimple subalgebra is called a Levi subalgebra.

Any two Levi subalgebras of L differ from one another only by an automorphism of L (see,

for example, Jacobson [150, Theorem III.9 on p. 92]). Using algorithms for computing the

radical and Levi subalgebra of a Lie algebra, we observe:

Proposition 4.7.1. Over any field of characteristic zero, matrix isomorphism of semi-

simple Lie algebras is Cook-equivalent to (abstract) Lie algebra isomorphism for Lie

algebras with abelian radical.

The above equivalence uses only two queries. If we restrict attention to abstract Lie

algebras with abelian radical with the additional property that the action of a Levi complement

on the radical is faithful, the Cook-equivalence becomes a Karp-equivalence.

Remark 4.7.2. If the ground field is algebraically closed of characteristic zero, the second

query of the Cook reduction above may be replaced by a polynomial-time f-algorithm, and

we get an f-Karp-equivalence.

128

The most natural and obvious equivalence is between matrix isomorphism of semi-

simple matrix Lie algebras and Lie algebra isomorphism of Lie algebras with

abelian radical on which a Levi complement acts faithfully ; this is because matrix Lie algebras

by nature correspond to their own faithful representations. By using a little extra linear

algebra and an additional query to matrix isomorphism, we get the equivalence stated in

the proposition.

Proof. Suppose L1,L2 ⊆Mn(F) are two semisimple matrix Lie algebras. Let V = Fn denote

the vector space on which the Li naturally act. Then we may treat V as an (abstract)

abelian Lie algebra. Since the Lie bracket on V is always zero, any linear map V → V is a

derivation, that is, Der(V) = End(V). Since each matrix in Li induces (or, depending on

your viewpoint, is) a linear map from V → V , we get a natural homomorphism from Li to

End(V) = Der(V); call this homomorphism ϕi. We then construct the abstract Lie algebras

Li⋉ϕi V . Since the radical is characteristic—that is, invariant under all automorphisms—it

is a standard fact about semidirect products that L1 ⋉ϕ1 V and L2 ⋉ϕ2 V are abstractly

isomorphic if and only if there are abstract isomorphisms f : L1 → L2 and g : V → V such

that this pair of isomorphisms makes the actions ϕ1 and ϕ2 equal, that is

ϕ1(x1)(v) = g−1(ϕ2(f(x1))(g(v))) (4.1)

for all x1 ∈ L1, v1 ∈ V . If we treat ϕi(x) as a matrix, then (4.1) says exactly that g : V → V

is a matrix isomorphism between L1 and L2; the isomorphism f here does not affect the sets

of matrices corresponding to Li, only their choice of basis. (This is the same observation

from before: that twisting a representation by an automorphism does not change its image.)

Conversely, suppose L1,L2 are (abstract) Lie algebras whose radicals are abelian. For

each Li we will construct a pair of semisimple matrix Lie algebras (Mi,Ni) such that L1

and L2 are abstractly isomorphic if and only if M1 is matrix isomorphic to M2 and N1 is

matrix isomorphic to N2. If the action of a Levi complement of Li on its radical is faithful,

then Mi will be zero, yielding the second claim of the proposition. For simplicity, we drop

the subscripts 1, 2 and construct from an abstract Lie algebra L a pair of matrix Lie algebras

(M,N).

129

Here we will use several algorithms presented in De Graaf [97]. We present them here to

demonstrate that, under the stated structural assumptions on the Lie algebras, they indeed

involve nothing more than solving linear systems of equations, and hence can be done in

polynomial time.

First we compute the solvable radical use Cartan’s criterion [44] (described in De Graaf

[97, pp. 52–53]): compute a basis {y1, . . . , yk} for the derived subalgebra [L,L], and then

intersect the kernels of the linear maps x 7→ tr(adL x adL yj) over all 1 ≤ j ≤ k. This

intersection is the radical R of L.
Next we compute a Levi subalgebra [220, 98]. When the radical is abelian, as in our case,

the algorithm as presented in De Graaf is quite straightforward, and proceeds as follows [97,

p. 131]. Compute a basis {x1, . . . , xs} for any complement to R in L as a vector space.

Compute the structure constants γ
(k)
i,j of L/R by computing [xi, xj] =

∑

k γ
(k)
i,j xk + rij ,

where rij are arbitrary elements of R. Now let ri be a variable representing an element of

R, and write zi = xi + ri. Then the zi are a basis for a Levi complement if and only if

[zi, zj] =
∑

k γ
(k)
i,j zk, this time with exact equality, rather than with a residue in R. Each

such equation becomes a linear equation in the ri:

[xi + ri, xj + rj] =
∑

k

γ
(k)
i,j (xk + rk)

becomes

[xi, rj] + [ri, xj]−
∑

k

γ
(k)
i,j rk = −[xi, xj] +

∑

k

γ
(k)
i,j xk.

Let S denote this Levi complement; in particular, L = R⋊ S.
Finally, let ϕ : S → Der(R) = End(R) be the representation of S on R induced by the

Lie bracket in L. Compute the kernel of this representation, and denote it M := ker(ϕ).

On a semisimple Lie algebra, the bilinear form defined by (x, y) := tr(ad x ad y) is called

the Killing form. It is nondegenerate, and if the Lie algebra is a direct sum of simple

algebras, then its Killing form is the direct sum of the Killing forms of its simple factors

(see, for example, De Graaf [97, Lemmas 4.3.2 and 4.3.3]). In particular, this means that

S = M⊕N where N is the orthogonal complement of M relative the Killing form; that is,

N = {x : tr(adx, ad y) = 0 for all y ∈ M} is a subalgebra. This complement N is simply

130

computed as the intersection of the kernels of the maps x 7→ tr(adx, ad zi) for each zi in a

basis of M.

Now we have that L = (R ⋊ N) ⊕M where N acts faithfully on R. We treat N as a

matrix Lie algebra via its faithful representation on R. We treat M as a matrix Lie algebra

via its adjoint representation, as in the discussion prior to this proposition.

As in the first part of this proof, L1 and L2 are abstractly isomorphic if and only if

S1 and S2 are matrix isomorphic in their representations on R1 and R2, respectively. The

representation of Si on Ri is completely determined by its kernel Mi and by the matrix

representation of the complement of the kernel, namely Ni. Hence L1 and L2 are abstractly

isomorphic if and only if the Mi are abstractly isomorphic and the Ni are matrix isomorphic

in their representations on the Ri. Since the Mi are semisimple, and in particular centerless,

they are abstractly isomorphic if and only if they are matrix isomorphic in their adjoint

representations.

Finally, if the Levi complement S acts faithfully on R, then M = 0 and we get a Karp

reduction instead of a Cook reduction with two queries.

The remark after the proposition follows from the fact that we only use the second query

to matrix isomorphism of semisimple Lie algebras to determine abstract isomor-

phism of the semisimple Lie algebras Mi, which can be performed by a polynomial-time

f-algorithm when the field is algebraically closed of characteristic zero [95].

Proposition 4.7.1 provides more evidence for the pattern that matrix isomorphism is,

in some sense, a “step up” from abstract Lie algebra isomorphism; see Table 4.1.

Lie algebras abstract isomorphism matrix isomorphism

abelian trivial linear code equivalence

semisimple polynomial time graph isomorphism

abelian radical graph isomorphism Open Question 4.9.1

Table 4.1: The complexity of abstract Lie algebra isomorphism and matrix isomor-

phism of Lie algebras. This table suggests that the latter is “one step up” from the
former.

Not only is the complexity of matrix isomorphism of Lie algebras for matrix Lie

algebras with abelian radicals open, but we suspect it is significantly more complicated than

the semisimple case, since the representations of Lie algebras with abelian radical are not

131

in general completely reducible. The theory of non-completely-reducible representations is

significantly less well-developed than that of completely reducible ones—see Chapter 6 for

more—the latter being essentially completely understood for our purposes.

4.8 Twisted code equivalence reduces to graph isomorphism

The proof of Lemma 4.4.5 suggests that a more general reduction between twisted code

equivalence, as defined in Codenotti [83], and graph isomorphism is possible, which we

give here, even though we do not see any further connection with Lie algebras. Problem

A is a special case of twisted code equivalence with multiplicites. Since it is not

used elsewhere, we give here the definition of twisted code equivalence.

A code (not necessarily linear!) of length n over an alphabet Γ is a subset of Γn. As in

the case of linear code equivalence, the symmetric group acts on codewords and codes

by permuting the coordinates: π · (x1, . . . , xn) = (xπ(1), . . . , xπ(n)), where each xi ∈ Γ. A

permutation π acts on C ⊆ Γn by acting on each of its codewords individually: π · C =

{π ·x : x ∈ C}. Two codes C1, C2 ⊆ Γn are equivalent if there is a permutation π ∈ Sn such

that π · C1 = C2.

For twisted code equivalence, as in Problem A, we will need an extension of these

notions to multiple alphabets. Let Γ1, . . . ,Γr be multiple alphabets. Then a code of length

(k1, . . . , kr) over (Γ1, . . . ,Γr) is a subset of
∏r

i=1 Γ
ki
i . A permutation πi ∈ Ski naturally

acts on the coordinates of Γ
ki
i , as before. Given a list π = (π1, . . . , πr), where πi ∈ Ski , π

naturally acts on codewords, namely, πi permutes the coordinates of the Γ
ki
i part of the code.

Equivalently, we may think of π as defining a permutation in Sk1 × · · · × Skr ⊆ Sk1+···+kr ,

and this permutation acts on the codewords as before. Two such multi-alphabet codes C1, C2

are equivalent if there exists such a list π = (π1, . . . , πr), πi ∈ Ski , such that π · C1 = C2.

Finally, we come to the twisting. Given groups Gi acting on Γi, two multi-alphabet

codes are G-equivalent (G = (G1, . . . , Gr)) if there is a permutation π ∈ Sk1 × · · · × Skr

of the coordinates, and for each coordinate in j ∈ [ki] an element gj ∈ Gi such that, after

applying gj to the letter in the j-th coordinate, and applying the permutation π, the two

codes become equal.

132

An instance of twisted code equivalence consists of: a list of alphabets Γ1, . . . ,Γr,

for each of two codes C1, C2 ⊆ ∏r
i=1 Γ

ki
i a list of every element of each code, and for each

i = 1, . . . , r a permutation group Gi ≤ Sym(Γi).

Proposition 4.8.1. Twisted code equivalence ≤m graph isomorphism.

Here we assume the twisting groups Gi are given by listing all of their elements as

permutations, so the size of the input is at least
∑r

i=1 |Gi||Γi| log |Γi|. We leave it as Open

Question 4.8.2 whether a similar reduction exists that does not depend on the order of the

groups.

Proof. Bouwer [62] and Babai [20] independently showed that for any permutation group

G ≤ Sn, there is a graph X of size roughly n3|G| such that G is abstractly isomorphic to

Aut(X) and there is a subset Y of the vertices of X such that Aut(X) · Y = Y and Aut(X)

permutes the vertices of Y in the same manner that G permutes the set {1, . . . , n}. In other

words, the restriction of Aut(X) to the vertices in Y is permutationally isomorphic to G.

This is exactly the property we needed of the “color palettes” in Lemma 4.4.5. Moreover,

from the description in Babai [20] it is clear that this graph can be constructed in time

essentially linear in the size of the graph, which is polynomial in the size of the code and

twisting groups.

For each twisting group Gi, we use the above graphs as the color palettes, and the rest

of the proof proceeds as in Lemma 4.4.5, only slightly simpler. In Lemma 4.4.5 each color

palette consisted of multiple copies of a color gadget, because of the possibility that the

twisting group would have multiple orbits of the same type. Here, all the orbits of the

action of the twisting group Gi on Γi are known ahead of time, and are built into the color

pallete directly via the construction of Babai and Bouwer.

Open Question 4.8.2. Is there a Karp-reduction from twisted code equivalence to

graph isomorphism that does not depend on the order of the groups Gi?

The above is at least plausible, as each Gi might be given by a generating set of per-

mutations. Since the degree of each Gi is |Γi|, Gi has a generating set of size at most

O(|Γi| log |Γi|), so the running time might only need to depend on the code length
∑

ki and

the alphabet sizes |Γi|.

133

However, the above proof does not work in this stronger setting, even if the sizes of the

constructions of Babai [20] and Bouwer [62] could be improved. This follows from the fact

that the alternating group An can be generated by only two elements, but there is a constant

c > 1 such that any graph G with Aut(G) isomorphic to An must have at least cn elements

[182].

4.9 Future work

Matrix isomorphism of matrix Lie algebras arises in Geometric Complexity The-

ory and affine equivalence of polynomials. We solved matrix isomorphism of

Lie algebras over algebraically closed fields of characteristic zero in polynomial time for

several important classes of Lie algebras—namely abelian diagonalizable, semisimple, and

completely reducible (=abelian diagonalizable ⊕ semisimple)—under various quantitative

constraints, using an oracle for finding roots of single-variable polynomials. We showed that

without these quantitative constraints, these cases of matrix isomorphism of matrix Lie

algebras all become at least as hard as graph isomorphism. In Section 4.9.1 we discuss

the possibility of and difficulties in extending our results to other fields. In Section 4.9.2 we

discuss the relationship between Lie algebra isomorphism and finite group isomor-

phism. Finally, in Section 4.9.3 we present additional open questions.

4.9.1 Other fields

Here we discuss the main difficulty in extending our results to other fields. Extending our

results to finite fields will be the subject of future work; in this section we outline what we

believe are the necessary ingredients.

The main Lie-theoretic ingredients of our results were:

1. Efficiently finding abstract isomorphisms of (semisimple) Lie algebras

2. An efficient version of highest weight theory for representations

In the setting we are working in—semisimple Lie algebras over an algebraically closed

field of characteristic zero—the two ingredients above are essentially equivalent to being able

to construct and diagonalize Cartan subalgebras of matrix Lie algebras. Over other fields,

134

we can make additional natural assumptions, discussed in the next few sections, so that (1)

and (2) are still equivalent to finding and diagonalizing Cartan subalgebras. The latter task

then becomes the main bottleneck, as discussed below.

We note that all of the assumptions we introduce over finite fields are satisfied by the

matrix Lie algebras arising in the instances of linear equivalence of polynomials to

which we apply our results in Section 4.6.

Semisimple versus classical

The definition of semisimplicity—containing no abelian ideals—implies the Cartan–Killing

classification in characteristic zero. Even over non-algebraically closed fields of characteristic

zero this remains true: if L is a semisimple Lie algebra over any field F of characteristic zero,

then L ⊗F F is F-isomorphic to one of the Lie algebras in the Cartan–Killing classification.

For a given Cartan–Killing type—An, Bn, etc.—the problem of determining all semisimple

Lie algebras over F that are of that type over F is a major open problem called “the problem

of (F-)forms.” We discuss one aspect of this in more detail in the next section.

However, in positive characteristic semisimplicity does not imply the Cartan–Killing clas-

sification. To recover the Cartan–Killing classification in positive characteristic, we must

restrict our attention to the so-called “classical” Lie algebras, in the sense of Mills and Selig-

man [204] (see also Seligman [234]). We note that many authors, for example Fulton and

Harris [116] use the term “classical” in a more colloquial and confined sense, to mean those

Lie algebras of type A,B,C,D (sl, so, and sp); these algebras are “classical” in the sense of “of

or pertaining to the classics,” whereas the meaning we use here, due to Mills and Seligman,

is a term of art. The Mills–Seligman definition works over any field of characteristic 6= 2, 3,

and yields especially nice results over perfect fields of characteristic 6= 2, 3. Recall that a

field is perfect if either it has characteristic zero, or it has characteristic p and every element

is a p-th power. In particular, all finite fields are perfect.

It bears repeating that over any finite field Fq of characteristic 6= 2, 3, the simple classical

Lie algebras are exactly classified by the Cartan–Killing “A,B,C,D,E,F,G” classification,

and every classical Lie algebra is a direct sum of simple classical ones. The classical Lie

algebras are constructed in the same manner as they are over an algebraically closed field

of characteristic zero, and they have the same outer automorphism groups. In particular,

135

classical Lie algebras contain split Cartan subalgebras. See Seligman [234] for details. We

expect any immediate extension of our results to finite fields to only work in the classical

case.

The main bottleneck: finding split Cartan subalgebras

As we mentioned at the beginning of Section 4.9.1, under appropriate assumptions finding

and diagonalizing a Cartan subalgebra is the algorithmic keystone needed for our results.

Here we discuss how this presents a difficulty over non-algebraically closed fields, even for

classical Lie algebras.

Recall that a Cartan subalgebra is split if it can be diagonalized over the ground field. If

we are working in an abstract Lie algebra, then a Cartan subalgebra is split if and only if it

can be diagonalized over the ground field in the adjoint representation.

For readers acquainted with the the algebraically closed case, the fact that finding a split

Cartan subalgebra is an issue may at first seem surprising, due to the following two facts:

1) in every classical abstract Lie algebra there is a basis, called a Chevalley basis, such that,

in the adjoint representation, the Cartan subalgebra has a basis of diagonal matrices over Z

in characteristic zero, or Fp = Z/pZ in characteristic p (regardless of the ground field F!);

and 2) any two Cartan subalgebras are conjugate by an inner automorphism over F. Now,

if a matrix A over F is conjugate over F to a diagonal matrix over Z (respectively, Z/pZ),

then A’s eigenvalues are integral, and in particular lie in F. But then A’s eigenvectors are

defined over F as well, so A is in fact diagonalizable over the ground field F. It thus seems

that if we find any Cartan subalgebra of L, it is F-conjugate to a Cartan subalgebra defined

over Z, so should have weights over Z, and so should in fact be diagonalizable over F.

What went wrong? The issue is that, except in very small cases, the Cartan subalgebra

is not spanned by a single matrix! A Cartan subalgebra H over F may have the property

that no F-basis of H is F-conjugate to a set of integral diagonal matrices. That is, in order

to get a basis of H ⊗F F that is F-conjugate to integral diagonal matrices, one must take

linear combinations of some F-basis of H using coefficients from the algebraic closure F. This

phenomenon is closely related to the so-called “issue of forms” mentioned at the beginning

of this section.

136

In particular, although De Graaf, Ivanyos, and Rónyai [94] gave an algorithm to com-

pute a Cartan subalgebra over any field of characteristic zero using only polynomially many

arithmetic operations (see our discussion in Phase I of the proof of Theorem 4.3.1), this does

not immediately allow our results to go through for non-algebraically closed fields of charac-

teristic zero. Moreover, Babai has suggested [24] that over Q finding matrix isomorphisms of

simple classical matrix Lie algebras may be at least as hard as factoring integers; this is by

analogy with a result of Rónyai, which says that determining isomorphism of 4-dimensional

central simple associative algebras over Q is at least as hard as factoring squarefree integers

under Las Vegas polynomial-time many-one reductions, assuming the Generalized Riemann

Hypothesis [225].

Over finite fields, however, there is a Las Vegas polynomial-time algorithm for finding a

split Cartan subalgebra of an abstract Lie algebra, due to Ryba [229]. We note that even as

an f-algorithm, Ryba’s algorithm is a Las Vegas polynomial-time f-algorithm; that is, it uses

more randomness than just that needed for factoring polynomials over finite fields.

Ingredients for finite fields

In this section we outline the other ingredients we believe are needed to extend our results

to the finite field case. We have already mentioned that the term “semisimple” must be

replaced by “classical” and the term “simple” by “simple classical.”

Next, because Ryba’s algorithm is a Las Vegas polynomial-time f-algorithm, wherever

our results use an f-algorithm or f-reduction, over finite fields they would at best turn into

Las Vegas f-algorithms and Las Vegas f-reductions, respectively.

We also need an analog of the highest weight theory for classical Lie algebras over finite

fields. This is furnished by theorems of Curtis [91], but only for so-called “restricted” repre-

sentations of “restricted” Lie algebras. All classical Lie algebras are restricted (see Jacobson

[150, Corollary on p. 191]), so that is no further assumption for us, but assuming that the

representation is restricted may be a necessary additional assumption.

Although we will not go into further details, we give the definition of restricted here. A

Lie algebra L over a field of positive characteristic p is restricted if for every x ∈ L, there
is a y ∈ L such that (ad x)p = ad y. Given a restricted Lie algebra, we may define a “p-th

power operation” by x 7→ x[p] = y, with x and y as before. A restricted representation of a

137

restricted Lie algebra is then a representation ρ : L → Mn such that ρ(x[p]) = ρ(x)p for all

x ∈ L, where the latter notation means taking the p-th power of ρ(x) as a matrix.

Curtis [91] showed that the irreducible restricted representations of a classical Lie algebra

in positive characteristic are in bijective correspondence with their highest weights, which

are now linear maps from a split Cartan subalgebra to the prime field Fp, where p is the

characteristic of the ground field F.

However, it seems like we need to add yet another assumption: that the representations

we are dealing with are completely reducible. In characteristic zero this follows for free

from semisimplicity, but in positive characteristic it does not. Indeed, Jacobson [149, 150]

showed that in positive characteristic every Lie algebra has a faithful representation that

is completely reducible as well as a faithful representation that is not completely reducible.

Furthermore, a restricted Lie algebra has the property that all of its restricted representations

are completely reducible if and only if the Lie algebra is abelian and the p-th power mapping

is injective [140].

Finally, we may need to assume that the characteristic p is greater than both the dimen-

sion of the Lie algebra and the size n of the matrices. This allows Lemma 8.5.1 of De Graaf

[97]—which says that inner automorphsims extend to representations, and allows us to move

from automorphisms to outer automorphisms, as in Lemma 4.4.3 above—to be extended to

the finite field case, since then the matrix exponential of a nilpotent n × n matrix is well-

defined and has the usual properties. That a nilpotent element of a Lie algebra corresponds

to a nilpotent matrix in any representation of that Lie algebra comes from the Jordan de-

composition for restricted Lie algebras in positive characteristic (see, for example, Seligman

[234, Theorem V.7.2]).

We believe that the above ingredients are enough to extend our results to Las Vegas

polynomial-time f-algorithms and f-reductions over finite fields, but have not checked this

carefully and so do not state any theorems. To summarize, we have introduced the following

assumptions:

1. Classical d-dimensional Lie algebras of n×n matrices, possibly direct sum with abelian

diagonalizable matrix Lie algebras (as in Corollary 4.5.2)...

2. ...over finite fields of characteristic p > max{d, n}, and p 6= 2, 3...

138

3. ...whose corresponding representation is completely reducible...

4. ...and L is closed under taking the p-th power of any of its matrices, that is, the

corresponding representation is restricted.

4.9.2 Connections with finite group isomorphism

The group isomorphism problem is: given two groups by their multiplication tables, deter-

mine whether they are isomorphic. For matrix isomorphism of matrix Lie algebras

we used, among other things, algorithms of Babai [27, Theorem 7.1] and Babai, Code-

notti, and Qiao [28] for linear code equivalence and twisted code equivalence,

respectively. These algorithms were developed in the course of investigations into group

isomorphism for finite groups with no abelian normal subgroups; this is the analog of the

definition of semisimple Lie algebras. It is striking that the same algorithms appear useful

in both cases. In this section we provide some further commentary and speculations on this

connection.

We begin with the similarities. To avoid repetition, we use the term “object” to refer

to either a group or a Lie algebra, and the term “normal subobject” to refer to “normal

subgroup” in the group case and “ideal” in the Lie algebra case. In the setting of Lie

algebras, abelian Lie algebras are excluded from being simple by definitional fiat; in order to

make the analogy with groups cleaner, in the following we nonetheless refer to 1-dimensional

abelian Lie algebras as “abelian simple.”

In both Lie algebras and finite groups...

• The definitions of direct sum, abelian, nilpotent, nilpotency class, upper/lower central

series, solvable, derived series, simple, direct sum or product, and semidirect product

are exactly analogous;

• There is a unique maximal solvable normal subobject called the solvable radical. More-

over, the quotient of an object by its solvable radical contains no solvable normal

subobjects. Equivalently, this quotient contains no abelian normal subobjects;

• The direct summand decomposition of a direct sum of non-abelian simple objects is

unique “on the nose:” the summands are determined uniquely as sets, not only up to

isomorphism;

139

• The direct summand decomposition of a direct sum of abelian simple objects is not

unique. Indeed, in both cases such direct sums are exactly vector spaces, and every

vector subspace is a normal subobject;

• There is a feeling that class 2 nilpotent objects are somehow universal for all nilpotent

objects. In the case of finite group isomorphism this is folklore; in the case of Lie

algebras, we may take the so-called “wildness” of abstract Lie algebra isomorphism

for nilpotent Lie algebras of class 2 [47, 46] as evidence of the universality of class 2.

• Finally, representations of nilpotent objects in the natural characteristic are not in

general completely reducible. In other words, in this setting, there are representations

that cannot be decomposed as a direct sum, but that are not irreducible, that is, they

do contain a nontrivial proper sub-representation.

Here, by the “natural characteristic” of a Lie algebra over F we mean the characteristic of

F; the “natural characteristic” of a finite p-group is p. Every finite nilpotent group is the

direct product of its maximal (that is, Sylow) groups of prime power order; by the “natural

characteristic” of such a nilpotent group we mean any prime dividing the order of the group,

or equivalently, the natural characteristic of any subgroup of prime power order.

However, in the case of Lie algebras, there are nilpotent Lie algebras of characteristic

zero, whereas there are no finite nilpotent groups of “characteristic zero.” Lie algebras in

characteristic zero have several strong structural theorems that are known not to hold for

finite groups:

• Levi’s Theorem (see Theorem 2.2.4) says that every Lie algebra in characteristic zero

is not just an extension of a solvable one by one with no abelian ideals, but that it is

in fact a semidirect product (also called a split extension) of the solvable radical by the

(semisimple) quotient.

• In characteristic zero, a Lie algebra with no abelian ideals is a direct sum of (non-

abelian) simple Lie algebras. (In contrast, a finite group with no abelian normal

subgroups is the extension of a direct sum of non-abelian simple groups by a solvable

group of derived length at most 3 and a permutation group of logarithmic degree. See,

for example, Babai, Codenotti, Grochow, and Qiao [27].)

140

• The classification of simple Lie algebras in characteristic zero is significantly simpler

than the classification of finite simple groups. Indeed, via Chevalley bases and tensoring

with finite fields, one can get from simple Lie algebras the so-called Chevalley finite

simple groups, yet there are many other finite simple groups that greatly complicate

their classification.

• In characteristic zero, a Lie algebra is solvable if and only if its derived subalgebra is

nilpotent.

• In characteristic zero, solvable Lie algebras are iterated semi-direct products of abelian

Lie algebras (see, for example, De Graaf [96]). In particular, every Lie algebra in

characteristic zero is an iterated semidirect product of abelian Lie algebras and simple

Lie algebras.

Lie algebras of characteristic zero thus provide a potentially fertile testing ground where the

issues of positive characteristic and nilpotency may be teased apart.

There is of course the danger that Lie algebras in characteristic zero, despite being very

nice in the above ways, may present other difficulties that do not arise in the case of finite

groups. Over non-algebraically closed fields, the problem of forms rears its ugly head. For

example, even if we understood Lie algebras over, say, Q, to our satisfaction, this does

not automatically yield the same level of understanding of Lie algebras over Q, as two Lie

algebras over Q might be non-isomorphic despite being isomorphic after tensoring with Q.

We saw this problem already for semisimple Lie algebras in Section 4.9.1. In addition to

the problem of forms, it is possible that by working over an infinite field, or especially a

topological field such as C, that there is simply a richer variety of behaviors possible because

there is more “room” for them.

There is also a basic difference in terms of computational complexity between Lie al-

gebra isomorphism and group isomorphism, but this difference actually works in our

favor. The difference to which we refer is that Lie algebras are given by bases and struc-

ture constants, whereas in group isomorphism the groups are given by listing all of their

elements and the entire multiplication table. Of course, over an infinite field the latter is im-

possible for a Lie algebra, but over finite fields it is not. Hence, polynomial-time algorithms

for Lie algebras given by bases are in fact much stronger than polynomial-time algorithms

141

for groups given by multiplication tables. For a Lie algebra of dimension n over a finite

field Fq, even a simply-exponential-time algorithm, that is, 2O(n), becomes polynomial-time

if the Lie algebra is given by listing all its elements, as a group would be given. For ex-

ample, Babai’s simply-exponential time algorithm for linear code equivalence becomes

polynomial-time if the codes have dimension Ω(n) and are given by listing their elements

rather than by bases.

Thus, it should perhaps not be disappointing that for Lie algebras given by bases, the

matrix isomorphism problem is as hard as graph isomorphism. Indeed, the equivalence

between matrix isomorphism of semisimple Lie algebras and graph isomorphism

in Theorem 4.4.1, combined with the best-known algorithm for graph isomorphism [35]

(see also [33])—which takes time 2O(
√
n(logn)3/2)—immediately yields an 2O(n(log n)3/2) al-

gorithm for matrix isomorphism of semisimple Lie algebras of n×n matrices. If our

results extend to finite fields, as suggested in Section 4.9.1, this would yield a N (log logN)3/2

algorithm for matrix isomorphism of semisimple Lie algebras over a finite field given

by listing their elements, where N is the size, rather than dimension, of the Lie algebra. This

would be better than the best known bound on the running time of algorithms for finite

group isomorphism; in the case of finite groups, the “almost-trivial” algorithm of trying

all possible irredundant generating sets take N logN+O(1) time, an observation which is cred-

ited to Tarjan (see Miller [203]). This all suggests that, from the point of view of the analogy

with finite group isomorphism, Theorem 4.4.1 should in fact be taken as a statement of

how easy matrix isomorphism of semisimple Lie algebras is, rather than how hard.

This “easiness” agrees with the situation in finite groups, where Babai, Codenotti, and

Qiao [28], building off of joint work with the author [27], use their algorithm for twisted

code equivalence, amongst other techniques, to give a polynomial-time algorithm for

group isomorphism of groups with no abelian normal subgroups.

In our work on matrix isomorphism of Lie algebras, we were naturally led to the

problem of twisted code equivalence (more precisely, Problem A, which is a special

case), and to Babai’s algorithm for linear code equivalence (see the unifying viewpoint

in Section 4.5, particularly the discussion preceding Corollary 4.5.2). Moreover, the instances

of twisted code equivalence appearing in matrix isomorphism are somewhat simpler

than those appearing in finite group isomorphism: in the Lie algebra case, the twisting

142

groups are the outer automorphism groups of simple Lie algebras, which are all trivial, S2,

or S3, whereas in the finite groups case, the twisting groups are permutation groups of

logarithmic degree in the order of the group.

In summary, we believe that

1. the structural similarities, simpler in the case of Lie algebras,

2. the linear-algebraic nature of Lie algebras,

3. the algorithmic similarities already encountered,

4. and the existence of strong structural theorems for Lie algebras in characteristic zero,

particularly the ability to tease apart nilpotency from positive characteristic in the

case of Lie algebras,

all suggest that Lie algebra isomorphism and matrix isomorphism of matrix Lie

algebras may provide a gentler slope to climb than tackling finite group isomorphism

directly, and that techniques discovered for Lie algebras may be of use for finite groups.

Finally, we would be remiss if we did not mention some of the more direct connections that

are known between groups and Lie algebras. First, Lie algebras originally arose in the study

of Lie groups, where they have proven to be an incredibly useful tool for understanding the

structure and representation theory of Lie groups (see, for example, Fulton and Harris [116]).

But even for groups that are not Lie groups, Lie algebras play an important role. We have

already mentioned the finite Chevalley groups, but see Alperin [10] for a discussion of the

use of Lie methods in finite group theory in general. Next, although there is no such thing as

a finite group “of characteristic zero,” there are infinite nilpotent groups that are essentially

of “characteristic zero.” Namely, every finitely generated torsion-free (having no elements

of finite order—in some sense as far from being finite as possible) nilpotent group is the

lattice of integer points in a nilpotent Lie group over R, the so-called “Mal′cev completion”

of the group [190]. These groups may also be a good starting point for understanding the

algorithmic aspects of nilpotency while avoiding positive characteristic. It is known that the

isomorphism problem for finitely presented nilpotent groups is decidable by an algorithm

[131], though the current algorithms seem far from efficient. Finally, for finite p-groups,

there are several correspondences with various kinds of algebras, including Lie algebras. For

143

the Mal′cev and Lazard Correspondences, we refer the reader to the excellent books by

Khukro [163, 164] and the lecture notes of Mazza [196]. For correspondences with Jordan

algebras, we refer to the recent work by James Wilson [276, 277].

4.9.3 Open Questions

In characteristic zero, the completely reducible case is not far from the general case, though

significant obstacles remain. Levi’s Theorem says that every Lie algebra is the semi-direct

product of a solvable Lie algebra by a semisimple one; a solvable Lie algebra is an iterated

extension of abelian Lie algebras (see Section 2.2.4 for definitions). The completely reducible

case, which we resolved, restricts the solvable part to be abelian, and restricts the semidirect

product to be direct. The complexity of matrix isomorphism of Lie algebras in general

remains open, but we believe the following is an achievable next target:

Open Question 4.9.1. What is the complexity of matrix isomorphism of Lie alge-

bras that are semidirect products of abelian by semisimple? Or even direct products, but

in which the abelian part is not diagonalizable?

As discussed in Section 4.9.1, the main obstacle to extending our results to other fields is

the ability to find a split Cartan subalgebra; Ryba [229] gives a Las Vegas polynomial-time

algorithm for this over finite fields. Can we do away with the additional randomness Ryba

uses, and can this be done at all over non-algebraically closed fields of characteristic zero?

Open Question 4.9.2. What is the exact complexity of matrix isomorphism of Lie

algebras over R, Q, number fields, or finite fields? In particular, in a classical Lie algebra

over these fields, is it possible to find a split Cartan subalgebra in deterministic polynomial

time with a root-finding oracle?

We essentially derandomized Kayal’s algorithm for testing equivalence to the determi-

nant, except for a part of the algorithm that is equivalent to polynomial identity test-

ing and the use of a root-finding oracle. In characteristic zero root-finding can be done

deterministically, but there is an issue of accuracy, as discussed in Section 4.1.2:

Open Question 4.9.3. Is there a polynomial-time algebraic algorithm that will find a

basis of a Cartan subalgebra of a semisimple matrix Lie algebra over C or Q such that

144

the eigenvalues of each basis element are separated by at least 2−nc for some polynomial

nc? If so, this would yield truly polynomial-time algorithms for matrix isomorphism

of semisimple matrix Lie algebras over Q or C under the same assumptions used in

Theorems 4.4.7, 4.4.8 and 4.5.2.

It would also be nice to know whether there is a way around polynomial identity

testing and root-finding, though we suspect there is not:

Open Question 4.9.4. Show that testing equivalence to the determinant is as hard as

polynomial identity testing, or give a deterministic polynomial-time algorithm for it

in the black-box setting. In the dense setting, can equivalence to the determinant be tested

in time poly(t) where t is the number of non-zero monomials of the input function?

Open Question 4.9.5. Show that matrix isomorphism of Lie algebras of the classes

discussed in this paper is as hard as root-finding.

Finally, there are two avenues for further progress on affine equivalence to symmetry-

characterized functions using matrix isomorphism of Lie algebras. First, although

graph iso-morphism-hardness may seem to be the “final” word in the short term, in

the application to affine equivalence we may be able to avoid graph isomorphism

altogether. Matrix isomorphism of Lie algebras is most directly useful for testing

affine equivalence to symmetry-characterized functions such as the determinant and matrix

multiplication. Not every Lie algebra can arise as the Lie algebra of the symmetries of

a symmetry-characterized function. It is possible that the properties of such Lie algebras

are strong enough to avoid the full difficulty of graph isomorphism, as we did in Corol-

lary 4.6.3, despite the fact that the Lie algebra in that case was certainly large enough to

support the general reduction from graph isomorphism. We are not aware of any poly-

nomials characterized by the continuous part of their stabilizers whose stabilizers are large

enough to support the reduction from general graph isomorphism, aside from IMMk
m,

which we have already shown how to handle efficiently. Second, in addition to the Lie al-

gebra of the symmetries of a function, a function may have a finite group of symmetries

“sitting on top of” the Lie algebra.

Open Question 4.9.6. What is the complexity of testing conjugacy of finite groups of

symmetries, arising from symmetry-characterized functions?

145

Appendix on terminology

An original version of this work was titled “Lie algebra conjugacy.” In this appendix we

explain the change in terminology.

We chose the term “matrix isomorphism of matrix Lie algebras” for several

reasons: it is concrete; it distinguishes the problem being studied from other closely related

problems; it is consistent with other similar usages in complexity theory; and finally, it

makes it clear that the problem being studied falls squarely into the same camp as other

isomorphism problems so well-known to complexity theorists. This latter reason is partially

justified a posteriori by the results in this chapter.

We start with the analogy of permutation groups. A permutation group is typically

defined as a group G of permutations, or as a subgroup G ≤ Sd for some d (for the moment

we restrict attention to finite groups). Taken literally, this terminology as stated might seem

redundant, as every finite group is a permutation group, by Cayley’s Theorem. However,

implicit in the usage of this definition is that, if we were to consider the abstract structure of

a permutation group, it is actually a group G together with an injective group homomorphism

G →֒ Sd for some d. This also fits well with the computational paradigm, where the manner

in which the group is presented can greatly affect the algorithms available for use on it

and their complexities. Thus there are many algorithmic papers considering various abstract

group problems, such as isomorphism, for permutation groups—that is, groups given as input

to the algorithms by permutations.

There are two possible notions of isomorphism of permutation groups: isomorphism as

abstract groups, or isomorphism in a way that preserves the permutation structure. The

latter is given by a bijection π : {1, . . . , d} → {1, . . . , d} such that πG1π
−1 = G2. This is

referred to as “permutational isomorphism.” See, for example Codenotti [83].

Similarly, we have defined “matrix isomorphisms” of “matrix Lie algebras.” Thus, “ma-

trix isomorphism of matrix Lie algebras” is the problem considered in this chapter,

whereas “isomorphism of matrix Lie algebras” would be the problem of determining

whether two matrix Lie algebras, given as matrices, were abstractly isomorphic.

We considered alternatives using the word “equivalence” but ultimately rejected them

because of its usage in representation theory. The term “equivalent representations” has been

completely standard in the literature for nearly 100 years. Additionally, the equivalence of

146

representations is also defined in terms of conjugacy, so there was some potential confusion

with this term. Indeed, Lemma 4.4.3 shows that matrix isomorphism is the same as

determining whether two representations of a Lie algebra are equivalent up to automorphisms.

Finally, we note that, analogous to the case of permutation groups, the Ado–Iwasawa

Theorem states that every abstract finite-dimensional Lie algebra is abstractly isomorphic

to a matrix Lie algebra [5, 148] (see Section 4.7 for more details). The Ado–Iwasawa The-

orem is, however, significantly more difficult than Cayley’s Theorem on finite groups. In

particular, Cayley’s Theorem simply uses the left regular action of a group G on itself by left

multiplication. In contrast, in the case of Lie algebras, any x in the center acts trivially, so

the left adjoint representation of a Lie algebra is not in general faithful. The adjoint is the

Lie algebra analogue of the representation by conjugation in groups, where the center also

acts trivially; the point is that for Lie algebras in general there is no “regular” representation,

and the adjoint is the closest we get.

147

CHAPTER 5

THE COMPLEXITY OF EQUIVALENCE RELATIONS

This chapter is based on the author’s joint paper with Fortnow [109]. We have a few small

updates to report since the paper first appeared, in the form of new (to us) references:

the group membership problem in PSL2(Z) can be solved in polynomial time [133], and

hence subgroup equality in PSL2(Z) might lie in PEq\Ker(FP); computably enumerable

equivalence relations are actively being studied [121, 13]; and there are individual groups

whose word equality problems are NP-complete [230, 54, 162], thus furnishing examples

of natural NP-complete equivalence relations, which was an open question in our original

paper.

5.1 Introduction

Equivalence relations and their associated algorithmic problems arise throughout mathe-

matics and computer science. Examples run the gamut from trivial—decide whether two

lists contain the same set of elements—to undecidable—decide whether two finitely pre-

sented groups are isomorphic [212, 60]. Some examples are of great mathematical impor-

tance, and some are of great interest to complexity theorists, such as graph isomorphism

(GraphIso).

Complete invariants are a common tool for finding algorithmic solutions to equivalence

problems. Normal or canonical forms—where a unique representative is chosen from each

equivalence class as the invariant of that class—are also quite common, particularly in algo-

rithms for GraphIso and its variants [141, 142, 35, 118, 202, 32]. More recently, Agrawal

and Thierauf [8, 260] used a randomized canonical form to show that Boolean formula

non-isomorphism (FI) is in AMNP. The monograph by Thierauf [260] gives an excellent

overview of equivalence and isomorphism problems in complexity theory more generally.

Many efficient algorithms for special cases ofGraphIso have been upgraded to canonical

forms or complete invariants. Are these techniques necessary for an efficient algorithm? Are

148

these techniques distinct? Gary Miller [202] pointed out that GraphIso has a polynomial-

time complete invariant if and only if it has a polynomial-time canonical form (see also [132]).

The general form of this question is central both in Blass and Gurevich [56, 57] and here:

are canonical forms or complete invariants necessary for the efficient solution of equivalence

problems?

In 1984, Blass and Gurevich [56, 57] introduced complexity classes to study these algo-

rithmic approaches to equivalence problems. Although we came to the same definitions and

many of the same results independently, this work can be viewed partially as an update and

a follow-up to their papers in light of the intervening 25 years of complexity theory. The

classes UP, RP, and BQP, the function classes NPMV (multi-valued functions computed

by NP machines) and NPSV (single-valued functions computed by NP machines), and

generic oracle (forcing) methods feature prominently in this work.

Blass and Gurevich [56, 57] introduced the following four problems and the associated

complexity classes. Where they use “normal form” we say “canonical form,” though the

terms are synonymous and the choice is immaterial. We also introduce new notation for

these complexity classes that makes the distinction between language classes and function

classes more explicit. For an equivalence relation R ⊆ Σ∗ × Σ∗, they defined:

The recognition problem: given x, y ∈ Σ∗, decide whether x ∼R y.

The invariant problem: for x ∈ Σ∗, calculate a complete invariant f(x) ∈ Σ∗ for R, that

is, a function such that x ∼R y if and only if f(x) = f(y).

The canonical form problem: for x ∈ Σ∗ calculate a canonical form f(x) ∈ Σ∗ for R,

that is, a function such that x ∼R f(x) for all x ∈ Σ∗, and x ∼R y implies f(x) = f(y).

The first canonical form problem: for x ∈ Σ∗, calculate the first y ∈ Σ∗ such that y ∼R x.

Here, “first” refers to the standard length-lexicographic ordering on Σ∗, though any ordering

that can be computed easily enough would suffice.

The corresponding polynomial-time complexity classes are defined as follows:

Definition 5.1.1. PEq consists of those equivalence relations whose recognition problem

has a polynomial-time solution. Ker(FP) consists of those equivalence relations that have a

polynomial-time computable complete invariant. CF(FP) consists of those equivalence re-

lations that have a polynomial-time canonical form. LexEqFP consists of those equivalence

relations whose first canonical form is computable in polynomial time.

149

We occasionally omit the “FP” from the latter three classes. It is obvious that

LexEq ⊆ CF ⊆ Ker ⊆ PEq,

and our first guiding question is: which of these inclusions is tight?

5.1.1 Examples

To get a better feel for these complexity classes and help motivate them, we begin with

several examples, especially including those that potentially witness the separation of these

classes. Some of these will be discussed in more depth in Section 5.3.2. We also rephrase

some of the examples we have already mentioned using these classes.

Example 5.1.2. Graph isomorphism is in NPEq—equivalence problems decidable in

NP—and is in Ker(FP) if and only if it is in CF(FP) [202] (see also [132]). In fact,

this result also holds for any function class that is closed under FP reductions such as

FPNP∩coNP.

Example 5.1.3. Boolean formula equivalence—do two Boolean formulae compute

the same function—is in coNPEq, and is coNP-complete: to check if ϕ is a tautology, see

if it is equivalent to the constant-true formula 1.

Example 5.1.4. Sorting a list is a first canonical form for set equality. Set equality is thus

in LexEqFP.

Example 5.1.5. The characteristic polynomial is a polynomial-time complete invariant for

graph cospectrality. No polynomial-time canonical form is known for this problem, so

graph cospectrality is a potential witness to CF 6= Ker.

Example 5.1.6. The subgroup equality problem is: given two subsets of a group G determine

if they generate the same subgroup. For permutation groups on {1, . . . , n}, this problem lies

in CF(FP), via a simple modification [23] of the classic techniques of Sims [242, 243], whose

analysis was completed by Furst, Hopcroft, and Luks [119] and Knuth [167]. The subgroup

equality problem can also be solved in P for (finitely generated) subgroups of PSL2(Z) [133].

Subgroup equality problems are a potential source of witnesses to Ker 6= PEq.

150

Although factoring integers is not an equivalence problem, its hardness would imply

CF 6= Ker, as the next proposition shows. In Section 5.3.2, we show a similar result based

on the hardness of any collision-free hash function that can be computed deterministically.

The proof of this proposition highlights what seems to be an essential difference between

CF and Ker.

Proposition 5.1.7. If CF = Ker then integers can be factored in probabilistic polynomial

time.

Proof. Suppose we wish to factor an integer N . We may assume N is not prime, since

primality can be determined in polynomial time [6], but even much weaker machinery lets

us do so in probabilistic polynomial time [251, 219], which is sufficient here. By hypothesis,

the kernel of the Rabin function x 7→ x2 (mod N):

RN = {(x, y) : x2 ≡ y2 (mod N)}

has a canonical form f ∈ FP.

Randomly choose x ∈ Z/NZ and let y = f(x). Then x2 ≡ y2 (mod N); equiva-

lently, (x − y)(x + y) ≡ 0 (mod N). If y 6≡ ±x (mod N), then since neither x − y nor

x + y is ≡ 0 (mod N), gcd(N, x − y) is a nontrivial factor z of N . Let r(N) be the

least number of distinct square roots modulo N . Then Prx[y 6≡ ±x] ≥ 1 − 2
r(N)

. Since

N is composite and odd without loss of generality, r(N) ≥ 4. Thus Prx[y 6≡ ±x] =

Prx[the algorithm finds a factor of N] ≥ 1
2 . Recursively call the algorithm on N/z.

5.1.2 Main results

Blass and Gurevich showed that none of the four problems above polynomial-time Turing-

reduces (Cook-reduces) to the next in line. We extend their results using generic oracles,

and we also give further complexity-theoretic evidence for the separation of these classes,

giving new connections to probabilistic and quantum computing. Our main results in this

regard are:

Proposition 5.1.7. If CF = Ker then integers can be factored in probabilistic polynomial

time.

151

Proposition 5.3.12. If CF = Ker then collision-free hash functions that can be evaluated

in deterministic polynomial time do not exist.

Theorem 5.3.3. If Ker = PEq then UP ⊆ BQP. If CF = PEq then UP ⊆ RP.

Theorem 5.3.6. If PromiseKer = PromisePEq then NP ⊆ BQP ∩ SZK, and in par-

ticular PH = AM.

We give the definitions of PromisePEq and PromiseKer in Section 5.3.1. We also

show the following two related results:

Corollary 5.3.2. If CF = Ker then NP = UP and PH ⊆ S2[NP ∩ coNP] ⊆ ZPPNP.

Corollary 5.3.4. If CF = PEq then NP = UP = RP and in particular, PH = BPP.

Corollary 5.3.2 follows from the slightly stronger Theorem 5.3.1, but we do not give the

statement here as it requires further definitions.

5.1.3 Organization

The remainder of this chapter is organized as follows. In Section 5.2 we review the original

results of Blass and Gurevich [56, 57]. We also combine their results with other results that

have appeared in the past 25 years to yield some immediate extensions. In Section 5.3.1 we

prove new results connecting these classes with probabilistic and quantum computation. In

Section 5.3.1 we introduce the promise versions of PEq and Ker and prove Theorem 5.3.6.

We also introduce a group-like condition on the witness sets of NP-complete problems that

would allow us to extend the first half of Theorem 5.3.3 from UP to NP, giving much

stronger evidence that Ker 6= PEq. We believe the question of whether any NP-complete

sets have this property is of independent interest: a positive answer would provide nontrivial

quantum algorithms for NP problems, and a negative answer would provide further con-

crete evidence for the lack of structure in NP-complete problems. In Section 5.3.2 we discuss

collision-free hash functions, the subgroup equality problem and Boolean function con-

gruence (not isomorphism) as potential witnesses to the separation of these classes. We

also introduce a notion of reduction between equivalence relations and the corresponding

notion of completeness. In Section 5.4, we update and extend some of the oracle results of

152

Blass and Gurevich [56, 57] using generic oracles. In the final section we mention several

directions for further research, in addition to the several open questions scattered throughout

the paper.

5.2 Previous Results

Here we recall the previous results most relevant to our work. Most of the results in this

section are from Blass and Gurevich [56, 57]. We are not aware of any other prior work

in this area. However, results in other areas of computational complexity that have been

obtained since 1984 can be used as black boxes to extend their results, which we do here.

We mention that analogues of these classes for finite-state machines have been stud-

ied, and nearly all their interrelationships completely determined [152]. For the class of

computable functions or the class of primitive recursive functions, Blass and Gurevich [56]

already noted that all four classes of equivalence relations are equal. However, for the class

of computably enumerable equivalence relations, a rich theory is developing [121, 13].

If R ∈ PEq, then the language R′ = {(x, y) : (∃z)[z ≤lex y and (x, z) ∈ R]} is in

NP, and can be used to perform a binary search for the first canonical form for R. Hence,

PEq ⊆ LexEqFPNP. The first result shows that this containment is tight:

Theorem 5.2.1 ([56] Theorem 1). There is an equivalence relation R ∈ CF whose first

canonical form problem is essentially ∆2P-complete, that is, it is in FPNP = F∆2P and

is ∆2P-hard.

Note that the above proof that PEq ⊆ LexEqFPNP relativizes, so all four polynomial-

time classes of equivalence relations are equal in any world where P = NP, in particular,

relative to any PSPACE-complete oracle. The next result gives relativized worlds in which

Ker 6= PEq, CF 6= Ker, and LexEq 6= CF, though these worlds cannot obviously be

combined.

Theorem 5.2.2 (Blass & Gurevich [56] Theorem 2). Of the four equivalence problems defined

above, none is Cook reducible to the next in line. In particular:

a. There is an equivalence relation R /∈ Ker(FPR), i. e., Ker(FPR) 6= PREq.

153

b. There is a function f such that Ker(f) /∈ CF(FPf), i. e., CF(FPf) 6= Ker(FPf).

c. There is an idempotent function f such that Ker(f) /∈ LexEq(FPf), i. e.,

LexEq(FPf) 6= CF(FPf).

Furthermore, there is an equivalence relation R /∈ Ker(NPSVt
R), i. e., PREq 6⊆

Ker(NPSVt
R) [57, Theorem 5].

In addition to several extensions of these results, Blass and Gurevich [56, 57] also show

that collapses between certain classes of equivalence problems are equivalent to more stan-

dard complexity-theoretic hypotheses. Here we collect some of their main results:

Theorem 5.2.3. 1. CF(FP) ⊆ LexEqNPSVt ⇐⇒ NPEq ⊆ coNPEq ⇐⇒
coNPEq ⊆ NPEq ⇐⇒ NP = coNP [57, Thm. 1].

2. LexEqNPSVt ⊆ PEq ⇐⇒ P = NP ∩ coNP [57, Thm. 2].

Note that NPEq consists of those equivalence relations decidable in NP, and is distinct

from PNPEq assuming NP 6= PNP. This follows from the observation that, for any set

A there is an equivalence relation R that is polynomial-time equivalent to A, namely the

equivalence relation generated by {(0x, 1x) : x ∈ A} (if A is neither empty nor Σ∗, then

A ≡p
m R; in any case, A ≡p

1−tt R).

We think the following result is one of their most surprising:

Theorem 5.2.4 (Blass & Gurevich [57] Theorem 3). The following statements are equiva-

lent:

1. Ker(FP)= ⊆ CF(NPSVt).

2. NP has the shrinking property (see Glaßer, Reitwießner, and Selivanov [123]): if

A,B ∈ NP, then there are disjoint A′, B′ ∈ NP such that A′ ⊆ A, B′ ⊆ B, and

A ∪ B = A′ ∪ B′.

3. NPMV ⊆c NPSV, i. e., the uniformization principle holds for NP.

154

Hemaspaandra, Naik, Ogihara, and Selman [138] showed that if NPMV ⊆c NPSV then

SAT ∈ (NP∩coNP)/poly. At the time, the strongest known consequence of SAT ∈ (NP∩
coNP)/poly was PH = Σ2P [157]. Shortly thereafter Köbler and Watanabe [170] improved

the collapse to PH = ZPPNP, and in the early 2000’s Cai, Chakaravarthy, Hemaspaandra,

and Ogihara [73] further improved the collapse to PH = S2[NP ∩ coNP]. Combined with

Theorem 5.2.4, this immediately implies a result that has not been announced previously:

Corollary 5.2.5. If CF = Ker then PH ⊆ S2[NP ∩ coNP] ⊆ ZPPNP.

5.3 Evidence for Separation

5.3.1 New Collapses

Blass and Gurevich’s [57] proof that Ker(FP)= ⊆ CF(NPSVt) =⇒ NPMV ⊆c NPSV

essentially shows the following slightly stronger result:

Theorem 5.3.1. If CF = Ker then NPMVg ⊆c NPSVg.

However, as NPMV ⊆c NPSV is not known to imply NPMVg ⊆c NPSVg, our

result does not directly follow from their result, but only from its proof, the core of which is

reproduced here.

Proof. Let f ∈ NPMVg, let M be a nondeterministic polynomial-time transducer com-

puting f , and let V be a polynomial-time decider for graph(f). If CF = Ker, then the

equivalence relation

{((x, y), (x, y′)) : V (x, y) = V (x, y′)} = Ker((x, y) 7→ (x, V (x, y)))

has a canonical form c ∈ FP. Then the following algorithm computes a refinement of f in

NPSVg: simulate M(x). On each branch, if the output would be y, accept if and only if

c(x, y) = (x, y). Hence f ∈c NPSVg.

Similar to the original result [57], we can weaken the assumption of this theorem to

Kerp ⊆ CF, without modifying the proof. By padding, we can further weaken the assump-

tion to Ker= ⊆ CF.

155

Corollary 5.3.2. If CF = Ker then NP = UP and PH ⊆ S2[NP ∩ coNP] ⊆ ZPPNP.

Note that Corollary 5.2.5 alone does not imply Corollary 5.3.2, as neither of the state-

ments PH = S2[NP ∩ coNP] and NP = UP is known to imply the other. Indeed, it is

still an open question as to whether NP = UP implies any collapse of PH whatsoever. See

Section 2.1.3, especially the discussion after Theorem 2.1.1.

Our next result gives a new connection between complexity classes of equivalence prob-

lems and quantum and probabilistic computation:

Theorem 5.3.3. If Ker = PEq then UP ⊆ BQP. If CF = PEq then UP ⊆ RP.

Proof. Suppose Ker = PEq. Let L be a language in UP, let V be a UP verifier for L, let

p be a polynomial bounding the size of V -witnesses for L. Consider the relation

RL = {((a, x), (a, y)) : x = y or |x| = |y| and V (a, x⊕ y) = 1}

where ⊕ denotes bit-wise exclusive-or. Clearly RL ∈ PEq, so by hypothesis RL has a

complete invariant f ∈ FP. Since L ∈ UP, for each a ∈ L there is a unique string wa such

that V (a, wa) = 1. Define fa(x) = f(a, x). Then for all distinct x and x′, fa(x) = fa(x
′)

if and only if x ⊕ x′ = wa. Given a and fa, and the promise that fa is either injective or

two-to-one in the manner described, finding wa or determining that there is no such string

is exactly Daniel Simon’s problem, which is in BQP [240].

Now suppose further that CF = PEq. Then we may take f to be not only a complete

invariant but further a canonical form for RL. On input a, the following algorithm decides L

in polynomial time with bounded error: for each length ℓ ≤ p(|a|), pick a string x of length

ℓ at random, compute f((a, x)) = (a, y), and compute V (a, x ⊕ y). If V (a, x ⊕ y) = 1 for

any length ℓ, output 1. Otherwise, output 0. If a /∈ L then this algorithm always returns 0.

If a ∈ L and 0ℓ is a’s witness, then the algorithm always returns 1. If a ∈ L and 0ℓ is not

a’s witness, then with probability 1/2, y 6= x and hence the answer is correct.

We would like to extend the first half of Theorem 5.3.3 from UP to NP to give stronger

evidence that Ker 6= PEq, but the techniques do not obviously apply. We pose two ap-

proaches to this problem in Promise classes and Groupy witnesses for NP problems, below.

156

Corollary 5.3.4. If CF = PEq then NP = UP = RP and in particular, PH = BPP.

Proof. If CF = PEq then it follows directly from Theorems 5.3.1 and 5.3.3 that NP =

UP ⊆ RP. Thus NP = RP, since RP ⊆ NP without any assumptions. Furthermore, it

follows that PH ⊆ BPP [279], and since BPP ⊆ PH [179, 245], the two are equal.

The collapse inferred here is stronger than that of Corollary 5.2.5, since BPP ⊆ S2P ⊆
S2[NP ∩ coNP] [227, 75]. However, this result is incomparable to Corollary 5.2.5 since it

also makes the stronger assumption CF = PEq, rather than only assuming CF = Ker.

Promise classes

One way to extend the first half of Theorem 5.3.3 from UP to NP, suggested to us by Scott

Aaronson [3], involves promise versions of PEq and Ker.

Definition 5.3.5. A language R of triples is in PromisePEq if there is a polynomial-time

algorithm A such that, whenever Ra = {(x, y) : (a, x, y) ∈ R} is an equivalence relation,

A(a, x, y) = R(a, x, y) for all x, y ∈ Σ∗.

Similarly, R is in PromiseKer if there is a polynomial-time function f such that, when-

ever Ra is an equivalence relation, f(a, x) = f(a, y) ⇐⇒ (a, x, y) ∈ R for all x, y ∈ Σ∗. We

call such f a promise complete invariant for R.

As usual for promise classes, if Ra is not an equivalence relation, we do not restrict the

output of A(a, x, y) or f(a, x) in any way.

Theorem 5.3.6. If PromiseKer = PromisePEq then NP ⊆ BQP ∩ SZK, and in par-

ticular PH = AM.

Proof. The first part of the proof follows that of Theorem 5.3.3, treating the promises with

care. Suppose PromiseKer = PromisePEq. Let L be a language in PromiseUP, let

V be a PromiseUP verifier for L, let p be a polynomial bounding the size of V -witnesses

for L. That is, if #V (x) = #{y : V (x, y) = 1} ≤ 1 then x ∈ L ⇐⇒ (∃y)[|y| ≤
p(|x|) and V (x, y) = 1]. Consider the relation

RL = {((a, x), (a, y)) : x = y or |x| = |y| and V (a, x⊕ y) = 1}

157

(the same relation as in Theorem 5.3.3). Clearly RL ∈ PromisePEq, so by hypothesis RL

has a promise complete invariant f ∈ FP. Since L ∈ PromiseUP, for each a ∈ L such that

#V (x) ≤ 1, there is at most one string wa such that V (a, wa) = 1. Define fa(x) = f(a, x).

Then for all distinct x and x′, fa(x) = fa(x
′) if and only if x ⊕ x′ = wa, when such wa

exists, and fa is injective otherwise. As in Theorem 5.3.3, given a and fa, finding wa or

determining that there is no such string is exactly Simon’s problem [240]. Here, of course,

we have reduced to the promise version of Simon’s problem, which is in PromiseBQP.

To showNP ⊆ BQP, we use the technique of Valiant and Vazirani [270]: given a Boolean

formula ϕ, they randomly produce a formula ϕ′ such that if ϕ is unsatisfiable, then so is

ϕ′, and if ϕ is satisfiable, then ϕ′ has a unique satisfying assignment with probability at

least 1/p(|ϕ|) for some polynomial p. In this case, (ϕ′, fϕ′) satisfies the promise of Simon’s

problem, and the BQP algorithm for Simon’s problem either finds the satisfying assignment

to ϕ′ or correctly reports that none exists. Since the initial randomized construction of ϕ′

from ϕ can also be carried out in BQP, this whole algorithm puts SAT ∈ BQP.

Next we show NP ⊆ SZK. As above, we randomly transform a Boolean formula ϕ into

a formula ϕ′ which has at most one satisfying assignment, with probability at least 1/p(|ϕ|).
Then we run the SZK protocol for Simon’s problem on ϕ′, which we reproduce here for

completeness. If ϕ′(00 · · ·0) = 1, then the verifier accepts immediately. Otherwise, the

verifier randomly picks x and sends fϕ′(x) = f(ϕ′, x) to the prover; the prover must try to

recover x. If ϕ′ has no satisfying assignments, then fϕ′ is one-to-one, and the prover always

succeeds. If ϕ′ has a (unique, not-all-zero) satisfying assignment, then fϕ′ is two-to-one, and

the prover fails with probability at least 1/2. It is clear that this is an SZK protocol.

Since the construction of ϕ′ from ϕ does not require any interaction between the prover

and verifier, it can be prepended to the above protocol to give a statistical zero-knowledge

protocol for SAT.

Finally, we have SZK ⊆ AM ∩ coAM [105, 9], and NP ⊆ coAM implies PH = AM

[22, 61].

The two conclusions of the above theorem (that is, “NP ⊆ BQP” and “PH = AM”)

are not known to be related by implication in either direction. Even NP ⊆ BQP and

NP ⊆ SZK are not known to be related by implication. Indeed, there is an oracle relative

158

to which SZK is not contained in BQP [1], and there is an oracle relative to which BQP

is not contained in SZK [78].

Groupy witnesses for NP problems

The technique of the first half of Theorem 5.3.3 does not apply to arbitrary problems in

NP. However, if an NP problem’s witnesses satisfy a certain group-like condition, then

Theorem 5.3.3 may be extended to that problem.

Let L ∈ NP and let V be a polynomial-time verifier for L. By padding if necessary, we

may suppose that for each a ∈ L, a’s witnesses all have the same length. Suppose there is

a polynomial-time length-restricted group structure on Σ∗, that is, a function f ∈ FP such

that for each length n, Σn is given a group structure defined by xy−1 def
= f(x, y). Then

RL = {((a, x), (a, y)) : x = y or V (a, xy−1) = 1}

is an equivalence relation if and only if a’s witnesses are a subgroup of this group structure,

or a subgroup less the identity. The technique of Theorem 5.3.3 then reduces L to the hidden

subgroup problem over the family of groups defined by f . In this case Σn would be a group

of order 2n; we will generalize this below so our groups need not fall into such a specific

class.

The hidden subgroup problem, or HSP, for a group G is: given generators for G, an

oracle computing the operation (x, y) 7→ xy−1, a set X , and a function f : G → X such

that Ker(f) is the partition given by the right cosets of some subgroup H ≤ G, find a

generating set for H [165]. Hidden subgroup problems have played a central role in the

study of quantum algorithms. Integer factoring and the discrete logarithm problem both

easily reduce to abelian HSPs. The first polynomial-time quantum algorithm for these

problems was discovered by Shor [239]; Kitaev [165] then noticed that Shor’s algorithm in

fact solves all abelian HSPs. The unique shortest vector problem for lattices reduces to

the dihedral HSP [222], which is solvable in subexponential quantum time [173]. The graph

isomorphism problem reduces to the HSP for the symmetric group [43] or the wreath product

Sn ≀S2 [102], but it is still unknown whether any nontrivial quantum algorithm exists for GI.

159

The proof of Theorem 5.3.3 showed that if Ker = PEq then every language in UP

reduces to Daniel Simon’s problem. We can now see that Simon’s problem is in fact the

HSP for (Z/2Z)n, where the hidden subgroup has order 2. Simon [240] gave a zero-error

expected polynomial-time quantum algorithm for this problem, putting it in ZQP ⊆ BQP.

This result was later improved by Brassard and Høyer [63] to a worst-case polynomial time

quantum algorithm, that is, in the class EQP (sometimes referred to as just QP).

This discussion motivates the following definition, results, and open question:

Definition 5.3.7. Let L ∈ NP. For each a letW (a) denote the set of a’s witnesses; without

loss of generality, by padding if necessary, assume thatW (a) ⊆ Σn for some n. The language

L has groupy witnesses if there are functions mul, gen, dec ∈ FP such that for each a ∈ L:

1. let G(a) = {x ∈ Σn : dec(a, x) = 1}; then for all x, y ∈ G(a), defining xy−1 def
=

mul(a, x, y) gives a group structure to G(a);

2. gen(a) = (g1, g2, . . . , gk) is a generating set for G(a); and

3. W (a) is a subgroup of G(a), or a subgroup less the identity.

The following results are corollaries to the proof, rather than to the result, of Theo-

rem 5.3.3.

Corollary 5.3.8. If Ker = PEq and a language L ∈ NP has groupy witnesses in a family

G of groups, then L Cook-reduces to the hidden subgroup problem for the family G. Briefly:

L ≤P
T HSP(G).

Proof. Let L ∈ NP, let W , G, dec, mul, and gen be as in the definition of groupy witnesses,

and let V be a polynomial-time verifier for L such that the witnesses accepted by V on input

a are exactly the strings in W (a). Then the equivalence relation

RL ={((a, x), (a, y)) : x = y, or dec(a, x) = dec(a, y)

and whenever dec(a, x) = 1 we have V (a, xy−1) = 1]}

is in PEq, since xy−1 can be computed by the polynomial-time algorithm mul guaranteed

in the definition of groupy witnesses. By hypothesis, RL has a complete invariant f . The

function f , the function mul, and the generating set gen(a) are a valid instance of the hidden

160

subgroup problem. If a /∈ L, then f is injective, and the hidden subgroup is trivial. If a ∈ L,

then the hidden subgroup is W (a). Conversely, if the hidden subgroup is trivial, then either

a /∈ L or the identity of the group is a witness that a ∈ L, which can be easily checked.

Hence L reduces to the hidden subgroup problem.

Corollary 5.3.9. If Ker = PEq and the language L has abelian groupy witnesses, then

L ∈ BQP.

Remark 5.3.10. Every language in UP has abelian groupy witnesses.

Open Question 5.3.11. Are there NP-complete problems with abelian groupy witnesses?

Assuming P 6= NP, are there any problems in NP\UP with abelian groupy witnesses?

Our definition of having groupy witnesses is similar but not identical to Arvind and

Vinodchandran’s definition of group-definability [16]. If a set A ∈ NP has abelian groupy

witnesses, then in general the function a 7→ |G(a)| is in #P. If it so happens that this

function is in FP, then Arvind and Vinodchandran’s techniques are sufficient to show that

A is low for PP. This may or may not be taken as evidence that such an A is unlikely to be

NP-complete: on the one hand, Beigel [45] gives an oracle relative to which NP is not low

for PP, and hence A could not be NP-complete. On the other hand, Toda and Ogiwara

[263] show that PPPH ⊆ BP · PP (Tarui [259], independently but using similar methods,

strengthens this to ZP · PP). Hence, under a derandomization assumption, NP is in fact

low for PP, and so the lowness of A for PP is no obstruction to its being NP-complete.

However, even if |G(a)| is computable in polynomial time, it may yet be possible to use

Corollary 5.3.8 to show that Ker = PEq =⇒ NP ⊆ BQP, as there are several classes of

non-abelian, and even non-solvable, groups for which the HSP is known to be in BQP (see,

e. g., [128, 112, 146]).

5.3.2 Hardness

Collision-free hash functions

Collision-free hash functions are a useful cryptographic primitive (see, e. g., [39]). Propo-

sition 5.1.7 suggests a more general connection between the collapse CF = Ker and the

existence of collision-free hash functions.

161

A collection of collision-free hash functions is a collection of functions {hi : i ∈ I} for

some I ⊆ Σ∗ where hi : Σ
|i|+1 → Σ|i| are

1. Easily accessible: there is a probabilistic polynomial-time algorithm G such that

G(1n) ∈ Σn ∩ I;

2. Easy to evaluate: there is a probabilistic polynomial-time algorithm E such that

E(i, w) = hi(w); and

3. Collision-free: for all probabilistic polynomial-time algorithms A and all polynomials

p there is a length N such that n > N implies:

Pr
i=G(1n)

(x,y)=A(i)

[x 6= y and hi(x) = hi(y)] <
1

p(n)
.

It is not known whether collections of collision-free hash functions exist, though their

existence is known to follow from other cryptographic assumptions (see, e. g., [92]). Many

proposed collections of collision-free hash functions, such as MD5 or SHA, can be evaluated

deterministically, that is, E ∈ FP.

Proposition 5.3.12. If CF = Ker then collision-free hash functions that can be evaluated

in deterministic polynomial time do not exist.

Proof. The equivalence relation {((i, x), (i, y)) : E(i, x) = E(i, y)} has a canonical form

f ∈ FP by hypothesis. As in the proof of Proposition 5.1.7, the canonical form f can

be used by a randomized algorithm to find collisions in hi with non-negligible probability:

choose x at random, and if f(x) 6= x then a collision has been found.

Since hi maps Σ|i|+1 → Σ|i|, there are at most 2|i| − 1 singleton classes in R = Ker(hi).

If x lies in an equivalence class of size at least 2, then Prx[f(x) 6= x|#[x]R ≥ 2] ≥ 1
2 . Thus

Prx[f(x) 6= x] = Prx[f(x) 6= x|#[x]R ≥ 2] Prx[#[x]R ≥ 2] ≥ 1
2

(

1
2 + 1

2|i|+1

)

> 1
4 .

Subgroup equality

The subgroup equality problem is: given two subsets {g1, . . . , gt}, {h1, . . . , hs} of a group

G determine if they generate the same subgroup. The group membership problem is: given

162

a group G and group elements g1, . . . , gt, x, determine whether or not x ∈ 〈g1, . . . , gt〉. A

solution to the group membership problem yields a solution to the subgroup equality problem,

by determining whether each hi lies in 〈g1, . . . , gt〉 and vice versa. However, a solution to the

group membership problem does not obviously yield a complete invariant for the subgroup

equality problem. Thus subgroup equality problems are a potential source of candidates for

problems in PEq\Ker.

Note that the complexity of these problems still makes sense for non-finite groups, so long

as group elements can be specified by finite strings and the group operations are computable.

Fortunately or unfortunately, the subgroup equality problem for permutation groups on

{1, . . . , n} has a polynomial-time canonical form, via a simple modification [23] of classical

techniques [242, 243, 119, 167] (see Example 5.1.6 for more of the history).

The subgroup equality problem for PSL2(Z) is also in PEq, via a polynomial-time algo-

rithm for the group membership problem [133].

Boolean function congruence

Two Boolean functions f and g are congruent if the inputs to f can be permuted and

possibly negated to make f equivalent to g. If f and g are given by formulae ϕ and ψ,

respectively, deciding whether ϕ and ψ define congruent functions is Karp equivalent to

formula isomorphism. If f and g are given by their truth tables, however, Luks [186]

gives a polynomial-time algorithm for deciding whether or not they are congruent. Yet

no polynomial-time complete invariant for Boolean function congruence is known.

Hence Boolean function congruence may be in PEq\Ker.

Complete problems?

Equivalence problems that are P-complete under NC or L reductions may lie in PEq\Ker

due to their inherent difficulty. However, we currently have no reason to believe that P-

completeness is related to complexity classes of equivalence problems. Towards this end, we

introduce a natural notion of reduction for equivalence problems:

163

Definition 5.3.13. An equivalence relation R kernel-reduces to an equivalence relation S,

denoted R ≤P
ker S, if there is a function f ∈ FP such that

x ∼R y ⇐⇒ f(x) ∼S f(y).

Most natural reductions between well-studied equivalence problems, for example graph

isomorphism and its variants, are of this form. Note that R ∈ Ker if and only if R kernel-

reduces to the relation of equality. Also note that if R ≤P
ker S via f , then R ≤P

m S via

(x, y) 7→ (f(x), f(y)), leading to the question:

Open Question 5.3.14. Are kernel reduction and Karp reduction different? Are they

different on PEq? In other words, are there two equivalence relations R and S (in PEq?)

such that R ≤P
m S but R 6≤P

ker S?

An equivalence relation R ∈ PEq is PEq-complete if every S ∈ PEq kernel-reduces to

R. For any PEq-complete R, R ∈ Ker if and only if Ker = PEq if and only if the relation

of equality is PEq-complete.

Unlike NP-completeness, however, the notion of PEq-completeness does not become

trivial if Ker = PEq: the relation of equality does not kernel-reduce to the trivial relation

simply because equality has infinitely many equivalence classes but the trivial relation has

only one. In particular, if P = NP then kernel reduction and Karp reduction are distinct

on PEq, albeit in a rather trivial way. The question becomes more interesting if we ask

for languages R and S in PEq of the same densities on which kernel reduction and Karp

reduction differ.

Open Question 5.3.15. Are there PEq-complete equivalence problems?

5.4 Oracles

In order to combine the oracles from Blass and Gurevich [56] into a single oracle, as well

as construct new oracles that simultaneously separate some classes of equivalence relations

and collapse others, we introduce two notions of generic oracle. Generic oracles maintain

some of the key advantages of random oracles, but allow us much greater flexibility—much

164

of the power of finite injury arguments—in their construction1. For example, it is often

possible to show that some property (complexity class collapse or separation) holds relative

to every generic oracle, so that it becomes much easier to construct oracles satisfying multiple

properties at once. We begin with a review of generic oracle constructions; for a more in-

depth discussion, see Fenner, Fortnow, Kurtz, and Li [104].

For those not interested in the technical details of generic oracles, the main result we will

need from the next section is Lemma 5.4.4, but we have attempted to keep the technicalities

to a minimum. We only use fairly restricted versions of genericity2 and all the associated

concepts in this paper, allowing us to greatly simplify their discussion. Much more general

versions and their uses are presented in Fenner, Fortnow, Kurtz, and Li [104].

5.4.1 Preliminaries on Generic Oracles

Throughout this section we will use the first construction of an oracle separating P from

NP [38] as a canonical example.

Many oracle constructions proceed by finite extensions: at each stage of the construction,

some requirement is to be satisfied (e.g. “the i-th polynomial-time machine does not accept

some fixed relativizable language LO”), and we satisfy it by specifying the oracle on finitely

many more strings, leaving those strings we have previously specified untouched. In this

paper, a generic oracle is one built by finite extensions which also satisfies Murphy’s law:

“anything which can happen will happen.” More prosaically, a generic oracle is built by

interleaving all finite extension arguments that are “interleavable.” In the remainder of this

section we make these ideas precise.

A condition is a partial characteristic function whose domain is finite, that is, a partial

function σ : Σ∗ → {0, 1} with dom(σ) finite. In more general discussions of genericity, such

1. Indeed, there is a notion of genericity R such that results regarding R-generic oracles are
completely equivalent to results regarding random oracles [250] (see also [104], the paragraph just
prior to Section 3.2), so generic oracle constructions can be viewed as a generalization of random
oracle constructions.

2. For the initiated: rather than treat conditions in general as perfect collections of oracles, we
define a condition as a partial characteristic function with finite domain. We also require a strong
form of basicness: the union of any two consistent G-conditions (union as partial characteristic
functions) must also be a G-condition.

165

conditions are called Cohen conditions. We say that an oracleO extends σ if the characteristic

function of O agrees with σ on dom(σ). Two conditions σ1, σ2 are consistent if for every

a ∈ dom(σ1) ∩ dom(σ2) we have σ1(a) = σ2(a).

Terminologically we treat a partial characteristic function as a partial oracle/set: we

write a ∈ σ and say “a is in σ” if σ(a) = 1, and similarly we write a /∈ σ and “a is not in σ”

if σ(a) = 0. We are careful not to use either terminology if a /∈ dom(σ).

Definition 5.4.1. A notion of genericity is a nonempty set G of conditions such that

0. (branching) for all σ ∈ G, there are at least two distinct conditions τ1, τ2 ∈ G extending

σ;

1. (generic) for all σ ∈ G and all a ∈ Σ∗\ dom(σ) there is a condition σ′ ∈ G extending σ

such that a ∈ dom(σ′); and

2. (basic) if σ1, σ2 ∈ G are consistent, then σ1 ∪ σ2 ∈ G.

Note that the collection of all (Cohen) conditions is a notion of genericity, typically

referred to as Cohen genericity. Less trivial is the notion of UP-genericity. A UP condition

is a condition which has at most one string of each length, and only has strings at lengths

tower(k), where the tower function is defined by tower(0) = 1 and tower(n+1) = 2tower(n).

The collection of all UP conditions yields the notion of UP-genericity.

A G-generic oracle is simply one built by further and further specification by G-conditions
which satisfies an additional constraint, namely, the formal version of “Murphy’s law” which

we now present.

Throughout this section we fix a logical system that is strong enough to express all the

sentences we care about; for example, Peano Arithmetic with an additional unary predicate

X , corresponding to the oracle, will suffice. If ϕ is a sentence in such a system, then an

oracle O satisfies ϕ if ϕ is true upon replacing the predicate X by the characteristic function

for O. We assume, without loss of generality from the point of view of our constructions,

that the logical system has only countably many sentences.

We say that a condition σ forces the truth of a sentence ϕ if ϕ is true of every oracle O

extending σ. For example, ϕ might be the sentence

(∃n)[M(1n) = 0 ⇐⇒ (∃x)[|x| = n and X(x)]]. (5.1)

166

The classic argument of Baker, Gill, and Solovay [38] shows how to construct a Cohen

condition forcing ϕ. That is, we only need to specify a finite amount of the oracle to ensure

that ϕ is true, regardless of how we construct the rest of the oracle.

We say that a notion of genericity G is strong enough to force a sentence ϕ if ϕ can

always eventually be forced, that is, for every G-condition σ there is another G-condition σ′

extending σ such that σ′ forces ϕ. We say, equivalently, that {σ ∈ G : σ forces ϕ} is dense

in G. In fact Baker, Gill, and Solovay essentially showed that Cohen genericity is strong

enough to force (5.1).

Finally, “Murphy’s law,” which we require of generic oracles, is that a G-generic oracle

must force every sentence ϕ that G is strong enough to force.

Definition 5.4.2 (Generic Oracle). Let G be a notion of genericity. An oracle O is G-generic
if there is a consistent collection of G-conditions {σ1, σ2, . . . } such that O extends every σi,

the σi fully specify O (that is,
⋃

i dom(σi) = Σ∗), and every sentence ϕ that G is strong

enough to force is forced by some σi.

We see that this definition essentially captures the idea of simultaneously interleaving all

constructions that “can be interleaved,” that is, that G is strong enough to force.

Lemma 5.4.3 (Existence of G-generic oracles). For every notion of genericity G, G-generic
oracles exist. Furthermore, the G-generics are dense in G, that is, for every G-condition σ

there is a G-generic oracle extending σ.

Proof. This is essentially Lemma 3.12 of Fenner, Fortnow, Kurtz, and Li [104], and their

proof goes through mutatis mutandis, despite our restricted definitions.

Putting this all together, the way we construct generic oracles in practice is captured by

the following lemma:

Lemma 5.4.4. Let G be a notion of genericity and ϕ a sentence. If G is strong enough to

force ϕ—that is, if every σ ∈ G can be extended to a σ′ ∈ G forcing ϕ—then every G-generic
oracle satisfies ϕ.

Finally, this entire discussion relativizes. When we relativize to an oracle A, our formal

system includes a new unary predicate which is the characteristic function of A, in addition

to the previous unary predicate X corresponding to the generic oracle. We then speak of

G-generics relative to A.

167

5.4.2 Oracles for PEq, Ker, and CF

In this section we introduce and use two new notions of genericity. A one-sided transitive

condition is a (Cohen) condition τ such that

1. (Length restriction on the 1-side): 1〈x, y〉 ∈ τ implies |x| = |y|, and

2. (Transitivity on the 1-side): 1〈x, y〉 ∈ τ and 1〈y, z〉 ∈ τ implies 1〈x, z〉 ∈ τ .

We refer to the set of strings starting with the bit b as “the b-side” of an oracle or condition.

Note that in a one-sided transitive condition, all we require of the 0-side is that dom(σ) is

finite there. It is easily verified that one-sided transitive conditions form a notion of gener-

icity, so by Lemma 5.4.3, one-sided transitive generics exist, and furthermore Lemma 5.4.4

applies to them.

A UP-transitive condition is a condition τ such that

1. (“UP”) For each length n, there is at most one string of length n in σ;

2. (gappy) σ is only nonempty at lengths tower(k) for some k. The tower function is

defined by tower(0) = 1 and tower(n) = 2tower(n−1);

3. (length-restricted) 〈x, y〉 ∈ σ implies |x| = |y|.

Note that transitivity—〈x, y〉 ∈ τ and 〈y, z〉 ∈ τ implies 〈x, z〉 ∈ τ—follows from the UP

restriction (1) and the length restriction (3). Again it is easily verified that UP-transitive

conditions form a notion of genericity, so UP-transitive generics exist, and Lemma 5.4.4

applies to them.

Theorem 5.4.5. There are oracles A and B relative to which P 6= NP and

CF(FPA) 6= Ker(FPA) 6= PAEq, (5.1)

CF(FPB)p = Ker(FPB)p and Ker(FPB) 6= PBEq. (5.2)

In fact, (5.1) holds relative to any one-sided transitive generic oracle and (5.2) holds relative

to O ⊕G whenever O is PSPACE-complete and G is UP-transitive generic relative to O.

168

We break most of the proof into three lemmas. The proofs of Lemmas 5.4.7 and 5.4.8

are adaptations of the proofs of Blass and Gurevich [56] to generic oracles. The proof of

Lemma 5.4.9 is new.

We start by restating a useful combinatorial lemma:

Lemma 5.4.6 (Blass & Gurevich [56] Lemma 1). Let G be a directed graph on 2k vertices

such that the out-degree of each vertex is strictly less than k. Then there are two nonadjacent

vertices in G.

Lemma 5.4.6 can be proved by a simple counting argument.

For UP-transitive conditions σ (or oracles O) we denote by ∼σ the corresponding equiv-

alence relation, that is, the reflexive, symmetric closure of {(x, y) : 〈x, y〉 ∈ σ}. If σ is only

a partial function, we take care to only ever write x ∼σ y if 〈x, y〉 ∈ dom(σ). For one-sided

transitive conditions τ , we use the same notation ∼τ to denote the equivalence relation

corresponding to the 1-side, that is, the reflexive, symmetric closure of {(x, y) : 1〈x, y〉 ∈ τ}.

Lemma 5.4.7. Relative to any one-sided transitive generic oracle or any UP-transitive

generic oracle, Ker 6= PEq.

Proof. The proofs for the two types of genericity are essentially identical. Let G be “one-

sided transitive” or “UP-transitive” throughout. We give the proof for one-sided transitive

genericity, in which all the diagonalization happens on the 1-side; for UP-transitive generic-

ity, drop the prefixed 1’s throughout and only add strings at lengths n = tower(k) for some

k.

For each polynomial-time oracle Turing machine M , let ϕM denote the sentence (often

called a requirement):

ϕM
def
= (∃n)[Ker(MX) 6=∼X on strings of length n]

By Lemma 5.4.4, it suffices to show that any G-condition τ can be extended to a G-condition
τ ′ such that τ ′ forces ϕM . For then ϕM will hold for every G-generic oracle and for every

M , separating Ker from PEq.

169

Let M be a polynomial-time oracle transducer running in time p(|x|). Let τ be any

G-condition. Let τ denote the minimal (under inclusion) extension of τ to a complete char-

acteristic function (i. e., oracle). We show how to extend τ to another G-condition τ ′ that

forces ϕM , i. e., such that Ker(MO) 6=∼O for any O extending τ ′.

Let n be a length such that p(n) < 2n−1 and τ is not defined on 1〈a, b〉 for any strings

a and b of length ≥ n. Let τ ′ be the extension of τ to length p(n) that is equal to τ to

length p(n). If there are distinct strings x and y of length n such thatMτ (x) =Mτ (y), then

x 6∼τ ′ y but Mτ ′(x) =Mτ ′(y), and this clearly holds for any O extending τ ′.

Otherwise, Mτ (x) 6= Mτ (y) for every two distinct strings x and y. Say that x affects y

if M queries τ about 1〈x, y〉 or 1〈y, x〉 in the computation of Mτ (y). Let G be a digraph

on the strings of length n, in which there is a directed edge from y to x if x affects y. The

out-degree of each vertex is at most p(n), which is strictly less than 2n−1 by the choice of

n. Since there are 2n vertices, Lemma 5.4.6 implies that there are two strings x and y of

length n such that neither affects the other. Put 1〈x, y〉 into τ ′. Then Mτ ′(x) 6=Mτ ′(y) but

x ∼τ ′ y, and this holds for any oracle O extending τ ′.

Thus KerO 6= PEqO relative to any G-generic oracle O, for G either “one-sided transi-

tive” or “UP-transitive.”

Lemma 5.4.8. Relative to any one-sided transitive generic oracle, CF 6= Ker.

Proof. For this proof, all the diagonalization is performed on the 0-side.

We describe our oracles O and conditions τ with values in the alphabet {0, 1, 2} for

simplicity (that is, τ : Σ∗ → {0, 1, 2}). Let readO : Σ∗ → Σ∗ denote the oracle function

readO(x) = O(0x01)O(0x011) · · ·O(0x01k−1)

where k is the least value such that O(0x01k) = 2. Note that the bits used by readO on

input x are disjoint from those used by readO on any input y 6= x. Also note that readO

only queries the oracle regarding strings on the 0-side. Let RO = Ker(readO).

Let f be any polynomial-time oracle transducer, and define

ψf
def
= (∃n)[fX is not a canonical form for RX on strings of length n].

170

As in Lemma 5.4.7, it suffices to show that any one-sided transitive condition τ can be

extended to a one-sided transitive condition τ ′ forcing ψf , by Lemma 5.4.4.

Let f be a polynomial-time oracle transducer running in time p(|x|). Let τ be a one-sided

transitive condition, and let τ denote the oracle extending τ which has value 2 on strings

of the form 0x that are not in dom(τ) and value 0 on all other strings not in dom(τ). We

show how to extend τ to a one-sided transitive condition τ ′ such that fO does not compute

a canonical form for RO for any O extending τ ′.

Let n be a length such that p(n) < 2n−1 and such that τ is not defined for any strings

0x with |x| ≥ n. For a string x of length n, let τx denote the minimal extension of τ such

that readτx is the identity on all strings of length n, except readτx(x) = 1n+1. Since the

read function only queries strings on the 0-side, τx differs from τ only on the 0-side, and we

do not need to worry about violating transitivity on the 1-side. Note that readτx is injective

on strings of length n, so its kernel at length n is the relation of equality. In particular, any

canonical form for Rτx must be the identity on strings of length n.

If there is an x of length n such that f τx(x) 6= x, then f τx(x) is not the identity on

strings of length n, so f τx is not a canonical form for Rτx . Let the extension τ ′ be τx up to

length p(n).

Otherwise, f τx(x) = x for all x of length n. We say that fO(x) queries the oracle

about y if fO(x) queries any of the strings that readO(y) queries. Find x and y of length

n such that f τx(x) does not query the oracle about y and f τy(y) does not query the oracle

about x. This is possible by Lemma 5.4.6, as in the proof of Lemma 5.4.7. Let τ ′ be the

minimal oracle extending τ such that readτ
′
is the identity on strings of length n, except

readτ
′
(x) = readτ

′
(y) = 1n+1. Then τ ′ differs from τx only on those strings in its domain

queried by readτ
′
(y) and τ ′ differs from τy only on those strings in its domain queried by

readτ
′
(x). Since f τx(x) does not query the oracle about y we have f τx(x) = f τ

′
(x) = x

and similarly f τy(y) = f τ
′
(y) = y. So relative to any oracle O extending τ ′, we have

(x, y) /∈ Ker(fO) but readO(x) = readO(y) = 1n+1. Again, τ ′ forces that f τ
′
is not a

canonical form for Rτ ′ .

Thus CFO 6= KerO relative to any one-sided transitive generic oracle O.

Lemma 5.4.9. If P = PSPACE, and O has at most one string of each length tower(k)

and no other strings, then CF(FPO)p = Ker(FPO)p. Furthermore, this result relativizes.

171

Proof. Let O have at most one string of each length tower(k), and no other strings. Let f

be an oracle transducer running in polynomial time p(|x|), let R = Ker(fO), and suppose

that 〈x, y〉 ∈ R implies |x| ≤ q(|y|) for some polynomial q. For any input x of sufficient

length, all elements of O except possibly one have length either ≤ log p(|x|), in which case

they can be found rapidly, or > p(q(|x|)) in which case they cannot be queried by f on any

input y ∼R x. Following a technique used in [65], we call this one element the “cookie” for

this equivalence class.

For the remainder of this proof, “minimum,” “least,” etc. will be taken with respect to

the standard length-lexicographic ordering.

We show how to efficiently compute a canonical form for R. Let Ry denote the inverse

image of y under fO, which is an R-equivalence class. Let

By = {x : fO(x) = y and fO(x) does not query the cookie},

ry = minRy, and by = minBy. A canonical form for R is

g(x) =







by if By 6= ∅

ry otherwise,

where y = fO(x). Now we show that g is in fact in FPO. On input x, the computation of

g proceeds as follows:

1. Find all elements of O of length at most log p(|x|). Any further queries to O of length

≤ log p(|x|) will be simulated without queries by using this data.

2. Compute y = fO(x).

3. If the cookie was queried, then all further queries to O will be simulated without queries

using this data. Using the power of PSPACE, determine whether or not By = ∅. If

By = ∅, find and output ry. If By 6= ∅, find and output by.

4. If the cookie was not queried, then x ∈ By, so By 6= ∅. Use the power of PSPACE to

find the least z such that f(z) = y, answering 0 to any queries made by f to strings of

length ℓ between log p(|x|) < ℓ ≤ p(q(|x|)).

172

5. Run fO(z). If fO(z) did not query the cookie, then fO(z) = f(z) = y and z = by, so

output z. Otherwise, fO(z) queried the cookie, so no further oracle queries need be

made. Using the power of PSPACE, find and output by.

Proof of Theorem 5.4.5. (CF 6= Ker 6= PEq) By Lemmas 5.4.7 and 5.4.8, CF 6= Ker 6=
PEq relative to any one-sided transitive generic oracle.

(CFp = Kerp and Ker 6= PEq) Relativize to any PSPACE-complete set C, let O be

any UP-transitive generic oracle relative to C, and rerelativize to O. Note that Lemma 5.4.7

relativizes, so relative to C and O combined, Ker 6= PEq. Since P = PSPACE relative

to C, and O has at most one string of each length tower(k) and no other strings, and

Lemma 5.4.9 relativizes, we also have CFp = Kerp relative to C and O combined.

Open Question 5.4.10. Does CF = Ker imply P = NP? Or is there an oracle relative

to which CF = Ker but nonetheless P 6= NP? Further, is there an oracle relative to which

P 6= NP but CF = Ker = PEq?

Open Question 5.4.11. Is there an oracle relative to which CF 6= Ker = PEq?

5.5 Future Work

Here we present several directions for future work, in addition to the open problems men-

tioned throughout the paper.

5.5.1 Logarithmic Space

It would also be interesting to study equivalence relations decidable in logarithmic space.

For example, it has been shown that the word equality problem (given two words in the

generators of a group, do they represent the same group element?) for a finitely generated

linear group is decidable in logarithmic space [184, 241]. (A group is linear if it is isomorphic

to a group of matrices over some field.) In fact, implicit in the proofs is a log-space complete

invariant: essentially the matrix corresponding to a word in the generators. But it seems

unlikely that, in general, one can get from the matrix a corresponding canonical form, that is,

173

a canonical word in the group generators representing each group element. Hence the word

equality problem in finitely generated linear groups is a potential witness to Ker(FL) 6=
CF(FL). One open problem is to explicitly construct a linear group with no log-space

canonical form for its word equality problem.

Analogues of many of the results in this paper for logarithmic space are intriguing open

questions:

• Is LEq contained in CF(FLNL)? Is it contained in CF(FP)? In Ker(FP)? We note

that the straightforward binary search technique used to show PEq ⊆ LexEqFPNP

does not work in logarithmic space. Jenner and Torán [151] showed that the lexico-

graphically minimal (or maximal—in this case the same technique works) solution of

any NL search problem can be computed in FLNL. However, the notion of an NL

search problem is based on the following characterization of NL due to Lange [178]: a

language A is in NL if and only if there is a a polynomial p and a log-space machine

M(x, ~y) that reads its second input in one direction only, indicated by “~y”, such that

x ∈ A ⇐⇒ (∃y : |y| ≤ p(|x|))[M(x, ~y) = 1].

Without the one-way restriction, this definition would give a characterization of NP

rather than NL. An NL search problem is then: given such a machine M and input

x, find a y such that M(x, ~y) = 1. Any equivalence relation that can be decided by

such a machine—that is, where x ∼ y if and only if M(x, ~y) = 1—is in LexEqFLNL,

but it is not clear that this captures all of LEq.

• Does CF(FL) = Ker(FL) imply NL = UL? Note that NL = UL if and only if

FLNL ⊆ #L [11].

• Does CF(FL) = LEq imply UL ⊆ RL? A positive answer to this question and

the previous one would give very strong evidence that CF(FL) 6= LEq, as significant

progress has been made towards showing L = RL [223].

5.5.2 Additional Questions

In no particular order:

174

• Study expected polynomial-time canonical forms. If every R ∈ Ker(FP) has an ex-

pected polynomial-time canonical form, does PH collapse? An interesting example of

an expected polynomial-time canonical form is that for graph isomorphism [34].

• Find a class of groups for which the group membership problem is in P but no efficient

complete invariant is known for the subgroup equality problem (see Section 5.3.2).

• If Ker = PEq, does PH collapse?

• LexEqFPΣiP
?
= CF(FPΣiP)

?
= Ker(FPΣiP)

?
= PΣiPEq. If Ker(FPΣiP) =

PΣiPEq does PH collapse?

• Study counting classes of equivalence relations. For an equivalence relation R, the

associated counting function is f(x) = #{y : y ∼R x}.

• Preorders have been studied in the context of p-selectivity and semifeasible sets [169],

and partial orders have been studied in the context of #P and acceptance mechanisms

for nondeterministic machines [137]. It would be interesting to develop these further,

as well as to study complexity classes of lattices and total orders.

175

CHAPTER 6

CONCLUSION

In this thesis we highlighted just a few of the many ways that symmetry and equivalence

relations play important roles in complexity theory, and we have taken a complexity-theoretic

lens to the general question of equivalence relations. In this concluding chapter we elaborate

on some of the ideas laid out in Chapter 1 in light of the intervening results and discussions.

In Chapter 1 we mentioned briefly the importance of finding a good equivalence relation

on algorithms and algorithmic problems—where particularly nice equivalence relations are

symmetry-based. Here we elaborate on this theme furhter. We begin with a quote from

Weyl [275], as we could not put it better:

To a certain degree this scheme is typical for all theoretic knowledge: We begin

with some general but vague principle (symmetry in the [intuitive] sense), then

find an important case where we can give that notion a concrete precise meaning

(bilateral symmetry), and from that case we gradually rise again to generality,

guided more by mathematical construction and abstraction than by the mirages

of philosophy; and if we are lucky we end up with an idea no less universal than

the one from which we started. Gone may be much of its emotional appeal, but

it has the same or even greater unifying power in the realm of thought and is

exact instead of vague. –Hermann Weyl, Symmetry, p. 6 [275]

In the case of complexity, we have an intuitive notion of equivalence between algorithms.

This intuitive notion can be made precise in the case of algebraic complexity. But we have

yet to rise again to full generality to get an equally precise and useful notion of equivalence

between Turing machine algorithms.

However, in the case of complexity I am not even sure that we yet have the right intuitive

notions. We certainly have some intuition for when two algorithms are the same. For

example, in our intuitive notion it is immaterial what programming language an algorithm

is written in. We may not all agree on when two algorithms are intuitively the same, but

176

this is part of the necessary vagueness of intuition. But our intuitive notion of equivalent

algorithms have not yet given us intuitive notions that would let us separate complexity

classes. This is in fact a good thing! For Blass, Dershowitz, and Gurevich [55] argue that

there is no formal notion of two algorithms being “the same” that agrees with our intuitive

notion of “equivalent algorithms.” But we see that what we want is not a formalization of

our intuitive notion of equivalent algorithms, but rather first we need a better intuition, that

might help us settle the complexity of algorithmic problems.

We should also mention that there are in fact notions of equivalence between algorithms,

but the ones we are aware of are either too fine or too coarse to be of use in understanding

complexity. The two most natural notions are given by: on the one hand, saying that two

algorithms are the same if they compute the same function, and on the other hand, saying

that two algorithms are the same if they compute step-by-step in the same manner. The

former is too coarse, since it completely ignores the resources used by the algorithm, and

the latter is too fine, since there are algorithms of the same complexity, and indeed even

algorithms that are intuitively the same, that are far from being step-by-step equivalent.

There are also notions of equivalence between algorithmic problems, but these only take

us so far in understanding complexity. Certainly the various notions of reduction introduced

by Post [217] and then taken up by the complexity community in the definition of NP-

completeness and beyond, have been useful in our understanding of complexity. Indeed, in

some sense these notions of reductions let us formalize what we even mean by two problems

having the same complexity. But this notion of equivalence does not seem to be strong enough

to point us towards the relevant properties of algorithmic problems that would let us settle

their complexity once and for all. This remains true even of notions of reduction that are

closely related to symmetries, such as p-isomorphism [52]. Somehow in all of these notions,

the mathematical objects that get created—algorithmic problems up to Turing equivalence,

or algorithmic problems up to p-isomorphism—are still too unwieldy to really understand.

This last statement is based on attempts by complexity theorists to treat complexity

classes as individual objects of study and determine their most relevant properties, and the

(so-far) failure of these attempts to actually separate complexity classes. For example, many

researchers have tried to distinguish complexity classes by their properties, such as being

closed under complement [144, 258], existence of complete sets, properties of their complete

177

sets [52, 12], or measure-like properties [188]. But determining these properties has generally

turned out to be no easier than the original complexity class separation originally sought (e. g.

Sipser’s result [244] that resolving whether BPP has complete sets requires non-relativizing

techniques). In the current state of the art, it is not clear how one might proceed with these

approaches to make progress on unconditional complexity class separations. This reflects the

fact that the equivalence relation of “having the same complexity” is very poorly understood,

and does not (yet) lead to “nice” mathematical objects.

I believe that symmetry has a significant role to play in this regard in complexity. One

of the reasons I find Geometric Complexity Theory exciting and promising is that it studies

a notion of equivalence that is not only closely tied to complexity, but is also closely tied

to other well-studied notions like symmetry, representation theory, and algebraic geometry.

This gives us a toolkit with which to work to try to understand algorithms and problems up

to this notion of equivalence. Furthermore, because algebraic varieties are “small” objects,

we can ask about the complexity of problems on algebraic varieties, thus completing the

circle by using complexity theory to study the methods by which we ultimately hope to

understand complexity. We saw a similar phenomenon in Chapter 4 when we used an

algorithmic problem on Lie algebras to understand an equivalence relation—namely, linear

equivalence, especially in the case of determinant—where the equivalence relation is really a

notion of complexity.

Although computation in general appears too complicated and messy for symmetry to

play a role in it, little could be further from the truth. Beyond the connections between

symmetry and complexity in this thesis, symmetry arises over and over again in complex-

ity. The complexity of multiplying integers is naively O(n2), but using the fast Fourier

transform—an idea ultimately based on symmetry—this complexity can be brought down

to O(n logn log logn) [232], and more recently to O(n logn2log
∗ n) [117]. Cohn and Umans

[87] have extended this idea to noncommutative groups to give algorithms for matrix mul-

tiplication [86]. Barrington’s Theorem [40] characterizes NC1 in terms of a problem on the

group of permutations of 5 elements. Babai, Beals, and Takácsi-Nagy [25], following Clote

and Kranakis [82], show a close relationship between the circuit complexity of a Boolean

function and structural properties of its symmetry group. Arvind and Vinodchandran [16]

essentially show that any NP problem whose witnesses are invariant under a significant

178

group of symmetries is low for PP. Groups have played a crucial role in the best known al-

gorithms for graph and hypergraph isomorphism [185, 26]. The hidden subgroup problem has

played a central role in quantum algorithms and complexity [165, 173, 128, 146]. Recently,

affine-invariant properties—properties of polynomials that are invariant under the group of

affine linear transformations of the variables, including linearity and low-degreeness—have

arisen in connection with locally correctable codes and property testing [158] (see also the

survey by Sudan [257]). Surely there are more examples, but this list should suffice to make

the point that symmetry and complexity are intimately related.

In recent years, representation theory has become more prevalent in complexity theory.

It has long been known to be necessary in group isomorphism, which is a key obstacle to

polynomial-time algorithms for graph isomorphism. Representation theory is obviously

closely related to the isomorphism problems for abstract Lie algebras and matrix Lie alge-

bras. And representation theory is used crucially in GCT. In addition to these uses, mostly

presented in this thesis, representation theory has also been used in matrix multiplication

[87, 86, 71], parametrized complexity [171], and coding theory [101].

A key roadblock in our current understanding of algorithms and representation theory is

understanding indecomposable representations that are not completely reducible. Given the

increasing uses of representation theory in complexity theory, we suspect that progress in

complexity theory may benefit greatly from further understanding the symmetries inherent

in algorithms and algorithmic problems, perhaps specifically with regards to non-completely

reducible representations.

179

REFERENCES

[1] Scott Aaronson. Quantum lower bound for the collision problem. In STOC ’02: 34th
Annual ACM Symposium on Theory of Computing, pages 635–642. ACM, 2002.

[2] Scott Aaronson. BQP and the polynomial hierarchy. Technical Report TR09-104,
Electronic Colloquium on Computational Complexity, 2009. Also available as arXiv
e-print quant-ph/0910.4698.

[3] Scott Aaronson. Personal communication, November 2009.

[4] Scott Aaronson and Avi Wigderson. Algebrization: a new barrier in complexity theory.
In STOC ’08: 40th Annual ACM Symposium on Theory of Computing, pages 731–740.
ACM, 2008.

[5] I. D. Ado. The representation of Lie algebras by matrices. Uspehi Matem. Nauk
(N.S.), 2(6(22)):159–173, 1947. English translation: The representation of Lie algebras
by matrices, in American Mathematical Society Translations, Vol. 1949, No. 2, AMS,
1949, p. 21.

[6] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P. Ann. of Math.
(2), 160(2):781–793, 2004.

[7] Manindra Agrawal and Nitin Saxena. Equivalence of F-algebras and cubic forms.
In STACS 2006, volume 3884 of Lecture Notes in Computer Science, pages 115–126.
Springer, Berlin, 2006.

[8] Manindra Agrawal and Thomas Thierauf. The formula isomorphism problem. SIAM
J. Comput., 30(3):990–1009, 2000.

[9] William Aiello and Johan H̊astad. Statistical zero-knowledge languages can be recog-
nized in two rounds. J. Comput. System Sci., 42(3):327–345, 1991. FOCS ’87: 28th
Annual IEEE Symposium on Foundations of Computer Science.

[10] Jon L. Alperin. A Lie approach to finite groups. In Groups—Canberra 1989, volume
1456 of Lecture Notes in Math., pages 1–9. Springer, Berlin, 1990.

[11] Carme Álvarez and Birgit Jenner. A very hard log-space counting class. Theoret.
Comput. Sci., 107(1):3–30, 1993.

[12] Klaus Ambos-Spies. P-mitotic sets. In Logic and machines: decision problems and
complexity (Münster, 1983), volume 171 of Lecture Notes in Computer Science, pages
1–23. Springer, Berlin, 1984.

180

[13] Uri Andrews, Steffen Lempp, Joseph S. Miller, Keng Meng Ng, Luca San Mauro, and
Andrea Sorbi. Universal computably enumerable equivalence relations. Submitted;
available at http://www.math.wisc.edu/~jmiller/Papers/ceers.pdf, 2012.

[14] Sanjeev Arora and Boaz Barak. Computational complexity. A modern approach. Cam-
bridge University Press, Cambridge, 2009.

[15] Sanjeev Arora, Russell Impagliazzo, and Umesh Vazirani. Relativizing versus non-
relativizing techniques: the role of local checkability, 1988. Latest update 2007.
Available at http://www.cs.berkeley.edu/~vazirani/pubs/relativizing.ps and
http://cseweb.ucsd.edu/~russell/ias.ps.

[16] V. Arvind and N. V. Vinodchandran. The counting complexity of group-definable
languages. Theoret. Comput. Sci., 242(1-2):199–218, 2000.

[17] Michael Aschbacher. The status of the classification of the finite simple groups. Notices
Amer. Math. Soc., 51(7):736–740, 2004.

[18] Albert A. Atserias. Distinguishing SAT from polynomial-size circuits, through black-
box queries. In CCC ’06: 21st IEEE Conference on Computational Complexity, pages
88–95. IEEE, 2006. Also available as ECCC Tech. Report TR05-154.

[19] Amir Averbuch, Zvi Galil, and Shmuel Winograd. Classification of all the minimal
bilinear algorithm for computing the coefficients of the product of two polynomials
modulo a polynomial, part I: the algebra G[u]/〈Q(u)l〉, l > 1. Theoret. Comput. Sci.,
58:17–56, 1988.

[20] László Babai. Representation of permutation groups by graphs. In Combinatorial
theory and its applications, I (Proc. Colloq., Balatonfüred, 1969), pages 55–80. North-
Holland, Amsterdam, 1970.

[21] László Babai. Monte Carlo algorithms in graph isomorphism testing. Technical Report
DMS 79-10, Université de Montréal, 1979.

[22] László Babai. Trading group theory for randomness. In STOC ’85: 17th Annual ACM
Symposium on Theory of Computing, pages 421–429. ACM, 1985.

[23] László Babai. Personal communication, May 2008. Canonical generators for permuta-
tion groups.

[24] László Babai. Personal communication, April 2012.

[25] László Babai, Robert Beals, and Pál Takácsi-Nagy. Symmetry and complexity. In
STOC ’92: 24th Annual ACM Symposium on Theory of Computing, pages 438–449.
ACM, 1992.

181

[26] László Babai and Paolo Codenotti. Isomorphism of hypergraphs of low rank in moder-
ately exponential time. In FOCS ’08: 49th Annual IEEE Symposium on Foundations
of Computer Science, pages 667–676. IEEE Computer Society, 2008.

[27] László Babai, Paolo Codenotti, Joshua A. Grochow, and Youming Qiao. Code equiv-
alence and group isomorphism. In SODA ’11: ACM–SIAM Symposium on Discrete
Algorithms, 2011.

[28] László Babai, Paolo Codenotti, and Youming Qiao. Polynomial-time isomorphism test
for groups with no abelian normal subgroups, 2012. To appear, ICALP ’12.

[29] László Babai and Lance Fortnow. A characterization of #P by arithmetic straight line
programs. In FOCS ’90: 31st Annual IEEE Symposium on Foundations of Computer
Science, pages 26–34. IEEE Comput. Soc. Press, 1990.

[30] László Babai and Lance Fortnow. Arithmetization: a new method in structural com-
plexity theory. Comput. Complexity, 1(1):41–66, 1991.

[31] László Babai, Lance Fortnow, and Carsten Lund. Nondeterministic exponential time
has two-prover interactive protocols. In FOCS ’90: 31st Annual IEEE Symposium on
Foundations of Computer Science, volume 1, pages 16–25. IEEE Computer Society,
1990.

[32] László Babai, D. Yu. Grigoryev, and David M. Mount. Isomorphism of graphs with
bounded eigenvalue multiplicity. In STOC ’82: 14th Annual ACM Symposium on
Theory of Computing, pages 310–324. ACM, 1982.

[33] László Babai, WilliamM. Kantor, and Eugene M. Luks. Computational complexity and
the classification of finite simple groups. In FOCS ’83: 24th Annual IEEE Symposium
on Foundations of Computer Science, pages 162–171, Los Alamitos, CA, USA, 1983.
IEEE Computer Society.

[34] László Babai and Ludik Kučera. Canonical labelling of graphs in linear average time.
In FOCS ’79: 20th Annual IEEE Symposium on Foundations of Computer Science,
pages 39–46, 1979.

[35] László Babai and Eugene M. Luks. Canonical labeling of graphs. In STOC ’83: 15th
Annual ACM Symposium on Theory of Computing, pages 171–183. ACM, 1983.

[36] László Babai and Ákos Seress. Personal communication to J. von zur Gathen (cf.
[274]), March 1987.

[37] Eric Bach and Victor Shoup. Factoring polynomials using fewer random bits. J.
Symbolic Comput., 9(3):229–239, 1990.

[38] Ted Baker, John Gill, and Robert Solovay. Relativizations of the P =? NP question.
SIAM J. Comput, 4:431–442, 1975.

182

[39] S. Bakhtiari, R. Safavi-naini, and J. Pieprzyk. Cryptographic hash functions: a survey.
Technical report, Department of Computer Science, University of Wollongong, 1995.

[40] David A. Barrington. Bounded-width polynomial-size branching programs recognize
exactly those languages in NC1. J. Comput. System Sci., 38(1):150–164, 1989.

[41] David A. Mix Barrington, Neil Immerman, and Howard Straubing. On uniformity
within NC1. J. Comput. System Sci., 41(3):274–306, 1990.

[42] Saugata Basu, Richard Pollack, and Marie-Françoise Roy. Algorithms in real algebraic
geometry, volume 10 of Algorithms and Computation in Mathematics. Springer-Verlag,
Berlin, second edition, 2006.

[43] Robert Beals. Quantum computation of Fourier transforms over symmetric groups.
In STOC ’97: 29th Annual ACM Symposium on Theory of Computing, pages 48–53.
ACM, 1997.

[44] Robert E. Beck, Bernard Kolman, and Ian N. Stewart. Computing the structure of
a Lie algebra. In Computers in nonassociative rings and algebras (Special session,
82nd Annual Meeting Amer. Math. Soc., San Antonio, Tex., 1976), pages 167–188.
Academic Press, New York, 1977.

[45] Richard Beigel. Perceptrons, PP, and the polynomial hierarchy. Comput. Complexity,
4(4):339–349, 1994. Special issue on circuit complexity (Barbados, 1992).

[46] Genrich Belitskii, Andrii R. Dmytryshyn, Ruvim Lipyanski, Vladimir V. Sergeichuk,
and Arkady Tsurkov. Problems of classifying associative or Lie algebras over a field
of characteristic not two and finite metabelian groups are wild. Electron. J. Linear
Algebra, 18:516–529, 2009.

[47] Genrich Belitskii, Ruvim Lipyanski, and Vladimir Sergeichuk. Problems of classifying
associative or Lie algebras and triples of symmetric or skew-symmetric matrices are
wild. Linear Algebra Appl., 407:249–262, 2005.

[48] Michael Ben-Or. Lower bounds for algebraic computation trees. In STOC ’83: 15th
Annual ACM Symposium on Theory of Computing, pages 80–86. ACM, 1983.

[49] Michael Ben-Or and Richard Cleve. Computing algebraic formulas using a constant
number of registers. SIAM J. Comput, 21(1):54–58, 1992.

[50] Elwyn R. Berlekamp. Factoring polynomials over finite fields. Bell System Tech. J.,
46:1853–1859, 1967.

[51] Elwyn R. Berlekamp. Factoring polynomials over large finite fields. Math. Comp.,
24:713–735, 1970.

[52] Leonard Berman and Juris Hartmanis. On isomorphisms and density of NP and other
complete sets. SIAM J. Comput, 6(2):305–322, 1977.

183

[53] Dario Bini. Relations between exact and approximate bilinear algorithms. Applica-
tions. Calcolo, 17(1):87–97, 1980.

[54] Jean-Camille Birget, Alexander Yu. Ol′shanskii, Eliyahu Rips, and Mark V. Sapir.
Isoperimetric functions of groups and computational complexity of the word problem.
Ann. of Math. (2), 156(2):467–518, 2002.

[55] Andreas Blass, Nachum Dershowitz, and Yuri Gurevich. When are two algorithms the
same? Bull. Symbolic Logic, 15(2):145–168, 2009.

[56] Andreas Blass and Yuri Gurevich. Equivalence relations, invariants, and normal forms.
SIAM J. Comput, 13(4):682–689, 1984.

[57] Andreas Blass and Yuri Gurevich. Equivalence relations, invariants, and normal forms,
II. In Logic and Machines: Decision Problems and Complexity, volume 171 of Lecture
Notes in Computer Science, pages 24–42. Springer, 1984.

[58] Lenore Blum, Mike Shub, and Steve Smale. On a theory of computation and complexity
over the real numbers: NP-completeness, recursive functions and universal machines.
Bull. Amer. Math. Soc. (N.S.), 21(1):1–46, 1989.

[59] Manuel Blum. A machine-independent theory of the complexity of recursive functions.
J. Assoc. Comput. Mach., 14:322–336, 1967.

[60] WilliamW. Boone. Certain simple, unsolvable problems of group theory. V, VI. Nederl.
Akad. Wetensch. Proc. Ser. A. 60 = Indag. Math., 19:22–27, 227–232, 1957.

[61] Ravi Boppana, Johan H̊astad, and Stathis Zachos. Does co-NP have short interactive
proofs? Inform. Process. Lett., 25:27–32, 1987.

[62] I. Z. Bouwer. Section graphs for finite permutation groups. J. Combinatorial Theory,
6:378–386, 1969.

[63] Gilles Brassard and Peter Høyer. An exact quantum polynomial-time algorithm for
Simon’s problem. In Proc. 5th Israeli Symp. on Theory of Computing Systems, pages
12–23. IEEE Computer Society, 1997.

[64] Nader H. Bshouty, Richard Cleve, Sampath Kannan, and Christino Tamon. Oracles
and queries that are sufficient for exact learning. J. Comput. System Sci., 52:421–433,
1996.

[65] Harry Buhrman and Lance Fortnow. Two queries. J. Comput. System Sci., 59(2):182–
194, 1999. Special issue for selected papers from the 13th IEEE Conference on Com-
putational Complexity.

[66] Dietrich Burde, Bettina Eick, andWillem de Graaf. Computing faithful representations
for nilpotent Lie algebras. J. Algebra, 322(3):602–612, 2009.

184

[67] Dietrich Burde and Wolfgang Moens. Minimal faithful representations of reductive Lie
algebras. Arch. Math. (Basel), 89(6):513–523, 2007.

[68] Dietrich Burde and Wolfgang Alexander Moens. Faithful Lie algebra modules and
quotients of the universal enveloping algebra. J. Algebra, 325:440–460, 2011.

[69] Peter Bürgisser. Completeness and reduction in algebraic complexity theory, volume 7
of Algorithms and Computation in Mathematics. Springer-Verlag, Berlin, 2000.

[70] Peter Bürgisser, Michael Clausen, and M. Amin Shokrollahi. Algebraic complexity
theory, volume 315 of Grundlehren der Mathematischen Wissenschaften [Fundamental
Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1997. With the collab-
oration of Thomas Lickteig.

[71] Peter Bürgisser and Christian Ikenmeyer. Geometric complexity theory and tensor
rank. In STOC ’11: 43rd Annual ACM Symposium on Theory of Computing, pages
509–518. ACM, 2011.

[72] Jin-Yi Cai. A note on the determinant and permanent problem. Inform. and Comput.,
84(1):119–127, 1990.

[73] Jin-Yi Cai, Venkatesan T. Chakaravarthy, Lane A. Hemaspaandra, and Mitsunori Ogi-
hara. Competing provers yield improved Karp-Lipton collapse results. Inform. and
Comput., 198(1):1–23, 2005.

[74] Jin-Yi Cai, Xi Chen, and Dong Li. Quadratic lower bound for permanent vs. determi-
nant in any characteristic. Comput. Complexity, 19(1):37–56, 2010.

[75] Ran Canetti. More on BPP and the polynomial-time hierarchy. Inform. Process.
Lett., 57(5):237–241, 1996.

[76] Marvin Chester. Is symmetry identity? arXiv e-print physics.hist-ph/1202.0292, 2012.

[77] Claude Chevalley. Theory of Lie Groups. I. Princeton Mathematical Series, vol. 8.
Princeton University Press, Princeton, N. J., 1946.

[78] Andrew M. Childs, Richard Cleve, Enrico Deotto, Edward Farhi, Sam Gutmann, and
Daniel A. Spielman. Exponential algorithmic speedup by a quantum walk. In STOC
’03: 35th Annual ACM Symposium on Theory of Computing, pages 59–68. ACM, 2003.

[79] Alexander L. Chistov and Dima Yu. Girgoryev. Polynomial time factoring of the
multivariable polynomials over a global field. LOMI Preprint E-5-82, 1982.

[80] Clay Mathematics Institute. Millenium prize problems, 2000.

[81] Peter Clote and Jan Kraj́ıček, editors. Arithmetic, proof theory, and computational
complexity, volume 23 of Oxford Logic Guides. The Clarendon Press Oxford University

185

Press, 1993. Papers from the conference held in Prague, July 2–5, 1991, Oxford Science
Publications.

[82] Peter Clote and Evangelos Kranakis. Boolean functions, invariance groups, and parallel
complexity. SIAM J. Comput, 20(3):553–590, 1991.

[83] Paolo Codenotti. Testing isomorphism of combinatorial and algebraic structures. PhD
thesis, University of Chicago, Chicago, IL, 2011.

[84] Paul Cohen. The independence of the continuum hypothesis. Proc. Nat. Acad. Sci.
U.S.A., 50:1143–1148, 1963.

[85] Paul J. Cohen. The independence of the continuum hypothesis. II. Proc. Nat. Acad.
Sci. U.S.A., 51:105–110, 1964.

[86] Henry Cohn, Robert Kleinberg, Balazs Szegedy, and Christopher Umans. Group-
theoretic algorithms for matrix multiplication. In FOCS ’05: 46th Annual IEEE Sym-
posium on Foundations of Computer Science, pages 379–388. IEEE Computer Society,
2005.

[87] Henry Cohn and Christopher Umans. A group-theoretic approach to fast matrix mul-
tiplication. In FOCS ’03: 44th Annual IEEE Symposium on Foundations of Computer
Science, pages 438–449. IEEE Computer Society, 2003.

[88] Stephen Cook. The complexity of theorem-proving procedures. In STOC ’71: 3rd
Annual ACM Symposium on Theory of Computing, pages 151–158, 1971.

[89] Don Coppersmith. Modifications to the number field sieve. J. Cryptology, 6(3):169–180,
1993.

[90] Felipe Cucker, Marek Karpinski, Pascal Koiran, Thomas Lickteig, and Kai Werther.
On real Turing machines that toss coins. In STOC ’95: 27th Annual ACM Symposium
on Theory of Computing, pages 335–342. ACM, 1995.

[91] Charles W. Curtis. Representations of Lie algebras of classical type with applications
to linear groups. J. Math. Mech., 9:307–326, 1960.

[92] Ivan Damg̊ard. Collision free hash functions and public key signature schemes. In Eu-
roCrypt87, volume 304 of Lecture Notes in Computer Science, pages 203–216. Springer,
1988.

[93] C. Damm. DET=L#L. Technical Report Informatik-Preprint 8, Fachbereich Infor-
matik der Humboldt-Universität zu Berlin, 1991.

[94] Willem de Graaf, Gábor Ivanyos, and Lajos Rónyai. Computing Cartan subalgebras
of Lie algebras. Appl. Algebra Engrg. Comm. Comput., 7(5):339–349, 1996.

186

[95] Willem A. de Graaf. Calculating the structure of a semisimple Lie algebra. J. Pure
Appl. Algebra, 117/118:319–329, 1997. Algorithms for algebra (Eindhoven, 1996).

[96] Willem A. de Graaf. Constructing faithful matrix representations of Lie algebras. In
ISSAC ’97: International Symposium on Symbolic and Algebraic Computation, pages
54–59. ACM, 1997.

[97] Willem A. de Graaf. Lie algebras: theory and algorithms, volume 56 of North-Holland
Mathematical Library. North-Holland Publishing Co., Amsterdam, 2000.

[98] Willem A. de Graaf, Gábor Ivanyos, Alex Küronya, and Lajos Rónyai. Computing Levi
decompositions in Lie algebras. Appl. Algebra Engrg. Comm. Comput., 8(4):291–303,
1997.

[99] Hans F. de Groote. On varieties of optimal algorithms for the computation of bilinear
mappings. II. Optimal algorithms for 2 × 2-matrix multiplication. Theoret. Comput.
Sci., 7(2):127–148, 1978.

[100] Jack Edmonds. Paths, trees, and flowers. Canad. J. Math., 17:449–467, 1965.

[101] Klim Efremenko. From irreducible representations to locally decodable codes. Techni-
cal Report TR11-154, Electronic Colloquium on Computational Complexity, 2011.

[102] Mark Ettinger and Peter Høyer. A quantum observable for the graph isomorphism
problem. arXiv e-print quant-ph/9901029, 1999.

[103] Jacob Feldman and Calvin C. Moore. Ergodic equivalence relations, cohomology, and
von Neumann algebras. I. Trans. Amer. Math. Soc., 234(2):289–324, 1977.

[104] Stephen A. Fenner, Lance Fortnow, Stuart A. Kurtz, and Lide Li. An oracle builder’s
toolkit. Inform. and Comput., 182(2):95–136, 2003.

[105] Lance Fortnow. The complexity of perfect zero-knowledge. In STOC ’87: 19th Annual
ACM Symposium on Theory of Computing, pages 204–209. ACM, 1987.

[106] Lance Fortnow. The role of relativization in complexity theory. Bull. Euro. Assoc.
Theoret. Comput. Sci., 52:229–244, 1994. Computational complexity column.

[107] Lance Fortnow. Counting complexity. In Complexity theory retrospective, II, pages
81–107. Springer, New York, 1997.

[108] Lance Fortnow. The status of the P versus NP problem. Comm. Assoc. Comput.
Mach., 52(9):78–86, September 2009.

[109] Lance Fortnow and Joshua A. Grochow. Complexity classes of equivalence problems
revisited. Inform. and Comput., 209(4):748–763, 2011. Also available as arXiv e-print
cs/0907.4775.

187

[110] Lance Fortnow, A. Pavan, and Samik Sengupta. Proving SAT does not have small
circuits with an application to the two queries problem. J. Comput. System Sci., 2006.
Special issue for selected papers from the 18th IEEE Conference on Computational
Complexity.

[111] Lance Fortnow and Michael Sipser. Are there interactive protocols for co-NP lan-
guages? Inform. Process. Lett., 28(5):249–251, 1988.

[112] Katalin Friedl, Gábor Ivanyos, Frédéric Magniez, Miklos Santha, and Pranab Sen.
Hidden translation and orbit coset in quantum computing. In STOC ’03: 35th Annual
ACM Symposium on Theory of Computing, pages 1–9. ACM, 2003.

[113] Katalin Friedl and Lajos Rónyai. Polynomial time solutions of some problems of
computational algebra. In STOC ’85: 17th Annual ACM Symposium on Theory of
Computing, pages 153–162. ACM, 1985.

[114] F. Georg Frobenius. Uber die Darstellung der endlichen Gruppen durch lineare Sub-
stitutionen. Sitzungsber Deutsch. Akad. Wiss. Berlin, pages 994–1015, 1897.

[115] A. Fröhlich and J. C. Shepherdson. Effective procedures in field theory. Philos. Trans.
Roy. Soc. London. Ser. A., 248:407–432, 1956.

[116] William Fulton and Joe Harris. Representation theory, volume 129 of Graduate Texts
in Mathematics. Springer-Verlag, New York, 1991. A first course, Readings in Mathe-
matics.

[117] Martin Fürer. Faster integer multiplication. SIAM J. Comput, 39(3):979–1005, 2009.

[118] Martin Fürer, Walter Schnyder, and Ernst Specker. Normal forms for trivalent graphs
and graphs of bounded valence. In STOC ’83: 15th Annual ACM Symposium on
Theory of Computing, pages 161–170. ACM, 1983.

[119] Merrick Furst, John Hopcroft, and Eugene Luks. Polynomial-time algorithms for per-
mutation groups. In FOCS ’80: 21st Annual IEEE Symposium on Foundations of
Computer Science, pages 36–41. IEEE, 1980.

[120] Merrick Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the polynomial-
time hierarchy. Math. Systems Theory, 17(1):13–27, 1984.

[121] Su Gao and Peter Gerdes. Computably enumerable equivalence relations. Studia
Logica, 67(1):27–59, 2001.

[122] Howard Georgi. Lie algebras in particle physics, volume 54 of Frontiers in Physics.
Benjamin/Cummings Publishing Co. Inc. Advanced Book Program, Reading, Mass.,
1982. From isospin to unified theories, With an introduction by Sheldon L. Glashow.

[123] Christian Glaßer, Christian Reitwießner, and Victor Selivanov. The shrinking property
for NP and coNP. Theoret. Comput. Sci., 412(8-10):853–864, 2011.

188

[124] Kurt Gödel. Letter to J. von Neumann, 20 March 1956. English translations available
in [246] [81, Preface], [183, http://rjlipton.wordpress.com/the-gdel-letter/].

[125] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their
validity, and a methodology of cryptographic protocol design. In FOCS ’86: 27th
Annual IEEE Symposium on Foundations of Computer Science, pages 174–187, 1986.

[126] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof systems. SIAM J. Comput, 18(1):186–208, 1989.

[127] Shafi Goldwasser and Michael Sipser. Private coins versus public coins in interactive
proof systems. In STOC ’86: 18th Annual ACM Symposium on Theory of Computing,
pages 59–68. ACM, 1986.

[128] Michelangelo Grigni, Leonard J. Schulman, Monica Vazirani, and Umesh Vazirani.
Quantum mechanical algorithms for the nonabelian hidden subgroup problem. Com-
binatorica, 24(1):137–154, 2004.

[129] Joshua A. Grochow. Matrix Lie algebra isomorphism. In CCC ’12: 27th IEEE Con-
ference on Computational Complexity. IEEE, 2012. Also available as arXiv e-print
cs/1112.2012 and ECCC Tech. Report TR11-168.

[130] Joshua A. Grochow and Korben Rusek. Report on “Mathematical Aspects of P vs.
NP and its Variants”. arXiv e-print cs.CC/1203.2888, 2012. Workshop held at Brown-
ICERM in August, 2011, organizers: Saugata Basu, J. M. Landsberg, and J. Maurice
Rojas.

[131] Fritz Grunewald and Daniel Segal. Some general algorithms. II. Nilpotent groups.
Ann. of Math. (2), 112(3):585–617, 1980.

[132] Yuri Gurevich. From invariants to canonization. Bulletin of the EATCS, 63:115–119,
1997.

[133] Yuri Gurevich and Paul Schupp. Membership problem for the modular group. SIAM
J. Comput, 37(2):425–459, 2007.

[134] Leonid Gurvits. Classical complexity and quantum entanglement. J. Comput. System
Sci., 69(3):448–484, 2004.

[135] Leonid Gurvits. Combinatorial and algorithmic aspects of hyperbolic polynomials.
arXiv e-print math.CO/0404474, 2004.

[136] Leonid Gurvits. On the complexity of mixed discriminants and related problems. In
MFCS ’05: Symposium on Mathematical Foundations of Computer Science, volume
3618 of Lecture Notes in Computer Science, pages 447–458. Springer, Berlin, 2005.

189

[137] Lane A. Hemaspaandra, Christopher M. Homan, Sven Kosub, and Klaus W. Wagner.
The complexity of computing the size of an interval. SIAM J. Comput, 36(5):1264–
1300, 2006.

[138] Lane A. Hemaspaandra, Ashish V. Naik, Mitsunori Ogihara, and Alan L. Selman.
Computing solutions uniquely collapses the polynomial hierarchy. SIAM J. Comput,
25(4):697–708, 1996. Also available as ECCC Tech. Report TR96-027; preliminary
version in Springer LNCS vol. 834, 1994.

[139] William Hesse, Eric Allender, and David A. Mix Barrington. Uniform constant-depth
threshold circuits for division and iterated multiplication. J. Comput. System Sci.,
65(4):695–716, 2002. Special issue for selected papers from the 16th IEEE Conference
on Computational Complexity.

[140] Gerhard Hochschild. Representations of restricted Lie algebras of characteristic p.
Proc. Amer. Math. Soc., 5:603–605, 1954.

[141] John Hopcroft and J. K. Wong. Linear time algorithm for isomorphism of planar
graphs (preliminary report). In STOC ’74: 6th Annual ACM Symposium on Theory
of Computing, pages 172–184. ACM, 1974.

[142] John E. Hopcroft and Robert E. Tarjan. Isomorphism of planar graphs. In Complex-
ity of computer computations (Proc. Sympos., IBM Thomas J. Watson Res. Center,
Yorktown Heights, N. Y., 1972), pages 131–152, 187–212. Plenum, New York, 1972.

[143] James E. Humphreys. Introduction to Lie algebras and representation theory, volume 9
of Graduate Texts in Mathematics. Springer-Verlag, New York, 1978. Second printing,
revised.

[144] Neil Immerman. Nondeterministic space is closed under complementation. SIAM J.
Comput, 17(5):935–938, 1988.

[145] Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova. An axiomatic
approach to algebrization. In STOC ’09: 41st Annual ACM Symposium on Theory of
Computing, pages 695–704. ACM, 2009.

[146] Gábor Ivanyos, Frédéric Magniez, and Miklos Santha. Efficient quantum algorithms
for some instances of the non-abelian hidden subgroup problem. Internat. J. Found.
Comput. Sci., 14(5):723–739, 2003.

[147] Gábor Ivanyos and Lajos Rónyai. Computations in associative and Lie algebras. In
Some tapas of computer algebra, volume 4 of Algorithms Comput. Math., pages 91–120.
Springer, Berlin, 1999.

[148] Kenkichi Iwasawa. On the representation of Lie algebras. Jap. J. Math., 19:405–426,
1948.

190

[149] Nathan Jacobson. A note on Lie algebras of characteristic p. Amer. J. Math., 74:357–
359, 1952.

[150] Nathan Jacobson. Lie algebras. Interscience Tracts in Pure and Applied Mathematics,
No. 10. Interscience Publishers (a division of John Wiley & Sons), New York-London,
1962.

[151] Birgit Jenner and Jacobo Torán. The complexity of obtaining solutions for problems
in NP and NL. In Complexity Theory Retrospective, II, pages 155–178. Springer, New
York, 1997.

[152] J. Howard Johnson. Rational equivalence relations. In Laurent Kott, editor, ICALP
’86: 13th International Colloquium on Automata, Languages and Programming, vol-
ume 226 of Lecture Notes in Computer Science, pages 167–176. Springer, 1986.

[153] Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity tests
means proving circuit lower bounds. Comput. Complexity, 13(1-2):1–46, 2004.

[154] Harlan Kadish and J. M. Landsberg. Padded polynomials, their cousins, and geometric
complexity theory. arXiv e-print math.AG/1204.4693, 2012.

[155] Erich Kaltofen. Polynomial factorization 1987–1991. In Imre Simon, editor, LATIN
’92, volume 583 of Lecture Notes in Computer Science, pages 294–313. Springer Berlin
/ Heidelberg, 1992.

[156] Richard M. Karp. Reducibility among combinatorial problems. In Complexity of
Computer Computations, pages 85–103, 1972.

[157] Richard M. Karp and Richard J. Lipton. Turing machines that take advice. Enseign.
Math. (2), 28(3-4):191–209, 1982.

[158] Tali Kaufman and Madhu Sudan. Algebraic property testing: the role of invariance.
In STOC ’08: 40th Annual ACM Symposium on Theory of Computing, pages 403–412.
ACM, 2008.

[159] Neeraj Kayal. Affine projections of polynomials. Technical Report TR11-061, Elec-
tronic Colloquium on Computational Complexity, 2011.

[160] Neeraj Kayal. Efficient algorithms for some special cases of the polynomial equivalence
problem. In SODA ’11: ACM–SIAM Symposium on Discrete Algorithms, 2011.

[161] Neeraj Kayal and Nitin Saxena. Complexity of ring morphism problems. Comput.
Complexity, 15(4):342–390, 2006.

[162] Olga Kharlampovich, Alexei Myasnikov, and Mark V. Sapir. Residually finite finitely
presented solvable groups. arXiv e-print math.GR/1204.6506, 2012.

191

[163] Evgenii I. Khukhro. Nilpotent groups and their automorphisms, volume 8 of de Gruyter
Expositions in Mathematics. Walter de Gruyter & Co., Berlin, 1993.

[164] Evgenii I. Khukhro. p-automorphisms of finite p-groups, volume 246 of London Math-
ematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1998.

[165] Alexei Kitaev. Quantum measurements and the abelian stabilizer problem. arXiv
e-print quant-ph/9511026, 1995.

[166] Anthony W. Knapp. Lie groups beyond an introduction, volume 140 of Progress in
Mathematics. Birkhäuser Boston Inc., Boston, MA, second edition, 2002.

[167] Donald E. Knuth. Efficient representation of perm groups. Combinatorica, 11(1):33–43,
1991.

[168] Ker-I Ko. Some observations on the probabilistic algorithms and NP-hard problems.
Inform. Process. Lett., 14(1):39–43, 1982.

[169] Ker-I Ko. On self-reducibility and weak P-selectivity. J. Comput. System Sci.,
26(2):209–221, 1983.

[170] Johannes Köbler and Osamu Watanabe. New collapse consequences of NP having
small circuits. SIAM J. Comput, 28(1):311–324, 1999.

[171] Ioannis Koutis and Ryan Williams. Limits and applications of group algebras for
parameterized problems. In Automata, languages and programming. Part I, volume
5555 of Lecture Notes in Computer Science, pages 653–664. Springer, Berlin, 2009.

[172] Leopold Kronecker. Grundzüge einer arithmetischen Theorie der algebraischen
Grössen. J. reine angew. Math., 92:1–122, 1882.

[173] Greg Kuperberg. A subexponential-time quantum algorithm for the dihedral hidden
subgroup problem. SIAM J. Comput, 35(1):170–188, 2005.

[174] Susan Landau. Factoring polynomials over algebraic number fields. SIAM J. Comput,
14(1):184–195, 1985.

[175] J. M. Landsberg. Geometry and the complexity of matrix multiplication. Bull. Amer.
Math. Soc. (N.S.), 45(2):247–284, 2008.

[176] J. M. Landsberg. Tensors: geometry and applications, volume 128 of Graduate Studies
in Mathematics. American Mathematical Society, Providence, RI, 2012.

[177] J. M. Landsberg, Laurent Manivel, and Nicolas Ressayre. Hypersurfaces with de-
generate duals and the Geometric Complexity Theory Program. arXiv e-print
math.AG/1004.4802, 2010.

192

[178] Klaus-Jörn Lange. Two characterizations of the logarithmic alternation hierarchy.
In MFCS ’86: 12th Symposium on Mathematical Foundations of Computer Science,
volume 233 of Lecture Notes in Computer Science, pages 518–526. Springer-Verlag,
1986.

[179] Clemens Lautemann. BPP and the polynomial hierarchy. Inform. Process. Lett.,
17(4):215–217, 1983.

[180] Arjen K. Lenstra. Factoring polynomials over algebraic number fields. In Computer
algebra (London, 1983), volume 162 of Lecture Notes in Computer Science, pages 245–
254. Springer, Berlin, 1983.

[181] Arjen K. Lenstra, Hendrik W. Lenstra, Jr., and László Lovász. Factoring polynomials
with rational coefficients. Math. Ann., 261(4):515–534, 1982.

[182] Martin W. Liebeck. On graphs whose full automorphism group is an alternating group
or a finite classical group. Proc. London Math. Soc. (3), 47(2):337–362, 1983.

[183] Richard Lipton and Kenneth Regan. Gödel’s lost letter and P = NP. http://

rjlipton.wordpress.com/. A weblog.

[184] Richard J. Lipton and Yechezkel Zalcstein. Word problems solvable in logspace. J.
Assoc. Comput. Mach., 24(3):522–526, 1977.

[185] Eugene M. Luks. Isomorphism of graphs of bounded valence can be tested in polyno-
mial time. J. Comput. System Sci., 25(1):42–65, 1982.

[186] Eugene M. Luks. Hypergraph isomorphism and structural equivalence of Boolean
functions. In STOC ’99: 31st Annual ACM Symposium on Theory of Computing,
pages 652–658. ACM, 1999.

[187] Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. Algebraic methods
for interactive proof systems. In FOCS ’90: 31st Annual IEEE Symposium on Foun-
dations of Computer Science, pages 2–10 vol.1, Washington, DC, USA, 1990. IEEE
Computer Society.

[188] Jack H. Lutz. Category and measure in complexity classes. SIAM J. Comput,
19(6):1100–1131, 1990.

[189] Meena Mahajan and V. Vinay. Determinant: combinatorics, algorithms, and complex-
ity. Chicago J. Theoret. Comput. Sci., pages Article 5, 26 pp. (electronic), 1997.

[190] Anatolĭı I. Mal′cev. On a class of homogeneous spaces. Izvestiya Akad. Nauk. SSSR.
Ser. Mat., 13:9–32, 1949.

[191] Guillaume Malod and Natacha Portier. Characterizing Valiant’s algebraic complexity
classes. J. Complexity, 24(1):16–38, 2008.

193

[192] Marvin Marcus and F. C. May. The permanent function. Canad. J. Math., 14:177–189,
1962.

[193] Ernst Mayr. Membership in polynomial ideals over Q is exponential space complete.
In STACS ’89: 6th Annual Symposium on Theoretical Aspects of Computer Science,
volume 349 of Lecture Notes in Computer Science, pages 400–406. Springer, Berlin,
1989.

[194] Ernst W. Mayr. Some complexity results for polynomial ideals. J. Complexity,
13(3):303–325, 1997.

[195] Ernst W. Mayr and Albert R. Meyer. The complexity of the word problems for com-
mutative semigroups and polynomial ideals. Adv. in Math., 46(3):305–329, 1982.

[196] Nadia Mazza. Finite p-groups in representation theory. http://sma.

epfl.ch/~dietler/Site/Mazza.html or http://www.maths.lancs.ac.uk/~mazza/
ln-p-gps.pdf, June 2010. Lecture notes from the summer school of the doctoral
program in mathematics, EPFL.

[197] Curt McMullen. Families of rational maps and iterative root-finding algorithms (dy-
namics, complex analysis, Newton’s method). PhD thesis, Harvard University, 1985.

[198] Curt McMullen. Families of rational maps and iterative root-finding algorithms. Ann.
of Math. (2), 125(3):467–493, 1987.

[199] Curt McMullen. Braiding of the attractor and the failure of iterative algorithms.
Invent. Math., 91(2):259–272, 1988.

[200] Roy Meshulam. On two extremal matrix problems. Linear Algebra Appl., 114/115:261–
271, 1989.

[201] Thierry Mignon and Nicolas Ressayre. A quadratic bound for the determinant and
permanent problem. Int. Math. Res. Not., (79):4241–4253, 2004.

[202] Gary Miller. Isomorphism testing for graphs of bounded genus. In STOC ’80: 12th
Annual ACM Symposium on Theory of Computing, pages 225–235. ACM, 1980.

[203] Gary L. Miller. On the nlogn isomorphism technique (a preliminary report). In STOC
’78: 10th Annual ACM Symposium on Theory of Computing, pages 51–58. ACM Press,
1978.

[204] W. H. Mills and George B. Seligman. Lie algebras of classical type. J. Math. Mech.,
6:519–548, 1957.

[205] Ketan D. Mulmuley. Geometric complexity theory IX: on the flip over fields of positive
characteristic. In preperation.

194

[206] Ketan D. Mulmuley. On P vs. NP, Geometric Complexity Theory, and the flip I: a
high-level view. Technical Report TR-2007-13, Computer Science Department, The
University of Chicago, 2007. Available at http://ramakrishnadas.cs.uchicago.

edu/gctflip1.ps.

[207] Ketan D. Mulmuley and Milind Sohoni. Geometric complexity theory I: an approach
to the P vs. NP and related problems. SIAM J. Comput, 31(2):496–526, 2001.

[208] David Mumford. Algebraic geometry I. Complex projective varieties. Number 221 in
Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin, 1976.

[209] John Nash. Letters to the USA National Security Agency concerning enciphering,
18 January 1955. Available at http://www.nsa.gov/public_info/_files/nash_

letters/nash_letters1.pdf.

[210] C. Andrew Neff. Specified precision polynomial root isolation is in NC. In FOCS ’90:
31st Annual IEEE Symposium on Foundations of Computer Science, pages 152–162.
IEEE Comput. Soc. Press, 1990.

[211] Michael A. Nielson and Isaac L. Chuang. Quantum Computation and Quantum Infor-
mation. Cambridge University Press, 2000.

[212] P. S. Novikov. Ob algoritmičeskŏı nerazrešimosti problemy toždestva slov v teorii grupp.
Trudy Mat. Inst. im. Steklov. no. 44. Izdat. Akad. Nauk SSSR, Moscow, 1955. English
translation: On the algorithmic insolvability of the word problem in group theory, in:
American Mathematical Society Translations, Ser. 2, Vol. 9, AMS, 1958, pp. 1–122.

[213] Peter J. Olver. Applications of Lie groups to differential equations, volume 107 of
Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1993.

[214] A. L. Onishchik and È. B. Vinberg. Lie groups and algebraic groups. Springer Series in
Soviet Mathematics. Springer-Verlag, Berlin, 1990. Translated from the Russian and
with a preface by D. A. Leites.

[215] Karen Hunger Parshall. In pursuit of the finite division algebra theorem and beyond:
Joseph H. M. Wedderburn, Leonard E. Dickson, and Oswald Veblen. Arch. Internat.
Hist. Sci., 33(111):274–299 (1984), 1983.

[216] Erez Petrank and Ron M. Roth. Is code equivalence easy to decide? IEEE Transactions
on Information Theory, 43:1602–1604, 1997.

[217] Emil L. Post. Recursively enumerable sets of positive integers and their decision prob-
lems. Bull. Amer. Math. Soc., 50:284–316, 1944.

[218] Michael O. Rabin. Mathematical theory of automata. In Proc. Sympos. Appl. Math.,
Vol. XIX, pages 153–175. Amer. Math. Soc., 1967.

195

[219] Michael O. Rabin. Probabilistic algorithm for testing primality. J. Number Theory,
12(1):128–138, 1980.

[220] D. Rand, P. Winternitz, and H. Zassenhaus. On the identification of a Lie algebra
given by its structure constants. I. Direct decompositions, Levi decompositions, and
nilradicals. Linear Algebra Appl., 109:197–246, 1988.

[221] Alexander A. Razborov and Steven Rudich. Natural proofs. J. Comput. System Sci.,
55(1, part 1):24–35, 1997.

[222] Oded Regev. Quantum computation and lattice problems. SIAM J. Comput,
33(3):738–760, 2004.

[223] Omer Reingold, Luca Trevisan, and Salil Vadhan. Pseudorandom walks on regular
digraphs and the RL vs. L problem. In STOC ’06: 38th Annual ACM Symposium on
Theory of Computing, pages 457–466. ACM, 2006.

[224] R. W. Richardson, Jr. Principal orbit types for algebraic transformation spaces in
characteristic zero. Invent. Math., 16:6–14, 1972.

[225] Lajos Rónyai. Zero divisors in quaternion algebras. J. Algorithms, 9(4):494–506, 1988.

[226] Lajos Rónyai. Computations in associative algebras. In Groups and computation (New
Brunswick, NJ, 1991), volume 11 of DIMACS Ser. Discrete Math. Theoret. Comput.
Sci., pages 221–243. AMS, Providence, RI, 1993.

[227] Alexander Russell and Ravi Sundaram. Symmetric alternation captures BPP. Com-
put. Complexity, 2(7):152–162, 1995.

[228] Walter L. Ruzzo. On uniform circuit complexity. J. Comput. System Sci., 22(3):365–
383, 1981. Special issue dedicated to Michael Machtey.

[229] Alexander J. E. Ryba. Computer construction of split Cartan subalgebras. J. Algebra,
309(2):455–483, 2007.

[230] Mark V. Sapir, Jean-Camille Birget, and Eliyahu Rips. Isoperimetric and isodiametric
functions of groups. Ann. of Math. (2), 156(2):345–466, 2002.

[231] Walter J. Savitch. Deterministic simulation of non-deterministic Turing machines (de-
tailed abstract). In STOC ’69: 1st Annual ACM Symposium on Theory of Computing,
pages 247–248, 1969.

[232] Arnold Schönhage and Volker Strassen. Schnelle Multiplikation grosser Zahlen. Com-
puting (Arch. Elektron. Rechnen), 7:281–292, 1971.

[233] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
J. Assoc. Comput. Mach., 27(4):701–717, 1980.

196

[234] G. B. Seligman. Modular Lie algebras. Ergebnisse der Mathematik und ihrer Grenzge-
biete, Band 40. Springer-Verlag New York, Inc., New York, 1967.

[235] Alan L. Selman. A survey of one-way functions in complexity theory. Math. Systems
Theory, 25(3):203–221, 1992.

[236] Alan L. Selman. A taxonomy of complexity classes of functions. J. Comput. System
Sci., 48(2):357–381, 1994.

[237] Alan L. Selman, Mei Rui Xu, and Ronald V. Book. Positive relativizations of com-
plexity classes. SIAM J. Comput, 12(3):565–579, 1983.

[238] Adi Shamir. IP = PSPACE. J. Assoc. Comput. Mach., 39(4):869–877, 1992.

[239] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput, 26(5):1484–1509, 1997.

[240] Daniel R. Simon. On the power of quantum computation. SIAM J. Comput,
26(5):1474–1483, October 1997.

[241] Hans-Ulrich Simon. Word problems for groups and contextfree recognition. In Funda-
mentals of computation theory (Proc. Conf. Algebraic, Arith. and Categorical Methods
in Comput. Theory, Berlin/Wendisch-Rietz, 1979), volume 2 of Math. Res., pages
417–422. Akademie-Verlag, Berlin, 1979.

[242] Charles C. Sims. Computational methods in the study of permutation groups. In
Computational Problems in Abstract Algebra (Oxford, 1967), pages 169–183. Perga-
mon, Oxford, 1970.

[243] Charles C. Sims. Computation with permutation groups. In SYMSAC ’71: Proceedings
of the Second ACM Symposium on Symbolic and Algebraic Manipulation, pages 23–28.
ACM, 1971.

[244] Michael Sipser. On relativization and the existence of complete sets. In ICALP ’82:
International Colloquium on Automata, Languages and Programming, volume 140 of
Lecture Notes in Computer Science, pages 523–531. Springer, Berlin, 1982.

[245] Michael Sipser. A complexity theoretic approach to randomness. In STOC ’83: 15th
Annual ACM Symposium on Theory of Computing, pages 330–335. ACM, 1983.

[246] Michael Sipser. The history and status of the P versus NP question. In STOC ’92:
24th Annual ACM Symposium on Theory of Computing, pages 603–618. ACM, 1992.

[247] Michael Sipser. Introduction to the Theory of Computation. Course Technology, second
edition, 2005.

[248] Steve Smale. On the topology of algorithms. I. J. Complexity, 3(2):81–89, 1987.

197

[249] Ronald Solomon. A brief history of the classification of the finite simple groups. Bull.
Amer. Math. Soc. (N.S.), 38(3):315–352, 2001.

[250] Robert M. Solovay. A model of set-theory in which every set of reals is Lebesgue
measurable. Ann. of Math. (2), 92:1–56, 1970.

[251] Robert M. Solovay and Volker Strassen. A fast Monte-Carlo test for primality. SIAM
J. Comput, 6(1):84–85, 1977.

[252] Willi-Hans Steeb. Continuous symmetries, Lie algebras, differential equations and
computer algebra. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, second
edition, 2007.

[253] J. Michael Steele and Andrew C. Yao. Lower bounds for algebraic decision trees. J.
Algorithms, 3(1):1–8, 1982.

[254] Larry J. Stockmeyer. The polynomial-time hierarchy. Theoret. Comput. Sci., 3(1):1–22
(1977), 1976.

[255] Larry J. Stockmeyer and Albert R. Meyer. Word problems requiring exponential time
(preliminary report). In STOC ’73: 5th Annual ACM Symposium on Theory of Com-
puting, pages 1–9. ACM, 1973.

[256] Volker Strassen. Vermeidung von Divisionen. J. Reine Angew. Math., 264:184–202,
1973.

[257] Madhu Sudan. Invariance in property testing. In Property Testing, number 6390 in
Lecture Notes in Computer Science, pages 211–227. Springer, 2011. Also available as
ECCC Tech. Report TR10-051.

[258] Róbert Szelepcsényi. The method of forced enumeration for nondeterministic au-
tomata. Acta Inf., 26(3):279–284, 1988.

[259] Jun Tarui. Randomized polynomials, threshold circuits, and the polynomial hierarchy.
In STACS ’91: 8th Annual Symposium on Theoretical Aspects of Computer Science,
pages 238–250. Springer-Verlag, 1991.

[260] Thomas Thierauf. The Computational Complexity of Equivalence and Isomorphism
Problems, volume 1852 of Lecture Notes in Computer Science. Springer, New York,
2000.

[261] Seinosuke Toda. On the computational power of PP and #P. In FOCS ’89: 30th
Annual IEEE Symposium on Foundations of Computer Science, pages 514–519, 1989.

[262] Seinosuke Toda. Counting problems computationally equivalent to the determinant,
1991. Manuscript.

198

[263] Seinosuke Toda and Mitsunori Ogiwara. Counting classes are at least as hard as the
polynomial-time hierarchy. SIAM J. Comput, 21(2):316–328, 1992.

[264] Barry M. Trager. Algebraic factoring and rational function integration. In SYMSAC
’76: 3rd ACM Symposium on Symbolic and Algebraic Computation, pages 219–226.
ACM, 1976.

[265] Boris A. Trakhtenbrot. A survey of Russian approaches to perebor (brute-force
searches) algorithms. Annals of the History of Computing, 6(4):384–400, 1984.

[266] Alan M. Turing. On computable numbers, with an application to the Entschei-
dungsproblem. Proc. of the London Math. Soc., s2-42(1):230–265, 1937.

[267] L. G. Valiant, S. Skyum, S. Berkowitz, and C. Rackoff. Fast parallel computation of
polynomials using few processors. SIAM J. Comput, 12(4):641–644, 1983.

[268] Lesile G. Valiant. Negation can be exponentially powerful. Theoret. Comput. Sci.,
12(3):303–314, 1980.

[269] Leslie G. Valiant. Completeness classes in algebra. In STOC ’79: 11th Annual ACM
Symposium on Theory of Computing, pages 249–261. ACM, 1979.

[270] Leslie G. Valiant and Vijay V. Vazirani. NP is as easy as detecting unique solutions.
Theoret. Comput. Sci., 47(1):85–93, 1986.

[271] Bartel L. van der Waerden. Eine Bemerkung über die Unzerlegbarkeit von Polynomen.
Math. Ann., 102(1):738–739, 1930.

[272] H. Venkateswaran. Circuit definitions of nondeterministic complexity classes. SIAM
J. Comput, 21(4):655–670, 1992.

[273] V. Vinay. Counting auxiliary pushdown automata and semi-unbounded arithmetic
circuits. In Proceedings of the 6th Structures in Complexity Theory Conference, Lecture
Notes in Computer Science, pages 270–284. Springer, 1991.

[274] Joachim von zur Gathen. Permanent and determinant. Linear Algebra Appl., 96:87–
100, 1987.

[275] Hermann Weyl. Symmetry. Princeton Science Library. Princeton University Press,
Princeton, NJ, 1989. Reprint of the 1952 original.

[276] James B. Wilson. Decomposing p-groups via Jordan algebras. J. Algebra, 322:2642–
2679, 2009.

[277] James B. Wilson. Finding central decompositions of p-groups. J. Group Theory,
12:813–830, 2009.

199

[278] Hans Wussing. The genesis of the abstract group concept. MIT Press, Cambridge, MA,
1984. A contribution to the history of the origin of abstract group theory, Translated
from the German by Abe Shenitzer and Hardy Grant.

[279] Stathis Zachos. Probabilistic quantifiers and games. J. Comput. System Sci.,
36(3):433–451, 1988. Structure in Complexity Theory Conference 1986.

[280] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Symbolic and al-
gebraic computation (EUROSAM ’79, Internat. Sympos., Marseille, 1979), volume 72
of Lecture Notes in Computer Science, pages 216–226. Springer, Berlin, 1979.

200

	Abstract

	Acknowledgments

	Table of Contents

	List of Figures

	List of Tables

	1. Introduction

	1.1.
 Computational complexity
	1.1.1. Computational problems and complexity measures

	1.1.2. Degrees of complexity

	1.2. Equivalence relations

	1.3. Symmetry

	1.3.1. Continuous symmetries and Lie algebras

	1.3.2. Symmetry-based equivalence relations

	1.4. Symmetry and equivalence relations in complexity

	1.5. Organization

	2. Background

	2.1. Complexity theory

	2.1.1. Computational problems

	2.1.2. Reductions

	2.1.3. Complexity classes

	Function classes

	Counting classes

	Advice

	2.1.4. Circuit complexity

	2.1.5. Algebraic complexity

	2.1.6. Barriers: relativization, algebrization, and natural proofs

	2.2. Algebra

	2.2.1. Equivalence relations

	2.2.2. Groups

	Important classes and examples of groups

	2.2.3. Rings, fields, and modules

	2.2.4. Lie algebras

	Structure theory of Lie algebras

	Cartan subalgebras

	Representations

	Inner and outer automorphisms

	Twisting representations by automorphisms

	Tensor products of representations

	3. A tutorial and survey of geometric complexity theory

	3.1. Introduction

	3.1.1. Outline

	3.2. The 1,000-foot view

	3.2.1. The plan of attack

	3.2.2. On the necessity of algebraic geometry, representation theory, and algorithms

	3.2.3. The plan of attack II: a few details

	3.3. The 100-foot view: from computational reductions to orbit closures

	3.3.1. Background: group actions and orbits

	3.3.2. Equivalence of lower bounds and orbit closure containment

	3.3.3. Algebraic versus Boolean complexity

	General considerations

	P versus NP in geometric complexity theory

	3.4. The 10-foot view: characterization by symmetries

	3.4.1. Background: stabilizers in group actions

	3.4.2. Symmetry-characterization and self-reduction: The Flip Theorem

	Characterization by symmetries

	The Flip Theorem

	3.4.3. Symmetry-characterization avoids the Razborov-Rudich barrier

	3.4.4. An algorithmic consequence of symmetry-characterization

	3.5. The view from the ground

	3.5.1. Using the zeroes of a function to understand its orbit closure

	3.5.2. The relationship between the Mulmuley-Sohoni Conjecture and permanent versus determinant

	4. Matrix isomorphism of matrix Lie algebras

	4.1. Introduction

	4.1.1. Results

	4.1.2. A note on finding roots of single-variable polynomials

	4.1.3. Outline

	4.2. Warm-up: diagonalizable Lie algebras and Linear Code Equivalence

	4.3. Basic algorithms for Lie algebras and their representations

	4.3.1. Describing Lie algebras and representations as input to algorithms

	4.3.2. Abstract isomorphism of semisimple Lie algebras

	4.3.3. Equivalence and decomposition of representations

	4.4. Semisimple Lie algebras and Graph Isomorphism

	4.5. Completely reducible Lie algebras

	4.6. Application to equivalence of polynomials

	4.7. Application to abstract Isomorphism of Lie A
lgebras
	4.8. Twisted Code Equivalence reduces to Graph Isomorphism

	4.9. Future work

	4.9.1. Other fields

	Semisimple versus classical

	The main bottleneck: finding split Cartan subalgebras

	Ingredients for finite fields

	4.9.2. Connections with Finite Group Isomorphism

	4.9.3. Open questions

	Appendix on terminology

	5. The complexity of equivalence relations

	5.1. Introduction

	5.1.1. Examples

	5.1.2. Main results

	5.2. Previous results

	5.3. Evidence for separation

	5.3.1. New collapses

	Promise classes

	Groupy witnesses for NP problems

	5.3.2. Hardness
	Collision-free hash functions

	Subgroup Equality

	Boolean Function Congruence

	Complete problems?

	5.4. Oracles

	5.4.1. Preliminaries on generic oracles

	5.4.2. Oracles for PEq, Ker, and CF

	5.5. Future work

	5.5.1. Logarithmic space

	5.5.2. Additional questions

	6. Conclusion

	References

