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Abstract. We show that most arithmetic circuit lower bounds and relations between lower bounds
naturally fit into the representation-theoretic framework suggested by geometric complexity theory
(GCT), including: the partial derivatives technique (Nisan–Wigderson), the results of Razborov
and Smolensky on AC0[p], multilinear formula and circuit size lower bounds (Raz et al.), the de-
gree bound (Strassen, Baur–Strassen), the connected components technique (Ben-Or), depth 3
arithmetic circuit lower bounds over finite fields (Grigoriev–Karpinski), lower bounds on perma-
nent versus determinant (Mignon–Ressayre, Landsberg–Manivel–Ressayre), lower bounds on ma-
trix multiplication (Bürgisser–Ikenmeyer) (these last two were already known to fit into GCT),
the chasms at depth 3 and 4 (Gupta–Kayal–Kamath–Saptharishi; Agrawal–Vinay; Koiran), matrix
rigidity (Valiant) and others. That is, the original proofs, with what is often just a little extra work,
already provide representation-theoretic obstructions in the sense of GCT for their respective lower
bounds. This enables us to expose a new viewpoint on GCT, whereby it is a natural unification
and broad generalization of known results. It also shows that the framework of GCT is at least as
powerful as known methods, and gives many new proofs-of-concept that GCT can indeed provide
significant asymptotic lower bounds. This new viewpoint also opens up the possibility of fruitful
two-way interactions between previous results and the new methods of GCT; we provide several
concrete suggestions of such interactions. For example, the representation-theoretic viewpoint of
GCT naturally provides new properties to consider in the search for new lower bounds.

1. Introduction

Geometric complexity theory (GCT) is a program towards lower bounds—such as P 6= NP—
using algebraic geometry and representation theory (see [Mul11] for an overview, and references
therein). In this paper, we show that most arithmetic circuit lower bounds naturally fit into the
representation-theoretic framework used in GCT. We also show that part of the representation-
theoretic approach is necessary, that this approach illuminates lower bounds even when it is not
strictly necessary, and that it may in fact be the easiest approach to proving circuit lower bounds.
GCT thus provides a unifying and generalizing framework for many known lower bounds. This
representation-theoretic viewpoint opens the door for new potentially fruitful two-way interactions
between previous results and new progress in (geometric) complexity theory (see Sections 1.1 and
4.2 for details).

This paper presupposes no knowledge of representation theory on the part of the reader. In fact,
we use previous lower bounds together with our new viewpoint to motivate the use and definitions
of representation theory and algebraic geometry in complexity theory.

Essentially any lower bound proof Chard 6⊆ Ceasy between nonuniform complexity classes proceeds
by finding some “useful” property, which applies to every function in Ceasy, but not to every function
in Chard. The first part of the GCT program suggests the use of properties of a certain type, namely
(linear-)invariant properties defined by the vanishing of polynomials, which we capture in the notion
of “separating module” (Definition 2.10). Recall that a property Π is linear-invariant if for every
function on n variables, f(x) has Π if and only if f(Ax) has Π for every invertible n × n change
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of variables A. In this paper we show that most known arithmetic circuit lower bounds in fact use
separating modules, including:

• Lower bounds on restricted depth 3 arithmetic circuits in characteristic zero [NW97]
• Lower bounds on (unrestricted) depth 3 arithmetic circuits over finite fields [GK98]
• The recent lower bounds on depth 4 arithmetic circuits with bottom fan-inO(

√
n) [GKKS12]

• Lower bounds on multilinear formula size [Raz09]
• The degree bound of Strassen [Str73] and Baur–Strassen [BS83] (see below)
• Lower bounds on real (semi-)algebraic decision trees [BO83, Yao97]
• Lower bounds on bounded depth Boolean circuits [Raz87, Smo87]
• The best known lower bounds (n2/2) on permanent versus determinant [MR04] (already

shown to use a separating module [LMR10])
• Many lower bounds on matrix multiplication (already shown to use a separating module

[BI12, Str87])

We expect that results which use similar techniques can be shown to use separating modules as well,
such as [Raz06, RSY08, RY09, SW01, GR00, Yao91, BLY92]. We also observe that many relations
between lower bounds yield relations between separating modules. In other words, if lower bound
A is proved using a separating module, that yields a separating module for lower bound B:

• Lower bounds on partial derivatives implies lower bounds [BS83]
• Matrix rigidity implies circuit lower bounds [Val77]
• The chasm at depth 4 [AV08, Koi12] and the recent chasm at depth 3 [GKKS13]
• Tensor-rank lower bounds imply formula size lower bounds [Raz10]

Finally, in Section 3 we argue that the use of invariant properties is essentially necessary, and
we give heuristic arguments that the use of separating modules is by far the easiest way to prove
arithmetic circuit lower bounds. Thus separating modules are the first approach to try, and indeed
may be the only approach that is easy enough that it will ever be carried out. We can already give
one such heuristic argument: most arithmetic circuit lower bounds already use separating modules.

This new viewpoint makes new tools available, and suggests new conjectures and directions to
better understand complexity classes and lower bounds. However, we do not provide new proofs
of any of the above results. Our paper is similar in some ways to Natural Proofs [RR97] or
Razborov’s papers [Raz95a, Raz95b] on bounded arithmetic, in that we offer a meta-observation
about many lower bounds. This involves digging into the details of the proofs of known lower
bounds to understand them in a particular way, which is sometimes trivial but sometimes requires
new insights. These previous meta-results have shown that a new viewpoint can be quite fruitful; for
example, by working in the framework of bounded arithmetic, Razborov was able to come up with
a beautiful new proof of the Switching Lemma [Raz95a]. Despite this new proof of a lower bound
against AC0, the fundamental message of the papers [RR97, Raz95a, Raz95b] was negative, giving
barriers to proving strong lower bounds, whereas the message of this paper is positive, suggesting
a route to proving lower bounds—a route that most arithmetic circuit lower bounds have already
begun to traverse.

In Section 1.1, we discuss some of the implications of this work. We postpone further details of
the implications until Section 4, as they are difficult to discuss properly without definitions and a
full example in mind. We give the definitions and an example of how a previous lower bound fits
into this new viewpoint in Section 2. In Section 3 we argue for the necessity of invariant properties
and the feasibility and utility of separating modules, especially in comparison with other possible
approaches. Section 4 contains further discussion and implications. In particular, we discuss the
relation of this viewpoint to the larger GCT program—in particular, separating modules are only
the very beginning of the GCT approach. We also discuss lower bounds which don’t seem to fit
into this framework—mostly those based on uniform hierarchy theorems—and we suggest some
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concrete directions for future research to push forward both our understanding of GCT, and our
understanding of known lower bounds and the complexity classes they consider. We also discuss
in what way Boolean lower bounds fit into this framework. In Sections 5 and 6 we prove that
the results mentioned above use separating modules. However, if the reader is willing to take the
above lists on faith, the significance of this paper can be understood without reading these last two
sections in detail.

1.1. Implications. Our unifying viewpoint suggests the possibility of a fruitful two-way interplay
between the methods currently being leveraged in GCT against major open problems like permanent
versus determinant and P versus NP, and already hard-won knowledge for lower bounds on more
tractable problems. Although we can state some of these possible interactions now, they will become
clearer after the example in the next section, and we discuss further implications in Section 4.

First, the representation-theoretic viewpoint suggests where to look for new properties that might
yield lower bounds. Even for lower bounds that are already essentially tight, the representation
theory suggests how we might get new proofs of these lower bounds or otherwise understand them
better.

Second, the representation-theoretic viewpoint suggests new conjectures, directions, and tech-
niques that may prove fruitful; see, for example, the last paragraph of Section 4.1 and the open
questions in Sections 4.2 and 4.3.

Third, by showing that previous lower bounds and GCT share a common representation-theoretic
viewpoint, we reveal many new contexts in which it might hopefully be easier to develop the tools
and techniques of algebraic geometry and representation theory needed for the GCT approach to
bigger problems such as permanent versus determinant or P versus NP.

Fourth, it is often asked how difficult it is to re-prove known lower bounds using GCT. The
viewpoint in this paper reveals that most of the old proofs already give representation-theoretic
knowledge crucial to the GCT approach, in the form of separating modules. There is, however, a
difference between separating modules and the geometric obstructions defined in [MS08]. Upgrading
the previous lower bounds to yield such geometric obstructions is one of the open questions we
discuss in more detail in Section 4.1. This is one of the ways in which GCT suggests how we might
understand previous lower bounds better, even ones that are essentially tight.

For now, we mention just one more point: the representation-theoretic viewpoint replaces the
amorphous notion of “useful property” with the specific mathematical notion of separating module.
In Section 3 we argue that this is in some sense without loss of generality. This reduces an amor-
phous search for new useful properties to a comparatively feasible search for separating modules,
which can even be made computational (see Appendix B and Section 4 for more).

2. Definitions and a motivating example

Most nonuniform lower bounds Chard 6⊆ Ceasy are proved by finding a property shared by all
functions in the “easy” class Ceasy that some function f ∈ Chard does not have. The goal of this
section is to introduce a representation-theoretic formalization of the types of properties used by
most arithmetic circuit lower bounds, namely (linear-)invariant properties defined by polynomials.

2.1. Properties defined by polynomials. Throughout the definitions and motivation, we will
use the example of the space Poly2(x, y) = {ax2 + bxy + cy2|a, b, c ∈ F} of degree 2 homogeneous
polynomials in two variables1 over some field2 F, and the expression b2−4ac. The space Poly2(x, y)

1The notation Polyd(x1, . . . , xn) is not standard. We use it because it is clear and mnemonic. For reference we
give the standard notation from the literature in Appendix D.

2In some of these examples, it may be necessary to restrict the characteristic of the field. In all of our actual
results we specify the field more carefully.
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in this running example should be thought of as analogous to the space of polynomials we care
about, like the determinant, permanent, etc. (which are points in Polyn(x11, x12, . . . , xnn)), but is
small enough that we can carry out computations completely by hand and the definitions in this
context should already be familiar to the reader.

Recall that b2 − 4ac = 0 if and only if ax2 + bxy + cy2 is a perfect square3 (αx+ βy)2 for some

constants α, β ∈ F. We thus view b2 − 4ac
?
= 0 as a test for the property of being a perfect square,

and we say that this property is defined by the (vanishing of the) polynomial b2 − 4ac.
Note that here we consider b2 − 4ac not just as an expression, but as a polynomial in the

variables a, b, c, which are the coefficients of the polynomials ax2 + bxy + cy2. Because there are
two different spaces of polynomials here, we find it useful to give different names to them. We refer
to polynomials such as ax2 + bxy + cy2 ∈ Poly2(x, y) with a, b, c constants as input polynomials:
these are polynomials in the “input variables” x, y, and are also themselves inputs for the property
tests. We refer to polynomials such as b2 − 4ac as test polynomials: these are polynomials whose
variables are the coefficients of the input polynomials, and define a test for some property of input
polynomials.

We index monomials by their exponent vectors e ∈ Zn≥0 and write xe
def
= xe11 . . . xenn ; we denote

the corresponding coefficient by ae, and then write any polynomial as f(x) =
∑

e∈Zn≥0
aex

e (only

finitely many terms will be nonzero). If p ∈ C[(ae)e∈Zn≥0
] is a test polynomial and f =

∑
e αex

e is

an input polynomial, we write p(f) for the evaluation of p in which each test variable ae is set to
the corresponding coefficient αe ∈ F of f .

Definition 2.1. A property Π of input polynomials is defined by (test) polynomials if there is a set
of test polynomials p1, . . . , pk such that f(x) has property Π if and only if p1(f) = p2(f) = . . . =
pk(f) = 0.

Remark 2.2. Readers familiar with algebraic geometry will note that a property defined by test
polynomials is exactly the same thing as an algebraic subset of the vector space Polyd(x1, . . . , xn).
This is an algebro-geometric viewpoint on complexity. We discuss this further in Section 3. For
now we note that such algebro-geometric notions of complexity have been used before: border rank
for matrix multiplication and “infinitesimal approximation” in GCT are both algebro-geometric
notions of complexity in this sense.

Remark 2.3. By Hilbert’s Basis Theorem, any property defined by polynomials can be defined
by finitely many polynomials.

2.2. Linear-invariant properties defined by polynomials. Kayal [Kay11, Sec. 5.2] observes
that several lower bounds use linear-invariant properties at their core, and in fact this observation
was the starting point for this paper. In this paper we extend this observation in two directions
simultaneously: (1) we observe that most arithmetic circuit lower bounds use (linear-)invariant
properties defined by polynomials (Definition 2.1), allowing us to make the connection with rep-
resentation theory and GCT, and (2) we extend the observation to most arithmetic circuit lower
bounds.

Definition 2.4. A property Π of (input) polynomials is linear-invariant if for every polynomial
f(x1, . . . , xn) and every invertible linear change of variables A ∈ GLn(F)

f(x) has property Π ⇐⇒ f(Ax) has property Π

.

3Equivalently and perhaps more familiar is that b2 − 4ac = 0 if and only if ax2 + bx + c has a double root.
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Example 2.5. The property of being a perfect square is linear-invariant: f(x) = g(x)2 if and only
if f(Ax) = g(Ax)2 for any invertible linear change of variables A. As explained in the previous
section, in the case of f(x, y) homogeneous of degree 2, this property is defined by the vanishing of
the test polynomial b2 − 4ac.

Example 2.6. The dimension of the space of all partial derivatives of a homogeneous polynomial
f is a linear-invariant property. The k-th order partial derivatives of f are linearly independent
from its `-th order partial derivatives for k 6= `, so we may prove this for each k separately.

Consider the partial derivative
(

∂f
∂xi1 ···∂xik

)
(x). When we transform the variables x by A, we

change both the variables with respect to which the derivatives are being taken, and we change
the variables at which the partial derivative is being evaluated. The fact that the former kind of
transformation does not change the dimension of the space of partial derivatives follows from the
usual “directional derivative” formula from multilinear calculus. The latter kind of transformation
also does not change the dimension of a space of polynomials, for

∑d
i=1 αigi(x) = 0 if and only if∑d

i=1 αigi(Ax) = 0. We will see below that this property is also defined by polynomials.

The notion of a linear-invariant property defined by polynomials is embodied in the following
definition. To make the definition clear we first introduce one more bit of notation. Each linear
change of input variables B ∈ GLn(F) defines a linear map CoeffB from Polyd(x1, . . . , xn) to itself:
B sends f(x) =

∑
e aex

e to f(Bx) =
∑

e a
′
ex
e. In other words, CoeffB is the linear map taking

the coefficient vector (ae)e∈Zn≥0
to the new coefficient vector CoeffB((ae)e) = (a′e)e. It is a standard

fact—easily verified—that CoeffB is linear4. Thus B induces a linear map CoeffB on the coefficients
of input polynomials, which are in turn the variables of test polynomials. Then CoeffB induces a
linear map on test polynomials, taking p((ae)e) to p(CoeffB((ae)e)).

Definition 2.7. A test GLn(F)-module5 is a finite-dimensional vector space T of test polynomials,
say with basis {p1, . . . , pk}, such that for each 1 ≤ i ≤ k and each B ∈ GLn(F), pi(CoeffB((ae)e))
lies in T .

We say a test module T vanishes on an input polynomial f if every test polynomial p ∈ T vanishes
at f . The set of input polynomials at which a given test module vanishes is a linear-invariant set,
which we can think of as a linear-invariant property:

Fact 2.8. There is a many-to-one correspondence between test GLn(F)-modules and linear-invariant
properties defined by polynomials.

That is, each linear-invariant property defined by polynomials is defined by some test GLn(F)-
module, and each test GLn(F)-module defines a linear-invariant property6. The proof involves only
basic observations regarding group actions and algebraic sets (see Appendix A).

Example 2.9. The vector space spanned by the test polynomial b2 − 4ac is a one-dimensional

test GL2(F)-module. For let f(x, y) = ax2 + bxy + cy2 and A =

(
α β
γ δ

)
, and write f(Ax) =

a(αx + βy)2 + b(αx + βy)(γx + δy) + c(γx + δy)2 = a′x2 + b′xy + c′y2. Let p(a, b, c) = b2 − 4ac;
then p(CoeffA(a, b, c)) = p(a′, b′, c′) = b′2−4a′c′. A simple but tedious calculation then reveals that
b′2 − 4a′c′ = det(A)2

(
b2 − 4ac

)
, and hence that p(CoeffA(a, b, c)) is a scalar multiple of p(a, b, c).

4Linear in the coefficients ae. It will have degree d in the coordinates of B, but that is not relevant here.
5See Appendix C for a discussion of the terminology.
6If F is algebraically closed, then Hilbert’s Nullstellensatz implies that two test modules T1, T2 define the same

invariant property if and only if the ideals of test polynomials generated by T1 and T2 have the same radical. Recall

that the radical of an ideal I is the ideal
√
I
def
= {f : fk ∈ I for some k ≥ 1}.
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2.3. Separating modules and a first example.

Definition 2.10. A separating module7 for the lower bound Chard 6⊆ Ceasy is a test module T such
that T vanishes on every function in Ceasy, but does not vanish at some function fhard ∈ Chard.

The main thesis of this paper is that most arithmetic circuit lower bounds already use separating
modules. We now demonstrate this with an example, by showing that Theorem 0 of Nisan and
Wigderson [NW97] uses a separating module. We first recall their definitions and result. In the
next section we argue that the existence of a separating module was in some sense necessary.

An arithmetic circuit is homogeneous if every gate in the circuit computes a homogeneous polyno-
mial. The d-th elementary symmetric function in n variables is the sum of all multilinear monomials
of degree d and is denoted ed,n.

Theorem 2.11 ([NW97, Thm. 0]). Over a field of characteristic zero, any homogeneous depth 3

arithmetic circuit computing e2d,n has size Ω
((

n
4d

)d)
.

When d = cn for any 0 < c ≤ 1/4, this lower bound is exponential in n.

Proof outline. The key property they consider is the dimension of the space of all partial derivatives
(of all orders) of a function. We denote this space ∂(f). First, they show that dim ∂(C) ≤ s2d for
any homogeneous depth 3 arithmetic circuit C of size s computing a polynomial of degree d. Next,

they show that dim ∂(e2d,n) ≥
(
n
d

)
. Combining these inequalities, one gets s22d ≥

(
n
d

)
≥
(
n
d

)d
. �

Proposition 2.12. There is a separating module for the lower bound of Theorem 2.11.

Proof. Let Π(r) denote the property “dim ∂(f) ≤ r.” We argued in Example 2.6 that dim ∂(f) is a
linear-invariant property for homogeneous f . We now show that this property is defined by a test
GLn(F)-module, and hence that the above proof yields a separating module.

Let f(x) =
∑

e aex
e be a homogeneous polynomial of degree d (the only nonzero terms in the

sum are those for which
∑

i ei = d) and consider the following matrix Mf . The columns of Mf are
indexed by the monomials of degree ≤ d, and the rows of Mf are indexed by the partial derivative
operators (these are in bijective correspondence with monomials, but we refer to them this way
to keep track of which is which). The entry in the ∂k/∂xi1 · · · ∂xik row and the xe column is the
coefficient of xe in ∂kf/∂xi1 · · · ∂xik . Note that this coefficient is some linear combination of the
coefficients ae of f .

Then the dimension of ∂(f) is the same as the (row) rank of Mf . It is a standard fact from
linear algebra that Mf has rank ≤ r if and only if all the (r + 1) × (r + 1) minors of Mf vanish.
Each such minor is a degree r + 1 polynomial of the entries of Mf , which are themselves linear
combinations of the coefficients ae of f . Hence each such minor is a test polynomial of degree r+1.
Let T (r) denote the linear span of these minors. We have just shown that (the vanishing of the
test polynomials in) T (r) defines the property Π(r).

In particular, Π(r) is a linear-invariant property defined by polynomials. By Fact 2.8 Π(r) is
defined by some test module, which is thus a separating module. However, we can argue further
that T (r) itself is a test GLn(F)-module, and hence a separating module for the lower bound of
Theorem 2.11.

In Example 2.6 we essentially showed that Mf(Ax) is related to Mf(x) by left and right multi-
plication by some matrices related to A (in a similar way to how CoeffA is related to A). It is a
standard fact about minors that the (r + 1)× (r + 1) minors of BMfC are linear combinations of
the (r + 1) × (r + 1) minors of Mf . Hence for any test polynomial p ∈ T (r), p ◦ CoeffA is also in
T (r). Thus T (r) is a separating module for Theorem 2.11. �

7Separating modules are nearly equivalent to the “HWV obstructions” of Bürgisser and Ikenmeyer [BI12]. For a
discussion of the exact relationship and choice of terminology see Appendix C.
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As with everything in complexity, in fact what we have is a family of separating modules. Namely,
if we consider e2d,n with d = n/8, then T (2n/8) vanishes at every polynomial computed by a depth

3 homogeneous circuit of degree n/4 and size at most 2n/8, but does not vanish at en/4,n.

2.4. Generalizations. For other lower bounds it is useful to generalize some of the above notions.
First, we can allow input objects other than input polynomials. For example, in the context of

matrix rigidity it will be useful to consider input matrices. Regardless of the input objects, we still
speak of test polynomials. In the case of input matrices, test polynomials are then polynomials
whose variables are the coordinates aij of the input matrices. In the context of Boolean functions,
we often first represent a function by its unique multilinear polynomial, and then work in the context
of input polynomials. But one could imagine a more direct representation in terms of something like
“input circuits.” In the context of the degree bound [Str73, BS83] and the connected components
sorting lower bound [BO83], the input objects are (semi-)algebraic sets, given by their defining
polynomial (in)equalities. The variables for the test polynomials are then the coefficients of the
equations defining the algebraic sets.

Second, we can allow other types of invariance besides linear invariance. For example, we can
hardly imagine a complexity measure or lower bound proof that depends on the order or names
of the variables. Hence all properties used in complexity can be expected to be permutation-
invariant : f(x1, . . . , xn) has the property if and only if f(xπ(1), . . . , xπ(n)) has the property, for any
permutation π. We then speak of test Sn-modules, and the analog of Fact 2.8 holds (see Fact A.1).
Note that Sn-modules are still defined as vector spaces; the use of vector spaces in the definition of
test module was not specific to GLn. We will use permutation-invariance in the contexts of matrix
rigidity and multilinear formulas and circuits, as these concepts are not linear-invariant but they
are permutation-invariant.

Another type of invariance that often arises is affine invariance. Here we generalize from linear
transformation x 7→ Ax to affine transformations x 7→ Ax + b, with A ∈ GLn(F) and b ∈ Fn.
The group of all such transformations is the affine general linear group AGLn(F). We then speak
of affine-invariant properties and test AGLn(F)-modules. Again, the analog of Fact 2.8 holds (see
Fact A.1).

When the invariance is understood from context, we may simply refer to test modules and
separating modules without reference to a particular group.

3. On the necessity and utility of separating modules and border complexity

In Section 3.1 we argue that the use of invariant properties is essentially necessary. In Section 3.2
we discuss situations where furthermore the use of separating modules is essentially necessary.
Although not all complexity classes are defined by the vanishing of test polynomials, in Section 3.3
we argue that all nonuniform complexity classes, including Boolean ones, are “constructible” by
test polynomials (see Definition 3.4). Finally, in Appendix B we give a heuristic argument as to
why separating modules are likely to be the easiest way to prove lower bounds against constructible
complexity classes, and shed light on a complexity class even when their use is not strictly necessary.
Hence separating modules should be a first approach to try. We defer this final argument to an
appendix only because it is heuristic, somewhat technical, and possibly contentious, and we do not
wish to distract from the main points of the paper. However, one argument for this which we can
already state is that most arithmetic circuit lower bounds already use separating modules, as shown
in this paper.

Throughout this section and Appendix B, we only discuss nonuniform lower bounds. If C is a
nonuniform complexity class, then Cn denotes the functions in C with n inputs. By a “property”
in general, we mean a set of input polynomials, or more generally input objects.
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3.1. Invariant properties are necessary. First we show that if Cn is invariant under some
group G—such as GLn, Sn, etc.—then any property used to prove a lower bound against Cn can
be transformed into a G-invariant property that proves the same lower bound. Then we argue that
essentially all “naturally occurring” complexity classes and complexity measures are permutation-
invariant, and many are linear- or affine-invariant.

If any property can be used against a G-invariant class, a G-invariant property can.
Suppose property Π is used to prove a lower bound8 against Cn by showing that Cn ⊆ Π and
fhard,n /∈ Π. Let ΠG denote the unique maximum G-invariant subset contained in Π; this exists by
Zorn’s Lemma, as an arbitrary union of G-invariant subsets is G-invariant. As Cn is G-invariant,
by the definition of ΠG we have Cn ⊆ ΠG. The G-invariant property ΠG then proves the same
lower bound as Π, as fhard,n /∈ Π ⊇ ΠG ⊇ Cn.

Essentially all complexity classes are permutation-invariant. All complexity measures
and complexity classes we are aware of are permutation-invariant: they do not depend on the names
or order of the variables. Indeed, we imagine that any complexity class or measure that was not
permutation-invariant would be quite perverse, as the complexity of computing a function should
really not depend on whether its variables are called x1, . . . , xn or a, b, c, . . . , or xn, . . . , x1. Thus
we can expect that any lower bound uses a permutation-invariant property, at the very least.

Many complexity classes, particularly algebraic ones, are furthermore linear- or affine-invariant.
For example, arithmetic circuit size does not change by more than an additive difference of n after
a linear or affine transformation9. Additionally, circuit depth increases by at most 1; for circuits
whose bottom gates are linear combination gates, the depth need not increase at all. For example,
AC0[2] is AGLn(F2)-invariant (though we note that AC0 is not GLn(F2)-invariant, as F2-linear
transformations are as powerful as parity). This is in line with Kayal’s initial observation [Kay11,
Sec. 5.2] that several known lower bounds use affine-invariant properties, and with our observations
in this paper.

Hence, for all naturally occurring nonuniform complexity classes, if any property can be used to
prove a lower bound, a permutation-invariant property can be used.

3.2. Test polynomials and border complexity. A complexity class Cn is typically not defined
by the vanishing of some test polynomials. Hence when we prove a lower bound against Cn using
test polynomials, we in fact prove a lower bound against the slightly larger class which we denote Cn
and refer to as “border-Cn,” in line with normal usage in other contexts (the overline is for Zariski-
closure; see Definition 3.4). Standard results in algebraic geometry (e. g., [Mum76, Thm. 2.33],
[BCS97, §20.6]) imply that Cn consists of all functions f which can be written as a limit10 of
functions in Cn.

In the next section we show that C is not too far from border-C. In Appendix B we argue that
proving lower bounds against border-C is likely to be the easiest way to prove lower bounds against
C, despite being a formally stronger statement. Here we present examples where there is known to
be little or no difference, and begin arguing for the utility of border complexity.

8For readers familiar with Natural Proofs [RR97], note that we are using the complementary notion of “useful
property” here. They use properties Π that are disjoint from Cn, whereas we use properties Π that completely contain
Cn. By taking the complements of sets, the two viewpoints are equivalent. We chose our viewpoint because it has
nicer algebro-geometric properties, as in Appendix B.

9In the model where addition gates can compute linear or affine combinations; in the weaker model where addition
gates are just addition gates, the size still does not change by more than O(n2).

10Over C the notion of limit is defined in the usual manner. Over, say, Fp, we say a function f is a limit of points
in Cn if there is a one-dimensional family of functions ft such that ft is well defined and in Cn for all but finitely
many values of t ∈ Fp, and f0 = f . There is one additional technical condition here, but we omit it since it does not
affect our discussion.
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Example 3.1 (Matrix multiplication). In the context of matrix multiplication the typical com-
plexity measure is tensor rank, which is essentially the number of non-scalar multiplications needed
to multiply two matrices. Tensor rank is known to agree with the total number of arithmetic
operations up to a constant factor. The corresponding border complexity measure is called border
rank, or sometimes “approximative complexity,” first introduced by Bini, Capovani, Lotti, and
Romani [BCRL79]. In general, border rank can be smaller than tensor rank. However, Bini [Bin80]
showed that the exponent of matrix multiplication calculated with tensor rank—the smallest ω such
that n × n matrix multiplication has tensor rank O(nω)—is the same as the exponent calculated
with border rank. Thus, although border rank and tensor rank are not equal, they give the same
asymptotic answer for matrix multiplication.

Furthermore, the use of border rank has greatly increased our understanding of both upper
and lower bounds for matrix multiplication. One of the main tools for finding efficient algorithms
for matrix multiplication is Schönhage’s asymptotic sum inequality [Sch81], which shows that an
upper bound on border rank implies an upper bound on tensor rank. Conversely, most lower
bounds on matrix multiplication seem to have a border rank lower bound at their heart. For
example, Landsberg [Lan08, §6] showed that Bläser’s tensor rank lower bound [Blä99]—the then
best known bound—implicitly uses the same key lemma that Strassen used [Str83] to give a border
rank lower bound. The currently best known lower bound on tensor rank [Lan12, MR12] also uses
techniques from the best known lower bound on border rank [LO11].

Example 3.2 (Permanent versus determinant). In the context of permanent versus determinant,
the typical complexity measure is determinantal complexity : the size of the smallest matrix M(x)
with linear combinations of the variables x for entries such that det(M(x)) = perm(x). Mulmuley
and Sohoni [MS01] use the analogous notion of border determinantal complexity, which they refer
to as “infinitesimal approximative” complexity. Independently, Bürgisser, Landsberg, Manivel, and
Weyman [BLMW11, Prop. 9.4.3] and the author [Gro12, Prop. 3.5.4] show that under certain fairly
general circumstances the border determinantal complexity only differs from the determinantal
complexity by a polynomial, and state a conjecture which would imply this is always the case.
Thus border complexity here is not as far from standard complexity as it may at first seem.

In contrast, Mulmuley and Sohoni [MS01, §4.2] give an example of a function which has border
determinantal complexity poly(n) but which may have super-polynomial determinantal complexity.
Such functions exhibit a difference in the difficulties of resolving the complexity of matrix multi-
plication and resolving the permanent versus determinant problem. Nonetheless, they conjecture
[MS01, Conj. 4.3] that no VNP-hard function has polynomial border determinantal complexity.
One might also guess that for quasi-polynomial complexity there is no difference, that is, that the
following question has a positive answer:

Open Question 3.3. Does polynomial, or more generally quasi-polynomial, border determinantal
complexity imply quasi-polynomial determinantal complexity? Equivalently, is VPws ⊆ VQP or
more generally VQP = VQP?

Either way, as all of our current techniques give bounds on border complexity, Question 3.3 is
an archetype of a fundamental question of the difference between the way complexity classes are
usually defined and the methods we use for proving lower bounds against them.

Because of the above results and the prevalent use of test polynomials in known lower bounds,
as well as the arguments in Appendix B, we submit that border complexity in general—not only
in the context of matrix multiplication—is a natural and useful measure of complexity from the
perspective of lower bounds (and, in the context of matrix multiplication, upper bounds as well!).

3.3. Nonuniform complexity classes are constructible by test polynomials. Over any
field, if Cn is defined by test polynomials, say Cn = {f |t1(f) = t2(f) = · · · = tk(f) = 0} ⊆
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Polyd(n)(x1, . . . , xn), then fhard,n /∈ Cn if and only if there is some 1 ≤ i ≤ k such that ti(fhard) 6= 0.
For such classes, the use of test polynomials is necessary and sufficient to prove a lower bound.
However, most complexity classes are not defined by test polynomials in this manner. We will
argue here that all naturally occurring complexity classes are nonetheless “constructible” by test
polynomials (definition below). In Appendix B we argue that test polynomials—and hence, via
Section 3.1 and Fact 2.8, separating modules—are nonetheless incredibly useful for understanding
such constructible (invariant) complexity classes.

Definition 3.4 (Zariski, i. e. algebro-geometric, topology). A set defined by the vanishing of test
polynomials is called (Zariski-)closed. A set is constructible if it can be constructed from closed
sets by taking complements, unions, and intersections.

The closure of a set S is the smallest closed set containing S, and is denoted S. If S is a Zariski-
constructible set over C, then its Zariski-closure coincides with its closure in the usual complex
topology (see, e. g., [Mum76, Thm. 2.33]). Note that the closure S is the set of all points which
cannot be separated from S by test polynomials.

The main insight of this section is a corollary to Chevalley’s constructibility theorem. To state
this theorem, we need one more concept. A map ϕ : A → B between constructible sets is called
algebraic if its graph {(a, ϕ(a))|a ∈ A} is a closed subset of A×B. Equivalently, let x1, . . . , xn be
coordinates on B, not necessarily independent; then ϕ is algebraic if and only if for each i, xi(ϕ(a))
can be expressed as a polynomial in the coordinates of a ∈ A.

Chevalley’s Theorem is most concisely stated for Noetherian rings, but we will not need their
definition here. For our purposes it suffices that this includes Z, Z/nZ, rings of algebraic integers,
all fields, polynomial rings, and quotients of polynomial rings.

Theorem 3.5 (Chevalley’s Theorem11). Over any Noetherian ring the image of any algebraic map
is constructible.

We are not aware of any nonuniform complexity classes—algebraic or otherwise—that do not
belong to one of the classes described in the following corollary:

Corollary 3.6. Let C be a nonuniform complexity class; then Cn is (Zariski-)constructible if any
of the following hold:

(1) |Cn| is finite; or
(2) C is closed under simple (resp. linear, resp. affine) projections, and contains a problem that

is complete under simple (resp. linear, resp. affine) projections; or
(3) Cn is defined by a class of circuits that are restricted to have one of finitely many (a number

which may grow with n) shapes. Here by the “shape” of a circuit, we mean the underlying
directed acyclic graph together with operators labeling the internal nodes; or

(4) More generally, Cn is first-order definable in the language of rings over a Noetherian ring,
or in the language of ordered rings over an ordered Noetherian ring.

A “simple projection” here means any map that sends each variable xi to a constant α or to
a constant multiple of a variable αyj . A linear projection sends each xi to a linear combination
of variables

∑
j αijyj , and an affine projection additionally allows an additive constant: xi 7→

αi +
∑

j αijyj .

Condition (3) includes circuit classes defined in terms of fan-in, size, depth, or connectivity
properties like skew or weakly-skew.

11The original version of this theorem over algebraically closed fields is from Chevalley and Cartan [CC56]. The
general version, which is in fact more general than stated here, can be found as [Gro64, Thm. 1.8.4]. See Eisenbud
[Eis95, Cor. 14.7] for a purely ring-theoretic treatment of what is essentially the general case, or Matsumura [Mat80,
Ch. 1, §6].
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Proof. (1) Any finite set is defined by the vanishing of test polynomials, i. e. it is closed, hence
constructible.

(2) The set of simple (resp. linear, resp. affine) projections is closed, as we show below; denote
this set by R, for “reductions.” If fn is a complete function, and F is the space of input functions
(objects, etc.), then define a map ϕ : R→ F by ϕ(r) = r(fn). From the definition of projection, it
is easily seen that ϕ is algebraic. Then Cn is the image of ϕ, hence is constructible by Chevalley’s
Theorem.

The set of linear (resp. affine) projections from functions on n variables to functions on m
variables is just the set of m × n (resp. (m + 1) × n) matrices, so is closed. The set of simple
projections is the subset of affine projections defined by the property that each column of the
(m + 1) × n matrix has at most one nonzero entry. The latter condition is equivalent to the
condition that the product of any two entries from a given column vanishes, hence the set of simple
projections is closed.

(3) For each circuit shape G, the set of circuits of that shape is FN where N is the number of edges
whose endpoints are linear combination gates. Let CktG denote this space, and let ϕG : CktG →
Polyd(x1, . . . , xn) be the map which takes each circuit of shape G to the function it computes. It is
easily seen that ϕG is algebraic, so its image is constructible by Chevalley’s Theorem. Then Cn is
the union over finitely many shapes G of Im(ϕG). As a union of constructible sets is constructible,
so is Cn.

(4) A first-order definable set is defined by some first-order formula. For quantifier-free formulas,
this is exactly a set defined by a logical combination of equalities and inequalities, namely a con-
structible set. The only tricky part is then to handle quantifiers. By replacing a universal quantifier
∀x by ¬∃x¬ and noting that the complement of a constructible set is constructible, we need only
handle existential quantifiers. If ϕ(x) is a first-order formula without quantifiers, let C′ denote the
set of those x that satisfy ϕ(x). Then the set defined by ∃x0ϕ(x) is equal to the image of C′ under
the projection which sends (x0, x1, . . . , xn) 7→ (x1, . . . , xn). By Chevalley’s Theorem, the image of
this projection is constructible. �

Note that if a circuit class is defined as the image of some map—as nearly all of them are, as
in conditions (2) and (3)—finding its representation as a union of differences of closed sets may be
difficult, even uncomputable. However, over finite fields this is a finite problem, hence computable,
and over algebraically closed fields or real closed fields quantifier elimination algorithms such as
Tarski’s [Tar48] make this process effective.

Remark 3.7. The (Zariski-)closure of classes satisfying condition (2) of Corollary 3.6 for linear or
affine projections are orbit closures for GLn, respectively AGLn. Much of the current research in
GCT studies the orbit closures associated to the permanent, determinant, and matrix multiplica-
tion. Considering their structure as orbit closures rather than just G-invariant sets facilitates their
study greatly, much as the existence of complete problems facilitates the study of a complexity
class. In this paper we show that by extending our viewpoint to all G-invariant complexity classes
and not just orbit closures, GCT becomes much more general and far-reaching.

4. Discussion, relation to the GCT program, and future directions

In this paper, we show that most arithmetic circuit lower bounds and implications between lower
bounds fit naturally into the representation-theoretic framework suggested by geometric complexity
theory, specifically in the form of separating modules. In this section we discuss further implications
of this connection, as well as which lower bounds seem to not fit into this framework (ones which are
essentially uniform), the status of lower bounds in positive characteristic, and the relation between
this work and the larger GCT program.
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Eric Allender observed that all the lower bounds mentioned here use Razborov–Rudich-natural
[RR97] properties12, and asked whether this was just a coincidence. In light of the generality of
separating modules (Section 3), we believe that it is indeed a coincidence, and has more to do with
the fact that most known results use such properties than it has to do with any inherent limitations
of the representation-theoretic viewpoint. Indeed, there is evidence that the GCT approach over C
philosophically (see Footnote 12) avoids the Razborov–Rudich barrier (the author’s thesis [Gro12,
Sec. 3.4.3] contains an overview of such evidence).

4.1. Relation to Geometric Complexity Theory. To state how the separating modules used
in this paper differ from the geometric obstructions defined in Mulmuley and Sohoni [MS08], and
to discuss possible further interactions between previous results and geometric complexity theory,
we first recall two standard definition from representation theory, as applied to test modules. Test
G-modules for any group G—such as GLn(F), Sn, etc.—are, in particular, representations of G;
indeed, the term “module” is often used interchangeably with “representation” (see Appendix C
for more on the terminology). When we consider a test G-module as just a representation of G
(equivalently, as a G-module), we forget that it consists of test polynomials, and only remember
that it is a vector space and how the elements of G move vectors around within this vector space.

Definition 4.1. A (test) G-module T is irreducible if there is no nonzero proper subspace of T
that is also a (test) G-module.

A classical theorem (see, e. g., [FH91]) says that over an algebraically closed field of characteristic
zero, every GLn- or Sn-module is a direct sum (as representations, that is, as vector spaces) of
irreducible submodules. In particular, this implies that if there is a separating module for a lower
bound over C, there is an irreducible separating module. We could have included irreducibility in
the definition of test module for this reason, but chose not to in order to keep the definition simple
and to avoid complications over other fields, especially finite fields. The property of splitting into
a direct sum of irreducible submodules is known as “complete reducibility.” It is known to fail in
general for AGLn-modules, even over C, and for GLn- and Sn-modules in positive characteristic.

Definition 4.2. Two (test) GLn-modules T1, T2 are equivalent (as representations) if there is a
bijective linear map L : T1 → T2 such that for all A ∈ GLn and all test polynomials p ∈ T1,
L(p ◦ CoeffA) = L(p) ◦ CoeffA.

This definition is purely representation-theoretic, in that it ignores the “test polynomial” struc-
ture of the test modules, and treats them only as representations. Because this notion of equiva-
lence forgets the underlying polynomials of the test modules, it is possible—and is likely to be the
generic situation—for two equivalent test GLn-modules to define distinct linear-invariant properties.
Nonetheless, the term “equivalent” is standard in representation theory, so we use it here.

To discuss the geometric obstructions of GCT, we work over C. By complete reducibility, the
space of all test polynomials can be written as a direct sum of test GLn(C)-modules. If we group
these modules by their equivalence classes, we may write the space of all test polynomials as the
direct sum

⊕
λ

⊕mλ
i=1 Tλ,i where the λ s index the irreducible equivalence classes. (An equivalence

class is called irreducible if any representation in this class is irreducible.) It turns out that each
equivalence class λ can only occur amongst a specific degree d(λ) of test polynomials, and since
the space of test polynomials of any fixed degree is finite-dimensional, each mλ is finite. Moreover,
the numbers mλ are independent of the choice of direct sum. We refer to mλ as the multiplicity of
the equivalence class λ in the space of test polynomials.

12 The Boolean properties satisfy the Razborov–Rudich conditions, and although there is no known algebraic
analog of the Razborov–Rudich barrier, the algebraic properties mentioned in the previous sections seem like they
ought to fulfill the requirements of such an analog, were it to exist.
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If C is a linear-invariant complexity class, and we consider the space of all test polynomials that

vanish everywhere on C (hence on C, see Section 3.2), we may write this space as
⊕

λ

⊕mλ(C)
i=1 Tλ,i.

Note that mλ(C) ≤ mλ.

Definition 4.3 (Mulmuley and Sohoni [MS08]13). A multiplicity obstruction for the lower bound
Chard 6⊆ Ceasy is an irreducible equivalence class λ such that mλ(Ceasy) > mλ(Chard). A occurrence
obstruction or geometric obstruction for Chard 6⊆ Ceasy is a multiplicity obstruction which further

has mλ(Ceasy) = mλ, that is, every test module equivalent to λ vanishes on Ceasy.

The existence of a multiplicity obstruction λ implies the existence of a separating module, as
then there must be some test GLn(C)-module of type λ that vanishes on Ceasy but not on Chard.
These are referred to as “obstructions” because they obstruct the inclusion Chard ⊆ Ceasy, much as
a K5-minor obstructs a planar embedding of a graph.

One advantage of considering multiplicities rather than test modules is that it opens the pos-
sibility of using purely representation-theoretic techniques to understand the multiplicities, as is
being pursued in GCT (e. g., [Bla12, BCI09, BMS11, ASS09]). To see how this is possible—that
is, how one can discuss multiplicity obstructions without reference to actual test polynomials or
modules thereof—we must mention a bit more about the representation theory of GLn and Sn.
Over C, the irreducible representations of these groups have been classified for over 100 years (see,
e. g., [FH91]). The equivalence classes of irreducible representations are in bijective correspondence
with integer partitions—partitions with at most n parts in the case of GLn(C), and partitions of
the number n in the case of Sn. The use of partitions enables us to talk about the multiplicities mλ

and mλ(C) without reference to any particular (test) module. This is just one of the advantages of
the representation-theoretic viewpoint; we discuss two other advantages below.

4.2. Understanding old lower bounds better (even tight ones!) In this paper, we show that
most arithmetic circuit lower bounds yield separating modules, but typically just one separating
module for each lower bound. While this suffices for the lower bound, considering other separating
modules that can be used for a given lower bound (or non-separating test modules) may give deeper
insight. Indeed, by Fact 2.8, this is equivalent to knowing which other invariant properties defined
by polynomials can be used (or not) for a lower bound. Understanding which (invariant) properties
a complexity class has is surely a task worth undertaking, even for lower bounds that are already
tight or as good as we want.

However, trying to understand all such test modules is quite an enormous task. It does not just
ask for new proofs of old lower bounds—for example, just asking for a single new separating module
for the lower bound—but rather asks to understand, in some sense, all possible proofs of a given
lower bound. Instead, the difference between separating modules and multiplicity obstructions
suggests a more feasible step in this direction which may well be within reach:

Open Question 4.4. Upgrade the proofs of lower bounds mentioned in this paper from separating
modules to multiplicity (or stronger: occurrence) obstructions.

As a first step towards Open Question 4.4, which the author hopes to make the subject of future
work, we have:

Open Question 4.5. Determine the labels (partitions, see Section 4.1) of the separating modules
in the lower bounds mentioned in this paper.

13Although only geometric obstructions were explicitly defined in [MS08], multiplicity obstructions were essentially
defined there: see the sentence just before [MS08, Def. 1.2].
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4.3. The role of explicitness and constructivity. Mulmuley [Mul10] and Williams [Wil13]
have both argued for the necessity of constructive methods in proving lower bounds. We can use
the representation-theoretic viewpoint to give a further argument for explicitness, albeit a heuristic
one. It also allows us to quantify the explicitness or constructivity of known proofs in various ways.

Suppose we are trying to prove Chard 6⊆ Ceasy. In Section 3 and Appendix B we argue that
this is likely to be done using separating modules. If such a separating module exists, it should
furthermore be the case that a random test module that vanishes on Ceasy should not vanish on
Chard—and hence be a separating module—for some notion of “random” which can probably be
made precise. However, to prove the existence of a separating module unconditionally—that is,
without assuming the lower bound we are trying to prove—one seems to need a more explicit
description of the separating module. This is related to the recent results of Mulmuley [Mul12]
linking derandomization with algorithms for computational problems in algebraic geometry.

One measure of constructivity is the degree and number (dimension) of test polynomials used.
As in the context of Razborov–Rudich [RR97] and Williams [Wil13], we should expect to measure
this degree as a function of something like the size of the truth table of the input polynomials
involved. In an algebraic context, we might replace truth table size by the number of monomials.
For polynomials of degree O(n) in poly(n) variables, the number of monomials is 2O(n logn), which
is comparable to truth table size.

Another more delicate measure of constructivity is the complexity of verifying that a given test
module (perhaps from a specific subset of test modules) is indeed a separating module. This is
related to our discussion in Appendix B.

Using the fact that partitions classify the irreducible representation of GLn or Sn over C, we
get another measure of constructivity. In general, the dimension of an irreducible representation
can be exponential in the bit-size of its corresponding partition, so the partition can serve as a
succinct label of an equivalence class of representations. One can then consider the computational
complexity of constructing from 0n a partition corresponding to a multiplicity (or occurrence)
obstruction for a nonuniform lower bound at input length n. Mulmuley conjectures [Mul10] that
this construction problem can be solved in P for occurrence obstructions in the context of permanent
versus determinant and NP versus P/poly. In fact, Mulmuley suggests that finding a polynomial-
time algorithm to verify whether a given λn is the label of an obstruction is a crucial first step
towards proving the existence of obstructions unconditionally. This suggests a strengthening of
Open Question 4.4:

Open Question 4.6. Upgrade the lower bounds mentioned in this paper to multiplicity obstruc-
tions where the label λn of the obstruction at input length n can be computed in poly(n)-time.

Note that resolving Question 4.5 would provide natural candidates for labels λ that might be
multiplicity obstructions. Both Question 4.5 and this one seem within reach, especially given the
recent occurrence obstructions constructed by Bürgisser and Ikenmeyer [BI12] in the context of
matrix multiplication.

The more general question of verification is also interesting:

Open Question 4.7. For any of the lower bounds mentioned here, what is the complexity of
verifying multiplicity or occurrence obstructions? That is, given λn, what is the complexity of
verifying that λn is indeed a multiplicity obstruction?

4.4. Boolean circuit lower bounds.

Observation 4.8. For any Boolean circuit lower bound against a permutation-invariant complexity
class—which includes all natural classes, see Section 3.1—there is a separating Sn-module.
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Proof. By Fact A.1 for Sn, we only need to argue that the complexity class is defined by test
polynomials. As the space of Boolean functions on n variables is finite, every property of n-variable
Boolean functions is finite and hence defined by test polynomials over F2. �

In particular, any nonuniform Boolean lower bound implies the existence of a separating module.
Despite the fact that the above observation says that separating modules can be used without loss

of generality for Boolean circuit lower bounds, we find this observation alone somewhat unsatisfying.
However, as with the results of Razborov, Smolensky, and Grigoriev–Razborov over finite fields (see
Section 5.3), we believe that many Boolean circuit lower bounds in fact yield separating modules
in a very direct and natural manner.

Even without having verified this for many known Boolean lower bounds, we can begin to argue
why we expect this to be the case. By the discussion in Appendix B, it is reasonable to expect
that lower bounds use properties Π which are naturally defined by some logical combination of the
vanishing of some polynomials and the non-vanishing of other polynomials. We already know that
the properties used can be defined by the vanishing of some test polynomials; the key here is the
naturality (in the usual sense of the word, not the Razborov–Rudich sense).

Putting this logical combination into disjunctive normal form, Π can be naturally expressed as a
union of properties of the form Πi\Π′i = Πi ∩Π′ci , where each Πi and Π′i is defined by the vanishing
of test polynomials and Π′ci denotes the complement of Π′i. Say Π′i is defined by the vanishing of the
test polynomials f1(x1, . . . , xn) = · · · = fk(x) = 0. Then its complement is most naturally defined
by the non-vanishing of at least one of the fi. However, the complement Π′ci can also be defined

by the vanishing of the single polynomial
∏k
i=1(fi(x)− 1). Furthermore, by applying x2

i = xi, we

may take the degree of this single polynomial to be at most min{n,
∑k

i=1 deg(fi)}.
In terms of constructivity, we thus do not lose much by considering Π′ci as being defined by the

vanishing rather than non-vanishing of test polynomials: the single polynomial defining Π′ci has low
degree, and there is only one such polynomial, so the number of polynomials used to define the
property also does not increase.

Remark 4.9. A similar idea works over any finite field Fq: use
∏

06=α∈Fq(fi(x) − α) in place of

fi(x)− 1, reduce by xqi = xi, and the resulting degree is at most (q − 1) min{n,
∑

i deg(fi)}.

One might argue that using
∏

(fi(x) − 1) = 0 rather than the non-vanishing of some fi is
unnatural, or violates the technique or idea of the lower bound proof that used property Π. However,
if this were really the case, then the lower bound proof would hold for the vanishing/non-vanishing
of some fi as formal polynomials, and hence would work over fields larger than F2, and in particular
would hold over the algebraic closure F2. With the exception of the results mentioned in Section 5.3,
we are not aware of Boolean lower bounds that extend to any such fields. In this sense, the use
of finiteness in Observation 4.8 seems less of a kludge to us, and more an essential feature of the
current techniques for Boolean circuit lower bounds.

4.5. Other lower bounds? Although we have obviously not considered all known lower bounds,
we have considered quite a wide cross-section of them in this paper. Of the lower bounds which
we actively tried to fit into this framework but have not yet been able to do so, most use heavily
machine-based diagonalization. For example, the (non)deterministic time and space hierarchies
[HS65, Coo73], uniform lower bounds on the permanent [All99, AG94, KP09], time-space trade-offs
for SAT [For00, FLvMV05, DvMW11, Wil08, Wil06, BW12], Σ2P ∩ Π2P 6⊆ SIZE(nk) [Kan82] and
the related result MAEXP 6⊆ P/poly [BFT98].

Remark 4.10. Although from one viewpoint Kannan’s result rests crucially on the nonuniform
circuit-size hierarchy—a counting argument—for the purposes of this discussion the key fact he
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shows is that a uniform Σ4P-machine is powerful enough to use the circuit-size hierarchy to di-
agonalize against SIZE(nk). The same remark applies to the result MAEXP 6⊆ P/poly, as it uses
Kannan’s result in an essential way.

The recent lower bound NEXP 6⊆ ACC0 [Wil11] provides an interesting crucible. It is a nonuniform
lower bound against a permutation-invariant Boolean complexity class, hence by Observation 4.8
there exists a separating Sn-module proving NEXP 6⊆ ACC0. However, the proof uses the nondeter-
ministic time hierarchy in a seemingly crucial way. Extracting a natural separating module from
Williams’s proof may be a first step towards extending the representation-theoretic framework to
include uniform lower bounds.

One very interesting technique which we have not yet been able to fit into the representation-
theoretic framework and which is only partially uniform comes from Jansen and Santhanam [JS12,
JS13]. The key property they use is the existence of Z hitting sets whose bit descriptions can
be encoded by small uniform (or at least succinct [JS13]) circuits. This combination of algebraic
(hitting sets) and Boolean (bit descriptions) frameworks in the same breath makes it difficult to
even formulate their proofs in a single algebraic setting, let alone translate them into separating
modules.

Finally, Shannon’s counting argument [Sha49] also seems difficult to put into this representation-
theoretic framework. Again, by Observation 4.8 there exists a separating Sn-module for this lower
bound. However, finding a natural separating module seems difficult, as Shannon counts the
functions in Ceasy (SIZE(2n/n) in this case), rather than using some property shared by these
functions. This is not necessarily a weakness of the framework however: one of the messages we
take from Razborov and Rudich [RR97] is that such simple counting arguments cannot work to
prove the strong lower bounds we desire. Indeed, Kadish and Landsberg [KL12] point out that
getting a lower bound on the determinantal complexity of a generic polynomial is an important
first step towards new lower bounds for permanent versus determinant; a lower bound on generic
polynomials remains open.

4.6. Finite fields and positive characteristic. There is a mismatch between the current lower
bounds over finite fields and the standard techniques of algebraic geometry. The issue is that all
the current lower bounds over finite fields that we are aware of depend crucially not just on positive
characteristic, but on the size of the field. This means that none of the current lower bounds over
finite fields extend to the algebraic closure Fp. This is in contrast to the usual approach to finite

fields in algebraic geometry, which is (roughly) to first work over their algebraic closures Fq where
algebraic geometry and representation theory are nicer and then to pass to the Fq points14. In par-

ticular, over Fq Hilbert’s Nullstellensatz holds and every matrix admits an eigenvector. This process
is exactly analogous to (but more complicated than) considering complex solutions, eigenvectors,
etc. in order to study equations, matrices, etc. over R.

As we already mentioned, even if the characteristic is held constant but the field size is allowed
to grow at a modest pace with the size of the input, the current lower bounds seem to disappear
completely. The essential issue here seems to be that the method of approximations is typically
used to “throw away” points which are in the complement of an algebraic set. Over finite fields,
one then argues that these “erroneous points” are not too numerous, but over any infinite field,
almost all points will be “erroneous,” as an algebraic set has dimension strictly smaller than that
of the ambient space.

14The Fq-points can be recovered from Fq as the fixed points of the Frobenius map x 7→ xq, just as R points can
be recovered from C as the fixed points of the complex conjugation map. The dynamics of the Frobenius map are
often very useful.
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It thus seems to us that the limits of our knowledge are not so much in finding lower bounds for
depth 3 arithmetic circuits in characteristic zero, as is often stated, but for finding lower bounds
for depth 3 arithmetic circuits over any given infinite field, including Fp. The chasm at depth 4
[AV08, Koi12] holds over an arbitrary field, but these observations lead us to wonder:

Open Question 4.11. Is there a chasm at depth 3 over the algebraically closed field Fp for any
constant prime p > 0?

The current chasm at depth 3 [GKKS13] only seems to work in characteristic zero or over a
field of (growing) characteristic greater than the degree d of the polynomial, as they use a trick of
Fischer [Fis94] which requires dividing by 2d−1d!.

5. Most arithmetic circuit lower bounds yield separating modules

In this section we show how all of the bounds listed in the introduction give separating modules.
Rather than recalling all of these proofs and stating a separate proposition for the existence of
a separating module for each of these bounds (as in Section 2), we use a more concise format.
Furthermore, we have not included all the results from every paper we consider, but only a rep-
resentative result from each paper (or sometimes, from each technique). However, we believe that
the other results in these papers and using these techniques also yield separating modules.

5.1. Methods based on partial derivatives.

Nisan–Wigderson partial derivatives
Hard function: Elementary symmetric function en/4,n
Complexity class: Homogeneous depth 3 arithmetic circuits in characteristic zero
Lower bound: Size 2Ω(n) [NW97]
Invariance: F-linear (GLn(F)), characteristic zero
Separating module: The (r + 1) × (r + 1) minors of the partial derivative matrix Mf , as in the
proof of Proposition 2.12. �

Permanent versus depth 4
Hard function: permn

Complexity class: Depth 4 ΣΠΣΠ arithmetic circuits with bottom fan-in O(
√
n)

Lower bound: Size 2Ω(
√
n) [GKKS12]

Invariance: C-linear (GLn2(C))
Separating module: The outline of the proof of this lower bound is very similar to that for
the Nisan–Wigderson lower bound above. However, the key property used here is slightly more
complicated. Rather than considering the dimension of the space of partial derivatives ∂(f), they
consider the dimension of the space of shifted partial derivatives, which are products of polynomials
of some degree ` with the partial derivatives of f . Following their notation, we write ∂=k(f)≤` for
the space of k-th order partial derivatives multiplied by polynomials of degree ≤ `. As in the above
case, we build a matrix M̃f whose rank is exactly the dimension of ∂=k(f)≤`, and then the r × r
minors of this matrix provide the separating module, for appropriately specified r, k, and `.

As above, the columns of M̃f will be indexed by monomials xe, and the rows will be indexed

by pairs (xd, ∂c) of a monomial and a partial derivative operator. (Here c ∈ Zn≥0, and ∂c denotes

∂/∂xc11 · · · ∂xcnn .) Then we proceed as in the above case. �
For this next result, we need a basic fact about sets of polynomials. Given two test modules V

and W , we define their product V ·W as the linear span of the pairwise products of their elements:
V ·W = {

∑
i figi|fi ∈ V, gi ∈W}.
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Fact 5.1. The disjunction (union) of two invariant properties defined by test polynomials is again
an invariant property defined by test polynomials.

Proof. Let V,W be test modules. First one verifies that V ·W is a test module. Then V ·W defines
the union of the properties defined by V and W . For let f be an input polynomial. If every test
polynomial t ∈ V vanishes at f , then so does every test polynomial in V ·W . Similarly for W .
Conversely, if some test polynomial t1 ∈ V does not vanish at f , and some test polynomial t2 ∈W
does not vanish at f , then t1t2 ∈ V ·W does not vanish at f . �

Multilinear formulas
Hard function: detn or permn

Complexity class: (Syntactic) multilinear formulas in characteristic zero
Lower bound: Size Ω(nlogn) [Raz09]
Invariance: permutation (Sn)
Separating module: Raz combines the above ideas on dim ∂(f) with random restrictions, making
the separating module here slightly more complicated than in the above examples. Raz explicitly
defines a matrix of partial derivatives, similar to that in the above two examples, which he also
denotes Mf . The random restrictions Raz uses (see [Raz09, §5]) take the form ρ(xi, xj , xk, x`) =
(1, 1, ym, zm), where the i, j, k, ` used are of a particular form, and the image may be re-ordered in
one of two possible ways. In particular, for each input length n there are only finitely many such
restrictions to consider.

He then shows a lower bound on rkMdet(ρ(X)) and rkMperm(ρ(X)) under any such restriction ρ,
and using a probabilistic argument shows that there exists a restriction making rkMf(ρ(X)) small

when f is computed by a multilinear formula of size no(logn). Hence the property he is using is that
there exists a restriction ρ as in his §5 which makes rkMf(ρ(X)) ≤ r for appropriately chosen r.

For a given restriction ρ, we get a test Sn-module Vρ consisting of the (r + 1) × (r + 1) minors
of Mf(ρ(X)). This test Sn-module vanishes if and only if rkMf(ρ(X)) ≤ r. The separating module is
then the product over all (finitely many) ρ of the Vρ (cf. Fact 5.1). �

Remark 5.2. Although bounding the rank of a matrix of partial derivatives is linear-invariant,
the property of being multilinear is not linear-invariant, though it is permutation-invariant. Hence,
despite using a bound on the dimension of partial derivatives, it was to be expected that at some
point in the proof a property would be used that was only permutation-invariant and not linear-
invariant. Although Raz uses multilinearity elsewhere in his proof, even in the brief outline above
we see that the type of random restrictions used is only permutation-invariant, and not linear-
invariant.

5.2. Methods using properties of (semi-)algebraic varieties. For methods such as the degree
bound [Str73, BS83] and the connected components technique [BO83], the most natural input
objects to use are themselves (semi-)algebraic varieties. In other words, we need to replace the

input space Polyd(x) with a space whose points correspond to varieties. Such spaces have been
constructed in (semi-)algebraic geometry, but their construction is not as elementary as in the
above results. In both cases the basic idea is that the input objects will in fact be systems of
equations (which, in turn, define algebraic sets), and the test variables are then the coefficients of
these systems of equations.

Surprisingly, the use of these “parameter spaces of algebraic sets” makes putting these results
into the representation-theoretic viewpoint technically more complicated than the above results,
despite the fact that these bounds were discovered considerably earlier.

The degree bound
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Hard function: Computing all elementary symmetric functions e1,n, . . . , en,n together
Complexity class: Arithmetic circuits over an infinite field
Lower bound: Size Ω(n log n) [Str73]
Invariance: F-affine (AGLn(F)), F infinite
Separating module: The key property used here is the degree of a projective algebraic set. Although
the degree has a nice geometric definition (in characteristic zero), here we recall the algebraic
definition as it lends itself more readily to the definition of the separating module. Let V be an
algebraic subset of P(Fn), and let I ⊆ F[x1, . . . , xn] be the homogeneous ideal of all polynomials
that vanish on V . In particular, I can be written as the direct sum

⊕
d Id of its homogeneous

subsets Id, which consist of those polynomials in I of degree exactly d. The Hilbert function of

I is then hI(d)
def
= dimF Id. Hilbert showed (see, e. g., [CLO97, §9.3] or [Eis95, Thm. 1.11]) that

for all sufficiently large d, hI(d) agrees with a polynomial pI(d), which is referred to as the Hilbert
polynomial of I or V . The degree of V is then the leading coefficient15 of the Hilbert polynomial
pI(d).

For the input space, we may use either the Chow variety (see, e. g., [Dan94, Ch. 3, §7]) or the
Hilbert scheme (see, e. g., [Gro95]). The Chow variety is essentially the “space of projective algebraic
sets,” and the Hilbert scheme is essentially the “space of homogeneous ideals in F[x1, . . . , xn].” The
Chow variety is in fact a disjoint union over pairs (d,D) of the variety of projective algebraic sets
of degree d and dimension D. Similarly, the Hilbert scheme is the disjoint union over Hilbert
polynomials p(·) of the scheme of homogeneous ideals with Hilbert polynomial pI = p. In either
case, showing that two varieties have different degrees then amounts to showing that these varieties,
as points in the space of varieties, live in different connected components of the Chow variety or
Hilbert scheme.

Finally, being in a given component of a variety (or scheme) is defined by the vanishing of some
(test) polynomials. As the Hilbert polynomial, and in particular the degree and dimension, is
an affine invariant of a projective algebraic set, the components of the Chow variety and Hilbert
scheme are also affine-invariant. Hence, by the analog of Fact 2.8 for affine invariance, there is a
separating module. �

Algebraic decision trees for sorting
Hard function: Element distinctness (note that element distinctness reduces to sorting)
Complexity class: Real semi-algebraic decision trees
Lower bound: Depth Ω(n log n) [BO83]
Invariance: R-affine (AGLn(R))
Separating module: The key property used here is the number of connected components of a
semi-algebraic variety—that is, a subset of Rn defined by a collection of polynomial equalities and
inequalities. The number of connected components is clearly affine-invariant; we recall here how
Hardt’s Triviality Theorem implies that it is in fact defined by a collection of test polynomial
equalities and inequalities. The use of inequalities here is unavoidable: see Remark 5.3 below.

A special case of Hardt’s Triviality Theorem [Har80] (see, e. g., [BPR06, §5.8] for a textbook
treatment) says that for any continuous semi-algebraic map π : S → RN from a semi-algebraic set

S ⊆ Rn, there is a finite partition of RN into semi-algebraic sets RN =
⋃k
i=1 Ti such that for each

i and every x ∈ Ti, Ti × π−1(x) is semi-algebraically homeomorphic to π−1(Ti). In particular, this
implies that for each i, if x, y ∈ Ti then π−1(x) and π−1(y) have the same number of connected
components.

15In an unfortunate twist of terminological fate, it turns out that the dimension of V in the usual sense is equal
to the degree of its Hilbert polynomial.
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Now, consider a collection of polynomial equalities and inequalities of degree ≤ d in n variables
x1, . . . , xn:

(1)

∑
e a1,ex

e + a1 = 0, . . . ,
∑

e am,ex
e + am = 0∑

e am+1,ex
e + am+1 ≥ 0, . . . ,

∑
e am+s,ex

e + am+s ≥ 0∑
e am+s+1,ex

e + am+s+1 > 0, . . . ,
∑

e ah,ex
e + ah > 0

We may consider the ai,es and ais as variables rather than constants; suppose in total there are N
such variables. Then the xis are coordinates on Rn and the ai,es are coordinates on RN . Equations
(1) thus define a semi-algebraic subset S ⊆ Rn×RN . Let π : Rn×RN → RN be the projection onto
the second factor, and let π : S → RN be the restriction of π to S. For any given numerical values
a ∈ RN , let Va ⊆ Rn denote the semialgebraic subset defined by (1). Then π−1(a) = Va×{a} ∼= Va
(where ∼= here denotes semialgebraic homeomorphism).

Finally, by Hardt’s Triviality Theorem, there is a semialgebraic partition RN =
⋃k
i=1 Ti such

that for any a and a′ in the same Ti, Va and Va′ have the same number of connected components.
Hence, the collection of equations of the form (1) that define a semialgebraic variety with c connected
components is the semi-algebraic set

⋃
{Ti|π−1(a) has c connected components for all a ∈ Ti}. As

the property of having c connected components is invariant under affine transformations of the
xis (AGLn(R)), this union of Tis is also affine-invariant (under the induced action of the same
AGLn(R), not under the larger AGLN (R)), and hence is defined by some affine-invariant collection
of equalities and inequalities (by an analog of Fact 2.8). �

Remark 5.3. The use of inequalities here is necessary. The vanishing of some test polynomials
would not suffice, even when the semi-algebraic variety is defined only by equalities. This can be
seen even in the simple case of the number of connected components defined by a quadratic: over R
the number of connected components of the algebraic set {x ∈ R|ax2+bx+c = 0} is zero if and only
if b2 − 4ac < 0 and is at most one if and only if b2 − 4ac ≤ 0. The set {(a, b, c)|b2 − 4ac < 0} is not
defined by the vanishing of some polynomials, for it has dimension 3, but the only 3-dimensional
subset of R3 defined by the vanishing of polynomials is R3 itself. Hence inequalities are necessary.

Remark 5.4. Note that the above lower bound implies the same lower bound for decision trees for
element distinctness (and sorting) over C. However, over C the connected components argument
does not work directly, because semi-algebraic varieties over C tend to have fewer connected com-
ponents than over R. In particular, the semialgebraic variety corresponding to element distinctness
over C has just a single connected component. Hence although the lower bound holds over C, we
would still only get a separating AGLn(R)-module.

Algebraic decision trees for k-equals
Hard function: k-equals (are at least k of the inputs equal?)
Complexity class: Real semi-algebraic decision trees
Lower bound: Depth Ω(n log(n/k)) [Yao97]
Invariance: R-affine (AGLn(R))
Separating module: The key property used here is a lower bound on any Betti number, rather than
just the number of connected components (=the 0-th Betti number). As the Betti numbers are
invariant under homeomorphism, essentially the same argument as above using Hardt’s Triviality
Theorem works for this result. �

5.3. The method of approximations over finite fields. Here we give two representative ex-
amples of how results that use the method of approximation for circuits over finite fields yield
separating modules. Results using similar properties, such as those of Grigoriev–Razborov [GR00],
should similarly yield separating modules.
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Razborov–Smolensky
Hard function: MOD3

Complexity class: AC0[2]
Lower bound: Exponential size [Raz87, Smo87]
Invariance: F2-affine (AGLn(F2))
Separating module: Every AC0[2] circuit computes a polynomial function over F2, so we use

Ωd,n
F2

def
= PolydF2

(x1, . . . , xn)/〈x2
1 = x1, . . . , x

2
n = xn〉 as the space of input functions (using Ω we

follow Smolensky’s notation). Note that here we consider two functions equal if they are equal
when evaluated on all F2 points. In other words, we are considering functions on F2, rather than
formal polynomials whose coefficients are in F2. Every function over F2 can be represented by a
unique multilinear polynomial; when we refer to MOD3 we mean its corresponding F2-multilinear
polynomial.

Fix a depth k and a constant λ. For our purposes, the key property used here is:

There exists a subset Γ ⊆ Fn2 (for “good”) of size at least 2n − 2n−r such that f
agrees with a polynomial of degree ≤ (2λr)k on the points in Γ.

Smolensky [Smo87, Lem. 2] shows that this holds for any function computed by a depth k circuit

with parity gates for r = o(n1/2k), but not for MOD3. This condition is clearly GLn(F2)-invariant.
For any Γ ⊆ Fn2 , let IΓ be the ideal of polynomials that vanish everywhere on Γ. When we mod

out the space of functions by IΓ, this is the same as only considering the values a function takes on
Γ. Then f agrees with a polynomial of degree ≤ d = (2λr)k on the points in Γ if and only if all of the
coefficients of monomials of degree > d of f (mod IΓ) vanish. As the map Ωd,n → Ωd,n/IΓ is linear,
the coefficients of f (mod IΓ) are linear combinations of the coefficients of f , and we are asking
that certain such linear combinations vanish. Let TΓ be the test module consisting of these linear
combinations. Finally, for an appropriate choice of r, by Fact 5.1,

∏
Γ TΓ is the desired separating

module, where the product is taken over all (finitely many) subsets Γ ⊆ Fn2 of size ≥ 2n − 2n−r.
�

Depth 3 arithmetic circuits over finite fields
Hard function: Determinant or permanent
Complexity class: Depth 3 arithmetic circuits over the finite field Fq
Lower bound: Exponential size [GK98]
Invariance: Fq-linear (GLn(Fq))
Separating module: As above, the key property here will use an existential quantifier over some
finite collection of subsets S of Fnq , which will turn into a big product of test modules over all
possible choices for S. Beyond that, the condition here is quite a bit more complicated than above.

Here, we work in the space of formal polynomials over Fq, namely PolydFq(x11, x12, . . . , xnn).

To describe the key property we introduce some notation. Given σ ∈ GLn(Fq) and any function
f = f(X), we denote f(σX) by fσ = fσ(X). For any set F of functions, write F σ = {fσ|f ∈ F}.
Let ∂≤r(f) denote the linear span of all the partial derivatives of f of order ≤ r. Finally, combining
these notations, we have ∂≤r(f)σ = {gσ|g ∈ ∂≤r(f)}.

The key property of a function f ∈ PolydFq(x1, . . . , xn) is then, for appropriate choices of all the

parameters involved, that there exists a subset S ⊆ GLn(Fq) of size ≤ s such that

there is a function g(X) in the intersection
⋂
σ∈S ∂

≤r(f)σ such that g(A) = 0 for all
A ∈ GLn(Fq).

Again, this property is readily seen to be GLn(Fq)-invariant. Let us verify that it is defined by test
polynomials. For now, fix a subset S ⊆ GLn(Fq). For each σ ∈ S, we compute a linear basis of
∂≤r(f)σ. The coefficients of each such basis function will be linear combinations of the coefficients
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of f (=test variables). This follows from the usual fact about partial derivatives, and the fact
that for any σ ∈ GLn(Fq) and any function h, the coefficients of hσ are linear combinations of
the coefficients of h. Next, we take the intersection over all σ ∈ S of these subspaces. Again, a
linear basis for the resulting intersection will consist of polynomials whose coefficients are linear
combinations of the test variables. Let us denote this intersection Λ.

Now observe that the collection of all g such that g(A) = 0 for all A ∈ GLn(Fq) is an ideal I in
the space of polynomials (of degree ≤ d for some d), and in particular is a linear subspace thereof.
Then the property is satisfied exactly if I∩Λ 6= 0. The system of linear equations defining I∩Λ has
coefficients which are either linear combinations of the coefficients of f (coming from the equations
defining the linear space Λ) or constants (coming from the equations defining I). If this system
of equations had the same number of variables as equations we could require that just the n × n
determinant of the system vanishes. As the system is likely to have more equations than variables,
we must require that all the n × n minors of this system vanish. These n × n minors form a test
module TS , and then, as above, the separating module is

∏
S TS , where the product is over all S of

appropriate size. �

Remark 5.5. Aside from the more obvious uses of finiteness (not just finite characteristic) in the
above proofs, in the Grigoriev–Karpinski proof, the property they use becomes vacuous over any
infinite field F: the only polynomial in n2 variables that vanishes everywhere on GLn(F) is the zero
polynomial. For further discussion of these issues see Section 4.6.

5.4. Results previously known to give separating modules.

Permanent versus determinant
Hard function: permn

Complexity class: Linear projections of detm
Lower bound: m ≥ n2/2 [MR04]; also border determinantal complexity n2/2 [LMR10]
Invariance: C-linear (GLm2(C))
Separating module: The key property used by Mignon and Ressayre [MR04] is the rank of the
Hessian matrix of a function. Recall that the Hessian of a function f(x1, . . . , xn) is the n × n
matrix Hess(f) whose (i, j) entry is the second partial derivative ∂2f/∂xi∂xj . They show a lower
bound on rk Hess(perm) and an upper bound on rk Hess(det). Note that the entries of Hess(det)
are themselves functions; the upper bound on rk Hess(det) that they prove does not hold at all
matrices X, but only at those matrices where det(X) = 0. This is enough for them to prove the
lower bound, but makes it complicated to extract a separating module from their proof.

If the upper bound held for all X, then the minors of the Hessian matrix would span a separating
module, as in the Nisan–Wigderson partial derivatives technique above. Instead, the condition they
use is that det(X) divides the r × r minors of Hess(det) (for r = 2n + 1). Landsberg, Manivel,
and Ressayre [LMR10] find polynomial equations that vanish exactly on the pairs of polynomials
(f, g) such that f divides g (amongst other achievements), resolving a surprisingly old question
in algebraic geometry. They then construct a separating module by using these equations with
f = det and g the minors of Hess(det). �

Matrix multiplication
Hard function: n× n matrix multiplication
Complexity class: Bilinear circuits in characteristic zero
Lower bound: Border rank ≥ 3

2n
2 − o(n2) [BI12]

Invariance: F-linear (GLn2(F)×GLn2(F)×GLn2(F), characteristic zero
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Separating module: Bürgisser and Ikenmeyer [BI12] explicitly construct separating modules yield-
ing this lower bound (in fact, they construct “occurrence obstructions,” see Section 4.1 below for
the definition). �

6. Relations between lower bounds yield relations between separating modules

Baur–Strassen: computing partial derivatives [BS83]
Assumption: Computing (∂f/∂x1, . . . , ∂f/∂xn) requires arithmetic circuits of size s
Consequence: Computing f requires arithmetic circuits of size s/3
Invariance: F-linear (GLn(F)), any infinite field

Separating module implication: Let ϕ be the map from Polyd(x1, . . . , xn) to the Chow variety or
Hilbert scheme (see The Degree Bound above), defined as follows. ϕ(f) is the variety (ideal) defined
by 〈∂f/∂x1, . . . , ∂f/∂xn〉. Recall that A ∈ GLn(F) acts on the Hilbert scheme by taking the ideal
〈g1(x), . . . , gk(x)〉 to the ideal 〈g1(Ax), . . . , gk(Ax)〉; let us denote the latter by A·〈g1(x), . . . , gk(x)〉.
Similarly, A ∈ GLn(F) acts on Polyd(x) by sending f(x) to f(Ax). Then ϕ is GLn(F)-equivariant,
in that

ϕ(f(Ax)) =

〈∑
j

a1j

(
∂f

∂xj

)
(Ax), . . . ,

∑
j

anj

(
∂f

∂xj

)
(Ax)

〉

=

〈(
∂f

∂x1

)
(Ax), . . . ,

(
∂f

∂xn

)
(Ax)

〉
= A · ϕ(f(x)).

If T is a test module which vanishes on {ϕ(g)|ϕ(g) has arithmetic circuits of size ≤ s}, but not

on ϕ(f), then ϕ∗(T )
def
= {t ◦ ϕ|t ∈ T} is a vector space of test polynomials which vanishes at all

g ∈ Polyd(x) that have circuits of size ≤ s/3, but not at f . The GLn(F)-equivariance of ϕ implies
that ϕ∗(T ) is in fact a test GLn(F)-module. �

Tensor rank to formula size [Raz10]

Assumption: tn ∈ (Fn)⊗r(n) has tensor rank ≥ nr(n)(1−o(1)) for some ω(1) ≤ r(n) ≤ O
(

logn
log logn

)
Consequence: The polynomial fn which is the symmetrization of tn requires super-polynomial size
arithmetic formulas. Also, by the completeness of the permanent, permn requires super-polynomial
size arithmetic formulas (attributed to Yehudayoff, [Raz10, Footnote 2])
Invariance: F-linear (GLn(F)), F arbitrary
Separating module implication: Raz uses the standard symmetrization map from tensors (Fn)⊗r

(we think of these as degree r homogeneous noncommutative polynomials) to Polyr(x1, . . . , xn). In
particular, to show an arithmetic formula size lower bound on some fn ∈ Polyr(x), it suffices to
show a tensor rank lower bound on any noncommutative version tn of fn (that is, fn is the result
of symmetrizing tn). In particular, we are free to use the standard embedding (NB: in the opposite
direction compared to the above) ϕ : Polyr(x) ↪→ (Fn)⊗r, which takes the monomial xi1 . . . xir to
the tensor 1

r!

∑
π∈Sr xiπ(1) ⊗ · · · ⊗ xiπ(r) . Raz’s results imply that the image, under ϕ, of the set

of polynomials that have small formulas is contained in the set of tensors of low tensor rank. It
is a standard fact from multi-linear algebra that the embedding ϕ is GLn(F)-equivariant (see the
Baur–Strassen implication above). Hence, if a test module T is used to show a lower bound on the
tensor rank (and hence, border rank, see Section 3.2) of some ϕ(f), then {t ◦ ϕ|t ∈ T} is a test
module which implies the stated lower bound on the arithmetic formula size of f . �

Chasm at Depth 4 [AV08, Koi12]
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Assumption: f requires depth 4 arithmetic circuits of size 2ω(
√
n log2 n)

Consequence: f requires arithmetic circuits of super-polynomial size
Invariance: F-affine (AGLn(F)), F arbitrary
Separating module implication: They show that the set of functions computable by arithmetic
circuits of polynomial size is contained in the set of functions computable by depth 4 circuits of

size 2O(
√
n log2 n). Hence, if a separating module vanishes on the latter set, it also vanishes on the

former.
�

Chasm at Depth 3 [GKKS13]

Assumption: f requires depth 3 arithmetic circuits of size 2ω(
√
n log3/2 n)

Consequence: f requires arithmetic circuits of super-polynomial size
Invariance: F-affine (AGLn(F)), characteristic zero or characteristic > deg f
Separating module implication: Same as above, but with different bounds and not over arbitrary
fields. See Section 4.6 for a discussion of this issue. �

Matrix rigidity to linear circuits [Val77]
Assumption: The n× n matrix An has rigidity RAn(n/2) ≥ Ω(n1+ε)
Consequence: The linear function x 7→ Anx does not have linear circuits of simultaneous size O(n)
and depth O(log n)
Invariance: permutation (Sn × Sn)
Separating module implication: Here the ambient (input) space is the space Mn(F) of n × n
matrices. Valiant [Val77, Cor. 6.3] showed the set of matrices An whose associated linear functions
x 7→ Anx can be computed by linear circuits of size O(n) and depth O(log n) (simultaneously) is
contained in the set of matrices of low rigidity. Hence any test module which vanishes on the set
of matrices with low rigidity but not on some matrix A will also vanish on the set of matrices that
can be computed in size O(n) and depth O(log n) by linear circuits.

As the concept of rigidity involves the number of entries of a matrix that must be changed to
drop its rank, this concept is only permutation-invariant—we may multiply An on the left and right
by permutation matrices without affecting its rank or rigidity. We note that, despite the fact that
the non-rigid matrices do not form an algebraic set, some of the most successful results on matrix
rigidity to date use the algebro-geometric approach (essentially, test polynomials) [KLPS09] (see
also [LTV03] for more on the geometry). �
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Appendix A. Proof of the correspondence between invariant properties and test
modules

Fact A.1 (Generalized restatement of Fact 2.8). Let G be any finite or algebraic group acting
algebraically on an input space. There is a many-to-one correspondence between test G-modules
and G-invariant properties defined by the vanishing of test polynomials.

For readers unfamiliar with algebraic geometry, we note that GLn(F) and AGLn(F) are both
algebraic groups. All of the situations considered in this paper satisfy the hypotheses above.

For readers familiar with algebraic geometry but perhaps not with algebraic groups: an algebraic
group is an algebraic set that is also a group, and where the multiplication map G × G → G and
inversion map G→ G are both algebraic maps. In particular, all finite groups are algebraic. (If you

are concerned that GLn is a Zariski-open subset of Fn2
, consider GLn as instead the algebraic set

{(A, 1
detA)|A invertible} ⊆ Fn2+1.) An action of G on an algebraic set V is algebraic if the action

map G× V → V is algebraic.

Proof. Let V denote the input space (input polynomials, matrices, etc.), and suppose that T is a
test G-module with basis t1, . . . , tk. Let ΠT denote the corresponding property, namely ΠT = {v ∈
V |t(v) = 0∀t ∈ T}. ΠT is defined by test polynomials (namely, those in T ). To see that ΠT is
G-invariant, suppose that v ∈ ΠT and g ∈ G, and consider the point gv. By the defining property
of test G-module, if t(x) ∈ T , then t(gx) ∈ T for all g ∈ G. Let t′(x) = t(gx). As t′ ∈ T and
v ∈ ΠT , we have t′(v) = 0 by the definition of ΠT . But then 0 = t′(v) = t(gv), as desired. Hence
ΠT is a G-invariant property defined by test polynomials.

Conversely, suppose that Π ⊆ V is a G-invariant property defined by test polynomials. By
Hilbert’s Basis Theorem, Π is defined by the vanishing of only finitely many test polynomials, say

t1, . . . , tk. If G is finite, then it is clear that the collection of polynomials GT
def
= {ti(g(x))|1 ≤ i ≤

k, g ∈ G} is finite. If G is algebraic, then it is a standard fact from algebraic geometry that the
linear span of GT is finite-dimensional, even though G itself may be infinite. It is clear from the
construction that GT is a test G-module. It remains to show that Π is exactly the set of input
points on which GT vanishes. Let us denote the latter set by ΠGT . By the previous direction, ΠGT

is G-invariant.
We will show that for arbitrary Π defined by test polynomials in T (not necessarily G-invariant),

ΠGT is the unique maximum G-invariant subset of Π. Hence, if Π itself is G-invariant, then
Π = ΠGT . Suppose Π′ is a G-invariant subset of Π. In particular, every test polynomial t ∈ T
vanishes on every v ∈ Π′. We must show that for arbitrary g, t(gx) also vanishes on every v ∈ Π′.
As Π′ is G-invariant, v ∈ Π′ implies that gv ∈ Π′ for every g ∈ G. Hence t(gv) = 0 for every
v ∈ Π′. Thus Π′ ⊆ ΠGT . As this holds for arbitrary G-invariant subsets Π′ of Π, ΠGT is the unique
maximum G-invariant subset of of Π, and thus is equal to Π if Π itself is G-invariant. �

It is clear that the map sending a test G-module T to the property ΠT is well-defined, and hence
is at worst many-to-one. Over an algebraically closed field, Hilbert’s Nullstellensatz implies that
two test G-modules T1 and T2 define the same property Π if and only if they generate the same
radical ideal. Hence, we cannot expect this map to be one-to-one.
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Appendix B. The utility of separating modules

In Section 3.1 we argued that invariant properties can be used to prove lower bounds without
loss of generality. In Section 3.3 we argued that for all naturally occurring nonuniform complexity
classes C, Cn is constructible, and furthermore is typically the image of some simple algebraic map
from some FN . We now give a heuristic argument that the easiest way to prove a lower bound
against such sets is by using a test polynomial, and hence, for invariant classes, a separating module.
Even when the use of separating modules is not formally necessary, it thus helps illuminate any
(constructible) nonuniform complexity class.

If Cn is closed, then test polynomials are necessary and sufficient to prove fhard,n /∈ Cn (see
Section 3.3). For the sake of discussion, suppose that Cn is not closed, but is the next simplest kind
of constructible set: Cn is the difference An\Bn of two closed sets An,Bn. By what is essentially
disjunctive normal form, every constructible set is a union of such differences.

Without loss of generality, we may assume that An = Cn is the Zariski-closure of Cn, and that
Bn ⊆ An. Equivalently, Bn = Cn\Cn is the boundary of Cn.

Two approaches to show fhard,n /∈ Cn immediately suggest themselves: (1) show that fhard,n /∈
An = Cn; or (2) show that fhard,n ∈ Bn. As Bn = Cn\Cn might be complicated, a third approach
is (3) to find a closed set Dn containing fhard,n such that Dn is disjoint from Cn. Each of these
approaches of course requires some insight: in general, (1) requires finding a test polynomial with
the desired properties, (2) requires finding all test polynomials that vanish on Bn, or at least a set
of test polynomials whose vanishing defines Bn, and (3) requires finding the set Dn along with all
the test polynomials that vanish on Dn, or at least a set of test polynomials that defines Dn. Of
course, we say “in general” here because it is always possible that, for example, Bn might have
some structure that can be exploited so that showing fhard,n ∈ Bn might be done without recourse
to such test polynomials. However, at this level of heuristic argument, we cannot speculate on
anything other than the general case.

In the general case—that is, barring some miraculous leap of ingenuity, which of course we cannot
rule out—we can compare the a priori difficulty of these approaches:

(1) requires finding a single test polynomial t, verifying that t vanishes on Cn (which implies
that it vanishes on Cn = An), and verifying that t(fhard,n) 6= 0.

(2) requires finding or knowing a set t1, . . . , tk of test polynomials whose vanishing defines Bn
and then verifying that ti(fhard,n) = 0 for all 1 ≤ i ≤ k.

(3) requires constructing Dn, along with a defining set t1, . . . , tk of test polynomials, verifying
that ti(fhard,n) = 0 for all 1 ≤ i ≤ k, and verifying that Dn is disjoint from Cn.

First, there is the obvious difference that (1) only requires finding a single polynomial and
verifying its properties, whereas both (2) and (3) require finding a whole set of polynomials and
verifying their properties. Furthermore, in most such situations the number of polynomials needed
in (2) and (3) will be exponential in n: in all the examples we are aware of except for Remark B.1,

the sets An,Bn, Cn,Dn have dimension poly(n) and live in a space like PolyO(n)(x1, . . . , xn) of

dimension 2Θ(n logn), which implies that any defining set of test polynomials must consist of at
least 2Θ(n logn) − poly(n) = 2Θ(n logn) test polynomials.

Remark B.1. In the case of n×n matrix multiplication the ambient space has dimension n6, and
in the case of matrix rigidity the ambient space has dimension n2, so the above point is not an
issue. However, it may be telling that even in these cases, the approach via test polynomial seems
to be the most successful so far. In the case of matrix multiplication, this corresponds to border
rank (see Section 3.2), which has been successfully used for upper bounds as well as lower bounds.
In the case of matrix rigidity, see, e. g., [KLPS09, LTV03].
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Second, we can use the complexity of the corresponding verification problems as a heuristic guide
to the mathematical difficulty of the associated proofs. For starters, given a test polynomial t, it
is easy to evaluate t(f) for any explicitly given f .

(1) Verifying that t vanishes on Cn is essentially a coRP problem. If Cn is the image of a simple
algebraic map ϕ from some FN , as most complexity classes are (see Section 3.3), we can
generate random points of Cn by choosing random points in FN and applying ϕ. In all
situations we are aware of N ≤ poly(n).

(2) Verifying that fhard,n ∈ Bn requires verifying that ti(fhard,n) = 0 for a defining set of test
polynomials T . We argued above that in most situations, T must consist of exponentially
many test polynomials.

(3) Even if Dn is chosen to be defined by only poly(n) test polynomials t1, . . . , tpoly(n)—thus
avoiding the difficulty of (2)—verifying that Dn is disjoint from Cn = Im(ϕn) reduces to
deciding whether a variety given by equations is empty or not. Namely, the equations
ti(ϕ(x)) for 1 ≤ i ≤ k, define the closed set ϕ−1(Dn), which is empty if and only if Dn is
disjoint from Cn.

Deciding whether a closed set given by equations is empty or not is the computational
problem of Hilbert’s Nullstellensatz (HN), which is NP-hard in general. As the ϕ are quite
simple, if we treat the defining equations t1, . . . , tpoly(n) as the input to our verification
problem, the verification problem here is likely to be as hard as the general case of HN.

Also note that the fewer test polynomials that are needed to define Dn, the larger its dimension
is, and hence the less likely it is to be disjoint from Cn. This makes it seem unlikely that one could
in fact find a Dn described by few test polynomials that is disjoint from Cn and contains fhard,n,
let alone that the corresponding instance of HN would not be a hard instance. Either way, we find
the following complexities of the corresponding general verification problems very suggestive:

(1) coRP.
(2) At least exponential time, as there are at least this many defining equations for Bn.
(3) Likely NP-hard.

Finally, in the absence of a brilliant insight to construct a Dn that has exponential dimension
and yet is both disjoint from Cn and avoids the difficulty of HN, the easiness of verification in (1)
suggests that a relatively feasible computational approach is possible using a brute force search for
test modules, whereas this is not the case for approaches (2) and (3).

Appendix C. Discussion of terminology

The new terminology we introduced in this paper was far from arbitrary; here we explain our
reasons for choosing the terminology we did. A test GLn-module is, in particular, a representation
of GLn. Indeed, the word “module” is often used interchangeably with “representation” in repre-
sentation theory. In our setting, it has the additional connotation of a “module of tests” in the
sense of computer programming. We believe the phrase “test module” is new.

Separating GLn(C)-modules are essentially equivalent to the “HWV obstructions” of Bürgisser
and Ikenmeyer [BI12]. In particular, the smallest GLn(C)-module containing an HWV obstruction
is a separating module, and every separating GLn(C)-module contains some HWV obstruction (see
[BI12, Prop. 3.3]). We use our terminology as it generalizes (see Section 2.4) to other groups for
which the highest weight theory does not apply, and we believe it is simpler to understand for
expository purposes—in particular, it does not require knowing anything about Lie theory and
the theory of highest weights. However, for certain approaches to certain lower bounds there are
technical advantages to considering the highest weight vectors directly, as in [BI12].
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Appendix D. Standard notation in the literature

Rather than Polyd(x1, . . . , xn), it is standard to see one of Symd(Cn), Symd(Cn∗), Sd(Cn), or
Sd(Cn∗), or even Symd(V ) or Symd(V ∗), or any other combination of these notations. The use
of Cn∗ or V ∗ here comes from a viewpoint in which the variables xi are viewed as the coordinate
functions on an n-dimensional vector space V = Cn, hence are elements of its (linear) dual vector
space V ∗ = Cn∗. Sometimes the dual is dropped because it does not affect many statements.
The use of Symd or Sd is to denote the “symmetric product” to distinguish it from, say, the
tensor product (which corresponds to noncommutative polynomials) or the wedge product (which
corresponds to anti-commutative tensors, for which xixj = −xjxi).

The space of test polynomials of degree D is then denoted SymD(Symd(Cn)) (or variations
similar to the above). Continuing with the viewpoint above, the coefficients ae of a polynomial
f ∈ Symd(Cn∗) are viewed as linear functions on the space of input polynomials, hence as elements
of the dual vector space Symd(Cn). Polynomials in the ae then live in the D-th symmetric power,
as before.

The entire space of test polynomials is sometimes denoted C[Symd(Cn∗)] or O(Symd(Cn∗)); these
are standard notations in algebraic geometry for the coordinate ring of the linear algebraic variety
Symd(Cn).

A GLn-module of type λ is typically referred as as a Weyl module, which has several more-or-less
standard notations: Vλ, Vλ(GLn), Sλ(V ) when the group is GL(V ) (“S” for “Schur functor”), or
{λ}.

An Sn-module of type λ is typically referred to as a Specht module, which also has several
more-or-less standard notations, including Sλ and [λ].

In both the above cases, λ typically refers to a partition, as the irreducible modules of GLn(C)
are in bijective correspondence with partitions with at most n parts, and the irreducible modules
of Sn over C are in bijective correspondence with partitions of the number n.
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