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What is AD?

“A family of techniques similar to but more general than back propagation for 
efficiently and accurately evaluating derivatives of numeric functions expressed 

as computer programs.”

All numerical computations are composed of a finite set of elementary operations.  
These elementary operations have known derivatives.

Systematically apply the chain rule of differential calculus.



4 Categories of Derivatives 
for Computer Programs

1. Manual Differentiation  
    (computing by hand and coding the result)


2. Numerical Differentiation  
    (e.g. finite differences approx.)


3. Symbolic Differentiation 
    (Mathematica, Maple…)


4. Automatic Differentiation 
    (subject of this tutorial)



Why do we need AD?

Manual Differentiation is time consuming and error prone.


Numerical Differentiation scales poorly and highly 
susceptible to roundoff/truncation errors.


Symbolic Differentiation ‘swells’ quickly as derivative 
expressions become very complex.


Also, both Manual and Symbolic require closed-form 
mathematical expression.











What is Automatic 
Differentiation?



2 Modes of AD

Forward Accumulation Mode: chain rule inside to outside 
   
 
 
Reverse Accumulation Mode: chain rule outside to inside

dw1/dx �! dw2/dx �! dy/dx

dy/dw2 �! dy/dw1 �! dy/dx
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Forward Mode for ML?

can be computed in one forward pass!

needs n forward passes!



Functions in ML

Forward mode AD is not scalable to input dimensionality



7!

x 2 Rn

y 2 R
F :

F = D � C �B �A

F : Rn ! R

y = F (x) = D(C(B(A(x))))

y = D(c), c = C(b), b = B(a), a = A(x)

even more extreme, m=1

Functions in ML
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Forward accumulation $ Jacobian-vector products
Build Jacobian one column at a time
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Reverse accumulation $ vector-Jacobian products
Build Jacobian one row at a time
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Solve at point

both in one 
reverse pass!

Exercise: Reverse Mode

,



Solve at point

both in one 
reverse pass!

Exercise: Reverse Mode

,

(@y/@y)



Solve at point

both in one 
reverse pass!

Exercise: Reverse Mode

,

v̄3?



Solve at point

both in one 
reverse pass!

Exercise: Reverse Mode

,

v̄1?



Solve at point

both in one 
reverse pass!

Exercise: Reverse Mode

,

v̄2?



Solve at point

both in one 
reverse pass!

Exercise: Reverse Mode

,

v̄0?



Solve at point

both in one 
reverse pass!

Exercise: Reverse Mode

,

v̄�1?



Solve at point

both in one 
reverse pass!

Exercise: Reverse Mode

,

v̄0?



Solve at point

both in one 
reverse pass!

Exercise: Reverse Mode

,

v̄�1?



Solve at point

both in one 
reverse pass!

Exercise: Reverse Mode

,



Solve at point

both in one 
reverse pass!

Exercise: Reverse Mode

,

(x̄1) (x̄2)



Backpropagation is a special 
case of Reverse Mode AD


