
Automatic
Differentiation

CSC412/2506

Winter 2018

Slides based on the excellent review:

Baydin, A. G., Pearlmutter, B. A., Radul, A. A., & Siskind, J. M. (2015). Automatic differentiation in machine learning: a survey.

http://arxiv.org/abs/1502.05767

http://arxiv.org/abs/1502.05767

What is AD?

“A family of techniques similar to but more general than back propagation for
efficiently and accurately evaluating derivatives of numeric functions expressed

as computer programs.”

All numerical computations are composed of a finite set of elementary operations.  
These elementary operations have known derivatives.

Systematically apply the chain rule of differential calculus.

4 Categories of Derivatives
for Computer Programs

1. Manual Differentiation  
 (computing by hand and coding the result)

2. Numerical Differentiation  
 (e.g. finite differences approx.)

3. Symbolic Differentiation 
 (Mathematica, Maple…)

4. Automatic Differentiation 
 (subject of this tutorial)

Why do we need AD?

Manual Differentiation is time consuming and error prone.

Numerical Differentiation scales poorly and highly
susceptible to roundoff/truncation errors.

Symbolic Differentiation ‘swells’ quickly as derivative
expressions become very complex.

Also, both Manual and Symbolic require closed-form
mathematical expression.

What is Automatic
Differentiation?

2 Modes of AD

Forward Accumulation Mode: chain rule inside to outside 
  
 
 
Reverse Accumulation Mode: chain rule outside to inside

dw1/dx �! dw2/dx �! dy/dx

dy/dw2 �! dy/dw1 �! dy/dx

2 Modes of AD

Forward Accumulation Mode: chain rule inside to outside 
  
 
 
Reverse Accumulation Mode: chain rule outside to inside

dw1/dx �! dw2/dx �! dy/dx

dy/dw2 �! dy/dw1 �! dy/dx

Exercise: Forward Mode
Solve at point

Solve at point

Exercise: Forward Mode

Solve at point

\

Exercise: Forward Mode

Solve at point

\

Exercise: Forward Mode

Solve at point

\

v̇2?

Exercise: Forward Mode

Solve at point

\

Exercise: Forward Mode

Solve at point

\

v̇3?

Exercise: Forward Mode

Solve at point

\

Exercise: Forward Mode

Solve at point

\
v̇4?

Exercise: Forward Mode

Solve at point

\

Exercise: Forward Mode

Solve at point

\
v̇5?

Exercise: Forward Mode

Solve at point

\

Exercise: Forward Mode

Solve at point

Exercise: Forward Mode

Forward Mode for ML?

can be computed in one forward pass!

needs n forward passes!

Functions in ML

Forward mode AD is not scalable to input dimensionality

7!

x 2 Rn

y 2 R
F :

F = D � C �B �A

F : Rn ! R

y = F (x) = D(C(B(A(x))))

y = D(c), c = C(b), b = B(a), a = A(x)

even more extreme, m=1

Functions in ML

F 0(x) =
@y

@x
=

h
@y

@x1
· · · @y

@xn

i

F 0(x) =
@y

@c

@c

@b

@b

@a

@a

@x

y = D(c), c = C(b), b = B(a), a = A(x)

F 0(x) =
@y

@x
=

h
@y

@x1
· · · @y

@xn

i

@y

@c
= D0(c)

F 0(x) =
@y

@c

@c

@b

@b

@a

@a

@x

y = D(c), c = C(b), b = B(a), a = A(x)

F 0(x) =
@y

@x
=

h
@y

@x1
· · · @y

@xn

i

@y

@c
= D0(c)

@c

@b
= C 0(b)

F 0(x) =
@y

@c

@c

@b

@b

@a

@a

@x

y = D(c), c = C(b), b = B(a), a = A(x)

F 0(x) =
@y

@x
=

h
@y

@x1
· · · @y

@xn

i

@y

@c
= D0(c)

@c

@b
= C 0(b)

@b

@a
= B0(a)

@a

@x
= A0(x)

F 0(x) =
@y

@c

@c

@b

@b

@a

@a

@x

y = D(c), c = C(b), b = B(a), a = A(x)

F 0(x) =
@y

@c

✓
@c

@b

✓
@b

@a

@a

@x

◆

(

@b

@x
=

2

64

@b1
@x1

· · · @b1
@xn

...
. . .

...
@bm
@x1

· · · @bm
@xn

3

75

F 0(x) =
@y

@c

✓
@c

@b

✓
@b

@a

@a

@x

◆

Forward
accumulation

F 0(x) =

✓✓
@y

@c

@c

@b

◆
@b

@a

◆
@a

@x
F 0(x) =

✓✓
@y

@c

@c

@b

◆
@b

@a

◆
@a

@x

(

@y

@b
=

h
@y
@b1

· · · @y
@bm

i
Reverse

accumulation

)

@y

@c
= D0(c)

@c

@b
= C 0(b)

@b

@a
= B0(a)

@a

@x
= A0(x)

F 0(x) =
@y

@c

@c

@b

@b

@a

@a

@x

@y

@c
= D0(c)

@c

@b
= C 0(b)

@b

@a
= B0(a)

@a

@x
= A0(x)

F 0(x) =
@y

@c

@c

@b

@b

@a

@a

@x

F 0(x) v =
@y

@c

@c

@b

@b

@a

@a

@x
v

F 0(x) v =
@y

@c

✓
@c

@b

✓
@b

@a

✓
@a

@x
v

◆◆◆

F 0(x) =
@y

@c

✓
@c

@b

✓
@b

@a

✓
@a

@x

@x

@x

◆◆◆

Forward accumulation $ Jacobian-vector products
Build Jacobian one column at a time

x A a B b C y

⎡

⎢⎢⎢⎣

1
0

0

⎤

⎥⎥⎥⎦
JA

∂a
∂x1

JB
∂b
∂x1

JC
∂y
∂x

⎡

⎢⎢⎢⎣

0
1

0

⎤

⎥⎥⎥⎦
JA

∂a
∂x2

JB
∂b
∂x2

JC

⎡

⎢⎢⎢⎣

0
0

1

⎤

⎥⎥⎥⎦
JA

∂a
∂xD

JB
∂b
∂xD

JC

x A a B b C y

∂y
∂x JT

A
∂y
∂a JT

B
∂y
∂b JT

C 1

F : RD → R F = C ◦ B ◦ A
∂a
∂x

∂b
∂x x

∂y
∂a

∂y
∂b y

y ∈ R
x ∈ RD D D

Reverse accumulation $ vector-Jacobian products
Build Jacobian one row at a time

v

TF 0(x) =
v

T @y

@c

@c

@b

@b

@a

@a

@x

v

TF 0(x) =

✓✓✓
v

T @y

@c

◆
@c

@b

◆
@b

@a

◆
@a

@x

◆◆◆

F 0(x) =

✓✓✓
@y

@y

@y

@c

◆
@c

@b

◆
@b

@a

◆
@a

@x

◆◆◆

x A a B b C y

⎡

⎢⎢⎢⎣

1
0

0

⎤

⎥⎥⎥⎦
JA

∂a
∂x1

JB
∂b
∂x1

JC
∂y
∂x

⎡

⎢⎢⎢⎣

0
1

0

⎤

⎥⎥⎥⎦
JA

∂a
∂x2

JB
∂b
∂x2

JC

⎡

⎢⎢⎢⎣

0
0

1

⎤

⎥⎥⎥⎦
JA

∂a
∂xD

JB
∂b
∂xD

JC

x A a B b C y

∂y
∂x JT

A
∂y
∂a JT

B
∂y
∂b JT

C 1

F : RD → R F = C ◦ B ◦ A
∂a
∂x

∂b
∂x x

∂y
∂a

∂y
∂b y

y ∈ R
x ∈ RD D D

Solve at point

both in one
reverse pass!

Exercise: Reverse Mode

,

Solve at point

both in one
reverse pass!

Exercise: Reverse Mode

,

(@y/@y)

Solve at point

both in one
reverse pass!

Exercise: Reverse Mode

,

v̄3?

Solve at point

both in one
reverse pass!

Exercise: Reverse Mode

,

v̄1?

Solve at point

both in one
reverse pass!

Exercise: Reverse Mode

,

v̄2?

Solve at point

both in one
reverse pass!

Exercise: Reverse Mode

,

v̄0?

Solve at point

both in one
reverse pass!

Exercise: Reverse Mode

,

v̄�1?

Solve at point

both in one
reverse pass!

Exercise: Reverse Mode

,

v̄0?

Solve at point

both in one
reverse pass!

Exercise: Reverse Mode

,

v̄�1?

Solve at point

both in one
reverse pass!

Exercise: Reverse Mode

,

Solve at point

both in one
reverse pass!

Exercise: Reverse Mode

,

(x̄1) (x̄2)

Backpropagation is a special
case of Reverse Mode AD

