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Abstract

Recently it has been shown that min-cut algorithms can provide perceptually
salient image segments when they are given appropriate proposals for source
and sink regions. Here we explore the use of random walks and associated
spectral embedding techniques for the automatic generation of suitable pro-
posal regions. To do this, we first derive a mathematical connection between
spectral embedding and anisotropic image smoothing kernels. We then use
properties of the spectral embedding and the associated smoothing kernels to
select multiple pairs of source and sink regions for min-cut. This typically
provides an over-segmentation, and therefore region merging is used to form
the final image segmentation. We demonstrate this process on several sample
images.

1 Introduction

Interactive min-cut has been shown to be a practical and useful tool for image segmenta-
tion. Boykov and Jolly [4] investigated min-cut image partitions generated from graphs
formed using each pixel as a node, along with two additional source and sink nodes. In
their work, two image regions are given, and the pixels of one region are connected to the
sink node, while those from the other region are connected to the source node. Every pixel
is also connected to its neighbours with edges weighted by their affinities. The weights
of edges joining pixels to source and sink regions are set to be larger than the sum of the
weights of all other edges in the graph so that they will never be cut.

A minimal cut separating the source from the sink is computed, where the cost of any
cut is the sum of the weights of all the edges that are cut. The most appealing property
of this approach is that the cut is guaranteed to be a global minimum. Moreover, with the
recent development of min-cut algorithms, this process is computationally feasible even
for reasonably large images [3, 6]. The problem, then, is to generate suitable proposals for
source and sink regions. Boykov et. al. [3, 4] rely on user interaction, while Veksler [14]
places sink regions outside the image, and uses the image pixels, one at a time, as source
regions.

Here we propose an automatic procedure for generating a small set of region propos-
als, as well as a method for assigning these proposals to source and sink regions. The
main contributions of our paper are: 1) A mathematical connection between spectral em-
bedding and anisotropic image smoothing kernels. 2) The use of the embedding to select



kernels to generate source and sink regions for min-cut. 3) An implementation of the
approach, along with a brief evaluation of the results.

2 Image Segmentation using Min-Cut

Given an n×m image I(~x), we assume we are given an nm×nm (sparse) symmetric affin-
ity matrix A whose elements satisfy Ai, j ∈ [0,1], with the specific value of Ai, j indicating
the similarity of image pixels~xi and~x j. Perfect similarity is represented by Ai, j = 1, and
we set Ai,i = 1 for all i. We choose to use sparse affinity matrices formed using the stan-
dard image 8-neighbourhood, although any neighbourhood structure (including the whole
image) could also be used.

Our general goal is to study the process of image segmentation given such an affinity
matrix A and, for now, we set aside the important issue of how to define appropriate
affinities in the first place. For the purpose of experimentation, we use a simple affinity
measure based on the gray-level difference of neighbouring pixels~xi and~x j, namely

Ai, j = e−(I(~xi)−I(~x j))
2/(2σ2), (1)

where σ is a parameter representing the typical gray-level variation of similar pixels.
These affinities are used as weights in a graph formed using the image pixels as nodes.

There are two general types of min-cut problems that can be considered for such graphs.
The first problem is to find a two-way partitioning of the graph nodes which minimizes
the sum of the weights of the cut edges. We refer to this as the graph partitioning problem.
A related but computationally much simpler problem is the min-cut/max-flow problem,
which we refer to here simply as min-cut. To understand the difference between these
two problems, consider that the cut resulting from the min-cut/max-flow formulation is
not necessarily the smallest cut that can be obtained in a particular image (i.e. not a
solution of the graph partitioning problem). Different pairs of sources and sinks will yield
minimum cuts with different values. To approximate the solution of the graph partitioning
problem Gdalyahu, et. al. [8] use a probabilistic method first described by Karger and
Stein in [9] to obtain cut proposals, then average many such proposals to generate a typical
cut used to segment the image. Alternatively, Wu and Leahy [15] solve the min-cut/max-
flow problem between every pair of pixels in the image, and use the K smallest cuts to
partition an image into K regions.

Here the min-cut problems we consider are specified using the affinities in A as inter-
pixel edge weights, along with suitable source and sink regions. The criteria for selecting
suitable regions are quite intuitive, namely: 1) source and sink regions must each be
sufficiently large; 2) the source and sink regions should come from disjoint unions of
natural image segments; and 3) the set of all source and sink region pairs used must be
rich enough to cause each natural image segment to be separated from the other segments.
The first point here arises due to the fact that the minimum-cost cut is bounded above by
the cost of cutting the source region from the neighbouring image pixels, and similarly for
the sink region. Therefore large image segments will only appear in the min-cut partition
when the cost of cutting them from the image is smaller than the cost of cutting out
the source or sink regions themselves. Secondly, in order to detect salient boundaries,
the partitioning of the source and sink regions should match a partitioning of the natural
image segments. Finally, the set of all partitions generated from source/sink pairs must
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Figure 1: a) A 100×100 fractal image with four surfaces. b) Two projected blur kernels
for initial pixels ~xi at red dots. c) Linear-anisotropically smoothed image. For (b,c) we
used d = 10 and t = 750.

be sufficient to pick out each desired image segment. In the next sections we explore the
use of random walks and spectral embedding for the automatic construction of source and
sink regions, with the explicit goal of meeting these three criteria.

3 Random Walks biased by Pixel Similarity

We follow [11] in defining a Markov chain representing a random walk over image pixels.
In particular, suppose a particle is at pixel ~x j at time t of the random walk. Then the
probability that the particle jumps to pixel ~xi at the subsequent time t + 1 is taken to be
proportional to the affinity Ai, j. The appropriate normalization constant is D j ≡ ∑nm

k=1 Ak, j,
and the transition probability is therefore Ai, j/D j.

Let pt(~x j) denote the probability that the particle undergoing the random walk is at
pixel ~x j at time t. To write the random walk in matrix form, we use the nm-dimensional
vector ~pt to represent pt(~x). Here the vector ~pt is formed from the values of pt(~x) using a
raster ordering of the image pixels. Defining D to be the diagonal matrix formed from the
normalization factors D j, the probability distribution for the particle at time t + 1 is then
given by

~pt+1 = M~pt , where M = AD−1. (2)

Note Mi, j = Ai, j/D j, in agreement with the transition probability we constructed above.
Given an initial distribution ~p0, it follows from (2) that the distribution after t steps of

the random walk is ~pt = Mt~p0. Here the matrix power Mt can be simply represented in
terms of the eigenvectors and eigenvalues of M, which are conveniently obtained from the
similar, symmetric matrix L = D−1/2MD1/2 = D−1/2AD−1/2. Since L is symmetric, the
eigen-decomposition has the form L = UΛU T , where U is an orthogonal matrix whose
columns are the eigenvectors of L, and Λ is the diagonal matrix of eigenvalues λi, i =
1, . . . ,nm. We assume that the eigenvalues have been sorted in decreasing order of their
absolute value, so |λi| ≥ |λi+1| for all i ≥ 1. Moreover, from the form of A and D it can be
shown that λi ∈ (−1,1] and there is at least one eigenvalue equal to one [10]. Therefore,
without loss of generality, we can take λ1 = 1. Finally, it can be shown that the associated
eigenvector ~u1 with eigenvalue 1 is given by

~uT
1 = (u1,1,u1,2, . . . ,u1,nm), with u1, j =

1
α

D1/2
j

, and α =

√

nm

∑
k=1

Dk. (3)



Using this factorization of L we can write

~pt = M t~p0 = D1/2LtD−1/2~p0 = (D1/2U)Λt~c0, with~c0 = UT D−1/2~p0. (4)

There are two other properties of this construction that we will need. First, by (3),

~1T D1/2U = α~uT
1 U = α(1,0, . . . ,0), (5)

where~1 is the vector of all ones. Secondly, from (5) it can be shown that~1T~pt =~1T~p0 = 1,
so the distribution ~pt remains properly normalized.

3.1 Linear Anisotropic Smoothing

Here we investigate the properties of ~pt further, and show how these distributions can be
used to describe anisotropic image neighbourhoods. Suppose we start the random walk
from pixel ~xi, so the initial distribution is given by ~p0,i ≡ ~ei, where ~ei is the standard

unit vector with the value 1 in the ith row and zeroes elsewhere. Then after t steps we
obtain the diffused distribution ~pt,i = Mt~ei (i.e. the ith column of Mt ), which we refer
to as an averaging (or blur) kernel. In Fig. 1b we show two of these kernels ~pt,i for
different initial pixels~xi. Here the affinities have been computed as in (1) for the image in
Fig. 1a. Note the significant spread in ~pt,i across regions with relatively small brightness
variations. Moreover, this spread is reduced across weak image edges (eg. see the top-left
and bottom-right corners in Fig. 1b), and nearly eliminated across strong image edges.

It is instructive to form an anisotropically smoothed image using these blur kernels.
Let~I be the rasterized image, and ~B the rasterized smoothed image. Define B j, the value
of the smoothed image at pixel~x j, to be the weighted average of image gray-levels, where

the weights are given by the blur kernel initialized at pixel ~x j. That is, B j ≡
~I T~pt, j,

where ~pt, j is given by (4) for ~p0 =~e j. Fig. 1c shows the result of this averaging process.
Note that strong image discontinuities are preserved due to the anisotropic nature of the
blur kernels, but weaker local brightness variations are smoothed out. This is similar to
standard anisotropic smoothing [13], except there the affinities are iteratively updated as
the image is smoothed. Here, instead, the affinities are held fixed, according to the values
dictated by the original image.

It turns out that most of the eigenvalues λi have magnitudes significantly smaller than
one and therefore, for sufficiently large t, the product Λt~c0 in (4) can be approximated by
a projection onto the first few coefficients (recall that we sorted |λi| in decreasing order).
In particular, let Rd be the d ×mn rectangular matrix with the d ×d identity matrix in the
left-most block, and zeros elsewhere. Then, by neglecting the powers λ t

i for i > d and
using (4), we find

~pt,i ≈~qt,i ≡ (D1/2Ud)~wt,i, with ~wt,i = Λt
dUT

d D−1/2~ei. (6)

Here Ud = URT
d is the first d columns of U , and Λd is the d × d diagonal matrix formed

from the first d eigenvalues λi. We refer to~qt,i as a projected blur kernel, and note that it is
an element of a d-dimensional linear subspace. The use of~qt,i in place of ~pt,i provides an

efficient way to compute the anisotropically smoothed image ~B. The error in the approxi-
mation of ~pt,i by ~qt,i depends on the magnitude of the terms |λi|

t for i > d, the largest of
which is |λd+1|

t . In practice, we find a good approximation when d and t are chosen such



that |λd+1|
t ≤ 1/3. For smaller values of d or t ringing effects due to the projection can

be significant in~qt,i, much like the ringing due to the severe truncation of a Fourier series.
Given t and d, each pixel~xi can be mapped to the d-dimensional vector ~wt,i according

to equation (6). This vector ~wt,i provides coefficients for the projected blur kernel ~qt,i
centered at that pixel. For t = 0 this mapping is closely related to the standard Laplacian
embedding [1]. The derivation here extends Laplacian embedding to positive values of
t and, moreover, explicitly makes the connection between the embedding and the (pro-
jected) blur kernels. We will make considerable use of this connection.

4 Spectral Embedding

Two additional properties of the embedded vectors ~wt,i are of interest. First, it follows

from (5) and (6) that the first component of ~wt,i equals 1/α ≡ 1/
√

∑nm
k=1 Dk, a constant.

Secondly, if two kernels ~pt,i and ~pt, j have their probability masses on two different subsets
of pixels, then their inner-product ~pT

t,i~pt, j must vanish. This inner product can be approx-
imated using the projected kernels as ~pT

t,i~pt, j ≈ ~qT
t,i~qt, j = ~wT

t,iQ~wt, j, where Q = UT
d DUd .

We can simplify this ~w-space geometry by using the coordinate transform

~z = Q1/2~w. (7)

It follows that ~qT
t,i~qt, j =~zT

t,i~zt, j.
The values of second and third components of~zt,i are shown in Fig. 2a (the first com-

ponent is nearly constant and is omitted). In general, there are several important obser-
vations to make. First, small isolated regions show up as tight clusters in this embedding
(see also [12]) indicating that the blur kernels for all the pixels in the region are very sim-
ilar. This is exhibited to some extent by region 11 in Fig. 2a,b, although the separation is
much larger in other dimensions of~z and is not so apparent in this projection. Secondly,
for smooth image ribbons (or regions) the points in the embedding are clustered around
1D (or 2D) sets. For example, in Fig. 2a there appears to be a smooth path from region 7
to 3 to 9 to 4. This corresponds to the top-most surface visible in the image (see Fig. 1a),
along with the ’leak’ to region 4. Third, image brightness discontinuities which induce
small affinities on edges which span them appear in the embedding as sparsely populated
valleys separating two more populated sets. For example, the area in Fig. 2a between
regions 7 and 2 is sparsely populated by points on the corresponding surface boundary
apparent in Fig. 1a. If the affinities spanning the edge are small enough, then the blur
kernels on either side of such an image edge will be nearly orthogonal, and therefore the
width of this valley in~z-space will be nearly 90 degrees. Weaker edges will generate blur
kernels on either side which overlap more, and their relative angles will be smaller than
90 degrees. In some cases, such as the transition between seeds 9 and 4 in Fig. 2a,b, weak
edges may appear to be blended in the embedding.

Finally, we note that the embedding~zd,t,i computed for a particular dimension d and
scale t is related to the embedding~zd′,t ′,i for some other pair (d ′, t ′) with d′ ≤ d by a linear
transformation,~zd′,t ′,i = Z~zd,t,i where Z is a d′×d constant matrix (i.e. it does not depend
on i, see (6) and (7)). This implies that~z-space is only distorted in an affine manner when
the scale t and dimension d are changed. Thus, while relative angles between various
points may change with t and d, the global arrangement of clusters, ridges and valleys in
the general distribution of points can only change in a linear manner.
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Figure 2: a) Embedded coordinates (z2,z3) for the image in Fig. 1a. The clusters found
using seed selection are shown. b) Seed regions in the image corresponding to z-space
clusters, along with the Delaunay triangulation of seed centroids. The edge colour (red,
green, light gray) indicates the edge weight fk, j (region discontinuity, continuous blend,
ambiguous, respectively). Note that this is a 2D-projection of a plane in 10D so, for
example, the connections between regions 9, 3, and 7 are not as straight as they look
here. c) Segmentation provided by the intersection of all min-cut partitions generated by
the source/sink proposals using the seed regions and edge classification shown in (b). d)
Segmentation after region merging. Throughout we used d = 10 since this generated an
appropriate seed size. We used λ t

d = 1/3 to select t = 750.



5 Source and Sink Region Selection

According to the criteria listed in Sec. 2 for the selection of source and sink regions for
min-cut, we wish to choose sufficiently large regions which are contained within natural
image segments. We propose to do this by locating clusters of high density in~z-space.
These clusters correspond to pixels which have similar blur kernels, and thus are likely to
avoid strong image boundaries.

We do the clustering using a simplification of a mixture model density estimation
procedure [2] applied to the~z points mapped to the unit sphere, namely ~st,i ≡~zt,i/||~zt,i||.
For each component density in this mixture model we use K(~s,~m) = β max(~s T~m−τ0,0),
where β is a normalization constant, ~m is a unit vector representing the mean direction of
the cluster, and τ0 is a fixed parameter which determines the maximum angular width of
the kernel. We use τ0 = 0.8. The density estimate is then p(~s) = ∑M

k=1 πkK(~s,~mk), where
πk are the mixing coefficients. In general, the mixing coefficients πk must be non-negative
and sum to one, but here, for simplicity, we take the specific values πk = 1/M. The only
unknowns in p(~s) are then the cluster centers ~mk, and these are fitted to the observations
{~st,i}

nm
i=0 using a standard EM-algorithm.

The initial guess for this algorithm is obtained by randomly sampling points ~st,i, with
successive samples constrained to have an inner-product of at least τ0 from previous sam-
ples. The number of clusters, M, is chosen to be the maximum number of ~mk that can be
chosen before all points~st,i have an inner-product of at least τ0 with some center ~mk.

Given the cluster centers {~mk}
K
k=1 fitted with the EM-algorithm, we determine corre-

sponding image ”seed” regions Sk by thresholding the inner-products of ~st, j with ~mk as
follows

Sk ≡ {~x j |~z
T
t, j~mk ≥ τ1||~zt, j||}, (8)

where τ1 > τ0 is taken to be 0.985 (see Fig. 2a,b for a typical result from this process).
The source and sink regions we choose to use for min-cut are disjoint unions of the

seed regions {Sk}
M
k=1. The difficulty here is that several seed regions often belong to the

same image segment (see Fig. 2b) and, according to criterion 2 in Sec. 2, these should not
be split between the source and sink regions. When they are split we have observed that
the min-cut algorithm often fails to find a salient cut.

We therefore developed a method for generating source/sink proposals which consid-
ers evidence on whether or not two seed regions belong to the same image segment. This
is based on a Delaunay triangulation of the centroids of the seed regions Sk. We classify
edges between regions Sk and S j in this triangulation one of three possible ways based on
evidence from the embedding on whether or not there is a smooth continuation between
Sk and S j. The specific evidence we use is the relative density of points in~z-space along
a path between the seed centers ~mk and ~m j. The reason for this choice is the observa-
tion made in the previous section that image boundaries show up as rapid changes in the
blur kernel coefficients, generating valleys in the density of points in the embedding (see
Fig. 22a). The specific figure of merit we use is

fk, j = min
r∈[0,1]

|{~xi |~z
T
t,i~mk, j(r) > τ1||~zt,i||}|

|Sk|r + |S j|(1− r)
, (9)

where | · | denotes set cardinality and ~mk, j(r) is the projection of a convex combination of
~mk and ~m j onto the unit sphere (i.e. ~mk, j(r) =~nk, j(r)/||~nk, j(r)|| for~nk, j(r) = r~mk +(1−



Figure 3: (Left column). Test images of indoor scenes. The top image is 239×138, and
the two below are 160× 120. (Center column) Segmentation results for our algorithm.
(Right column) Segmentations using Felzenszwalb and Huttenlocher’s algorithm.

r)~m j).
1 For fk, j < 0.2 we classify the link between Sk and S j as having evidence of an

image region discontinuity. For fk, j > 0.3 we consider the evidence to be in favour of a
smooth continuation between the regions, and for intermediate values of fk, j we classify
the evidence as ambiguous.

The resulting classification is depicted in Fig. 2b. Note that the derived classification
is appropriate, other than for the edges between regions 9, 3, and 7, which belong to the
same surface. The issue here is that the embedding between these regions is curved in
dimensions that have been projected out in Fig. 2b. Since the seed regions themselves
are relatively far apart, the linear interpolation used in (9) causes a gap to be detected in
the embedding. However, as we show below, the results using this simple classification
appear to be adequate.

We then generate source/sink proposals by selecting each seed region Sk in turn. Given
Sk and its immediate neighbours in the Delaunay triangulation, say S j(n) for n = 1, . . . ,N,
we generate all combinations of source and sink proposals (using only these neighbouring
seed regions) which satisfy the following: 1) Sk is in the source; 2) if the edge between
Sk and S j(n) is classified as a clear image boundary (i.e. fk, j(n) < 0.2) then S j(n) is in the
sink; and 3) if the edge between Sk and S j(n) is classified as a smooth continuation (i.e.

fk, j(n) > 0.3) then S j(n) is either in the source or omitted. This results in 2Ns 3Na distinct
source/sink proposals for seed region Sk, where Ns and Na are the number of edges in
the Delaunay triangulation with one endpoint on region Sk that are classified as smooth
or ambiguous, respectively. In practice we have found this to be tractable since the total

1We estimate the minimum in (9) simply by sampling r at 11 equally spaced points.



Figure 4: (Left column). Test images of outdoor scenes. The top image is 154× 121,
and the one below is 148× 98. (Center column) Segmentation results for our algorithm.
(Right column) Segmentations using Felzenszwalb and Huttenlocher’s algorithm.

number of neighbours, N, is typically small and Ns +Na ≤ N. For example, in Fig. 2b the
most complex case occurs for region 12, for which Ns = Na = 1.

The min-cut algorithm is run on each such proposal which has a non-empty sink
region. The resulting partitions are intersected to form an over-segmented image (see
Fig. 2c). The resulting segments are then merged based on the observation that a cut
through an image boundary should consist mostly of links with small weights. We check
the distribution of affinities at the boundary between two regions, and if less than 1/4 of
these links are reasonably weak, the regions are merged (see Fig. 2d).

6 Examples

This approach was implemented in Matlab using the push-relabel min-cut code described
in [6]2. Also, we used a Matlab implementation of the multi-scale SVD algorithm [5] to
generate eigenvectors Ud and eigenvalues Λd of the large sparse symmetric matrix L (see
eqn. (6)). In generating the seed regions we observed that increasing the dimension d
generally caused more and smaller regions to be selected. We found d = 25 was sufficient
in all the above examples to form seeds within each salient region. Finally, t, the number
of steps in the random walk, was set according to the equation λ t

d = 1/3 mentioned at
the end of Sec. 3.1. Other parameters of the method were fixed at the values specified
previously.

Sample results are shown in Figs. 3 and 4 where, for comparison purposes, we also
show results from Felzenszwalb and Huttenlocher’s algorithm [7]. The free parameter in
this latter algorithm was selected to give the most favorable comparison with our result.
Overall results are generally comparable, with our algorithm respecting image borders to
a greater degree. We find this extremely encouraging since here we are using the simple
default image affinities described in (1), while Felzenszwalb and Huttenlocher’s algorithm

2We thank A.V. Goldberg for supplying C-code (i.e. hi pr.c) for this algorithm.



uses information about the gray-level variation within each region.
For the images in Figs. 3 and 4, and others of similar sizes, our algorithm running on

a 2.5 GHz. P4 machine requires roughly 30 secs. to compute the 40 leading principal
vectors of L (roughly a 20K × 20K matrix!), seed region generation takes between 30
sec. and 1 min., the computation of minimum cuts between source and sink regions takes
from 1 to 3 minutes, and the final merging stage consumes between 1 and 2 minutes. The
variability in run-times is the result of having a different number of seed region proposals
for each image. In contrast, Felzenszwalb and Huttenlocher’s algorithm takes less than 5
sec.

In terms of our overall objectives, the results indicate that we have been successful
in automatically generating proposals for source and sink regions which satisfy the crite-
ria, as listed in Sec. 2, for the automatic application of the min-cut image segmentation
approach.
Acknowledgements We thank Sam Roweis for his useful comments.
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