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Estimating Optical Flow in Segmented Images
Using Variable-Order Parametric Models
With Local Deformations

Michael J. Black, Member, IEEE, and Allan D. Jepson

Abstract—This paper presents a new model for estimating optical flow based on the motion of planar regions plus local
deformations. The approach exploits brightness information to organize and constrain the interpretation of the motion by using
segmented regions of piecewise smooth brightness to hypothesize planar regions in the scene. Parametric flow models are
estimated in these regions in a two step process which first computes a coarse fit and estimates the approptiate parameterization of
the motion of the region (two, six, or eight parameters). The initial fit is refined using a generalization of the standard area-based
regression approaches. Since the assumption of planarity is likely to be violated, we allow local deformations from the planar
assumption in the same spirit as physically-based approaches which model shape using coarse parametric models plus local
deformations. This parametric+deformation model expioits the strong constraints of parametric approaches while retaining the
adaptive nature of regularization approaches. Experimental results on a variety of images indicate that the parametric+deformation
model produces accurate flow estimates while the incorporation of brightness segmentation provides precise localization of motion

boundaries.

Index Terms—Optical flow, segmentation, robust regression, parameterized flow models, local deformation.

1 INTRODUCTION

E STIMATING the optical flow in scenes containing signifi-
cant depth variation, independent motion, or articulate
objects necessitates the segmentation of the scene into regions
of coherent motion. If the scene were segmented into roughly
planar surface patches then the motion of each surface patch
could be estimated using a parametric flow model. Given
large numbers of constraints computed within the patch and
a small number of parameters to be estimated, these
parametric models provide strong constraints on the motion
within a region resulting in accurate flow estimates. In con-
trast to recent parametric approaches which assume that an
arbitrary image region can be modeled by a single motion,
we independently model the motion of segmented planar
surface regions. But segmentation is a hard problem in its
own right and, in particular, the recovery of segmented, or
piecewise smooth, flow fields is notoriously difficult. Instead,
this paper makes the simple hypothesis that image regions of
piecewise smooth brightness are likely to correspond to surfaces in
the world. These brightness regions are assumed to be planar
surfaces in the scene and their motion is estimated using a
variable-order parametric flow model containing two, six, or
eight parameters. In this way, information about image
brightness is used to organize and constrain the interpreta-
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tion of the optical flow. Since the assumption of planarity
may be violated, we allow local deformation from the planar
assumption in the same spirit as physically-based approaches
which model shape using coarse parametric models plus
deformations. The resulting model, in which optical flow is
represented by the motion of planar image patches with local
deformations, exploits the strong constraints of parametric
approaches while retaining the adaptive nature of regulari-
zation approaches. Experiments with natural and synthetic
image sequences indicate that the parametric+deformation
model produces accurate flow estimates while the incorpo-
ration of brightness segmentation provides precise localiza-
tion of motion boundaries.

The algorithm can be thought of as having low- and me-
dium-level processing. At the low level there is a process
which is always smoothing the image brightness while ac-
counting for brightness discontinuities. There is another
low-level process that is always providing coarse estimates
of image motion. The medium level tries to organize and
make sense of the low-level data by first finding connected
regions of piecewise smooth brightness and then by esti-
mating the motion of these regions. This process is illus-
trated in Fig. 1. This medium-level motion-estimation proc-
ess has three steps. The first fits a parametric model to the
coarse motion estimates in each region to provide an initial
estimate of the image motion. A variable-order fitting pro-
cedure is used to estimate the appropriate model
(translational, affine, or planar) which best captures the
image motion in each region. In the second step, the
parametric fit from the initial estimate is used to warp the
image regions into alignment. Gradient-based optical flow
constraints are computed from these registered regions and
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are used to refine the initial parametric fit by performing
regression over each region. Robust regression techniques
[12], 119] are used to compute both the initial and refined
estimates of the motion parameters. Finally, the planar
patches are allowed to deform at the low-level subject to
weak constraints from the optical flow constraints, the spa-
tial coherence of the neighboring flow estimates, and the
motion estimate for the planar patch.
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Fig. 1. Medium-level processes exploit structure in the image bright-
ness to interpret the coarse optical flow estimates in terms of a small
number of parameters.

The following section reviews previous work on
parametric flow models, segmented flow fields, and com-
bining brightness and motion information. Section 3 briefly
describes the low-level segmentation and motion estima-
tion processes. The medium-level processing, including the
initial fitting and refinement of the parametric motion
models within the segmented regions, is described in Sec-
tion 4. Section 5 describes the full model with planar
patches plus local deformations. Examples are provided
throughout the text and additional experiments with syn-
thetic and natural images are described in Section 6. Open
issues and future directions are addressed in Section 7.

2 PREvious WORK

2.1 Parametric Models of Image Motion

Parametric models of optical flow within an image region
provide both a concise representation and enforce strong
constraints on the interpretation of the motion. These tech-
niques use regression or a Hough transform to estimate a
few parameters (eg. two, six, or eight) given hundreds or
thousands of constraints computed over the entire image or
some preselected region [6], [16], [17], [25], [31], [49]; when
the image motion conforms to the model assumptions this
produces accurate flow estimates. The problem with this
approach is that parametric motion models applied over
the entire image or arbitrary, preselected, regions are rarely
valid in real scenes due to surfaces at varying depths,
transparency, or the independent motion of objects.

Approaches have been devised which ameliorate some
of the problems of global parametric models. Bergen et al.
[7] use an iterative registration algorithm to account for
multiple global motions in the scene. Jepson and Black [23]
assume that the motion in the scene can be represented by a
mixture of distributions and they use the EM algorithm to
decompose the motion into a fixed number of layers. In
similar work, Darrell and Pentland [14] use a stochastic
approach to segment the motion into a set of layers with
support maps which assign pixels to layers. Additionally
they use a minimum description length encoding principle
to automatically choose the appropriate number of layers.
Black and Anandan [12] use robust statistics to estimate a
dominant motion in the scene and then fit additional mo-
tions to outlying measurements. All of these approaches are
formulated as global techniques which can cope with a
small number of global motions but not with general flow
fields. As global approaches, they do not address how to
select appropriate image regions in which to apply the
parametric models.

In related work, Irani et al. [22] fit a dominant motion to
the scene using a least squares method and they detect out-
lying measurements which are grouped together and seg-
mented. These groups hopefully correspond to independ-
ently moving objects and their motion is estimated inde-
pendently. This approach begins to deal with the issue of
estimating the motion of segmented regions but, like the
other global parametric approaches it assumes a single
dominant motion and a small number of “outlying” motions.

Meyer and Bouthemy [35] use a motion segmentation
technique to extract regions corresponding to independ-
ently moving objects. The optical flow within these regions
is then modeled and estimated using a parametric flow
model (e.g., affine). The regions and their boundaries are
tracked and updated over time. Like our approach, they
use parameterized motion models within segmented re-
gions but unlike our method they use motion rather than
brightness information to extract these regions.

Another set of approaches apply parametric models to
coarse flow fields by grouping the flow vectors into consis-
tent regions. Adiv [1] uses a Hough technique to group
flow measurements into regions consistent with the motion
of planar surfaces. The approach of Wang and Adelson [46]
is similar but uses a k-means clustering algorithm to group
the flow vectors into layers of consistent affine motion.
These approaches, like the regression approaches, are es-
sentially global techniques in that they assume the image
motion can be represented by a small number of global lay-
ers. Additionally they fail to exploit information present in
the image brightness about the nature of surfaces in the
scene.

2.2 Exploiting Image Brightness

To improve motion segmentation a number of researchers
have attempted to combine intensity and motion informa-
tion. Thompson [44] describes a region merging technique
which uses similarity constraints on brightness and motion
for segmentation. Heitz and Bouthemy [20] combine gradi-
ent-based and edge-based motion estimation and realize
improved motion estimates and the localization of motion
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discontinuities. Black [9] jointly estimates piecewise smooth
motion and brightness over an image sequence. Disconti-
nuities are detected using motion and brightness simulta-
neously and are classified as either structural boundaries or
surface markings. Recently, motion segmentation and color
segmentation have been combined to improve the localiza-
tion of moving object contours [15]. In focusing on motion
boundaries these approaches use weak models of optical
flow (e.g., regularization) and hence neglect one of the
benefits of having a segmentation in the first place; that is,
that the motion of a segmented region can often be de-
scribed using a simple parametric model which allows
many constraints to be integrated across the region.

There are numerous feature-based schemes which esti-
mate motion by tracking points, edges, or region contours
computed from the brightness image (e.g., [47]). Sull and
Ahuja [42] estimate the motion of region boundaries and
follow this with a Hough technique that groups the regions
into planar surfaces. These approaches use information
about image brightness to constrain the motion estimation,
but brightness contours alone are an impoverished repre-
sentation. The motion information available over an entire
region, particularly if it is reasonably textured, provides
additional constraints which can improve the accuracy of
the recovered motion.

In the context of stereo reconstruction, Luo and Maitre
[32] use a segmented intensity image to correct and im-
prove disparity estimates by fitting a plane to the dispari-
ties within a region of uniform brightness. The accuracy of
this approach is affected by the accuracy of the initial dis-
parity estimates. Koch [26] segments regions using dispar-
ity and brightness and then regularizes depth estimates
within the regions. While this approach preserves depth
boundaries it uses a weak model within regions instead of
fitting a model with a small number of parameters.

Ayer et al. [4] describe a method with similar motiva-
tions to the one presented here in that they combine static
segmentation with motion information. They first robustly
estimate a global parametric motion for the scene and de-
tect regions which do not match this motion. The paramet-
ric motions of these outlying regions are then estimated.
Motion estimation is performed using a multiframe ap-
proach. Then, given a static segmentation, the computed
motion information is used to label the static regions. For a
given static region, there may be multiple possible motion
estimates obtained using the robust motion segmentation
and estimation procedure. For each static region the error of
using each of these parametric motions is evaluated. The
regions are finally labeled with the motion parameters that
give the lowest error.

2.3 The Proposed Method

The approach described here is similar in its first stage to
that of [32] in that coarse flow estimates are computed and
then parametric models are fit to the estimates within the
segmented brightness regions. This process significantly
improves the coarse motion estimates but we use this only
as an initialization step. The motion of the regions is refined
directly using brightness constraints from the images in a
generalization of the standard global regression approaches

[6]. Unlike the approach of Ayer et al. [4] we estimate the
motion directly in these segmented regions and do not at-
tempt to perform segmentation based on motion. Finally,
we treat the assumption of planar patches as a coarse ap-
proximation and allow local deformations to the motion
estimates using an energy minimizing approach. This is
similar to work which uses superquadrics to compute a
coarse parametric description of 3D shape and then allows
local deformations to account for fine structure [38], [43]. Tt
is also related to work on decomposing rigid image motion
into the motion of a plane plus residual motion parallax [40].

3 EARLY PROCESSING

At the low level there are two processes which examine the
Input images: segmentation and coarse motion estimation.
The exact methods used for these early processes are not
crucial to the optical flow model described in this paper, so
the algorithms are described only briefly and the reader is
referred to [13] for a complete description of the segmenta-
tion approach and to [11] for the coarse flow estimation.
The static image segmentation method described below is
just one of many possibilities. Any other method that gives
connected regions could be employed and the better the
static segmentation results, the better the motion estimates
will be. We choose this method to provide examples which
illustrate the interplay between brightness segmentation
and motion estimation.

3.1 Segmentation

For the experiments described here we have used a weak-
membrane model of image brightness described in [13]. The
goal is to reconstruct a piecewise smooth brightness image i
given noisy data d by minimizing an objective function us-
ing a continuation method. Both spatial discontinuities and
texture are treated as outlying measurements and rejected
using analog outlier processes.

Assume that the data is an # x n image of sites S, and
each site (or pixel), s € S, has a set of neighbors ¢ € G,. For a
first-order neighborhood system, G,, these are just the sites
to the North, South, East, and West of site s. We also define
a dual lattice, 1, of all nearest neighbor pairs (s, ) in S. This
lattice is coupled to the original in such a way that the best
interpretation of the data will be one in which the data is
piecewise smooth. An analog spatial outlier process I, e 1
takes on values 0 < I, < C, for some positive constant C (for
the remainder of the paper we take C = 1). The outlier proc-
ess indicates the presence (/;, — 0) or absence (I;, — 1) of a
discontinuity between neighboring sites s and t. We also
define a penalty 0 < W(, ;) < e which is paid for introducing
a discontinuity. The penalty function goes to infinity as [,
goes to 0 (that is, we pay an infinite penalty for introducing
a complete discontinuity) and ¥(l;) — 0 when there is no
discontinuity (I, — 1).” For these experiments we take

Y(z)=z-1-logz,

which is derived from the Lorentzian error norm [13]. Addi-
tionally, we introduce a measurement outlier process m,c m

1. We could also choose a penalty function such that Yl —Tasl;—0
(see [13]).
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on the data term which treats image texture as outliers with
respect to the piecewise smooth reconstruction.

The approach taken is to minimize the following objec-
tive function composed of a data term and a spatial coher-
ence term

1 2
El(i’ d/ 1/ m) = 2[2—‘2_ (is - ds)‘-ms + \YD(mS)

ses D

L, + (I ), oy

Pt

teg,

where the o are scale (or control) parameters, and | G| is
the size of the neighborhood.

The objective function is rainimized using an algorithm
similar to the EM-algorithm [34] in which at each iteration
we solve for the m; and I, in closed form and then update
the i, using one step of Newton’s method. The initial esti-
mate for i is just taken to be d. The minimization process is
embedded in a continuation method in which the value of
the o« are lowered according to a scale factor; this has the
effect of tracking the solution as the function becomes in-
creasingly nonconvex.

The approach is applied to a pair of images in synthetic
Yosemite sequence,2 the first of which is shown in Fig. 2a.

For this experiment o, started at 25.0 / Y2 and was low-
ered to 10.0 /42 while os started at 10.0 / /2 and was

lowered to 2.0 / /2 . In practice, we have found that a sim-
ple two stage continuation method produces adequate re-
sults with 30 iterations of Newton’s method at each stage.
Fig. 2b shows the piecewise smooth reconstruction i while
Figs. 2c and 2d show the value of the data and spatial out-
lier processes, respectively (black indicates an outlier). The
spatial outliers will be used for region segmentation at the
medium level.”

3.2 Coarse Optical Flow

Let I(x, y, t) be the image brightness at a point (x, y) at time ¢
and I, [, and I; be the partial derivatives of I with respect
to x, y, and t. To estimate the horizontal and vertical image
velocity u(x) = [u(x), 0] ata point x = (x, ) we minimize
an objective function E,;(u) composed of a data term and a
spatial smoothness term [11]:

o) @

S App((VIG)u() + L(x), o) + T

X

D P(H

26G(x

—u(z)|,

where VI = [I,, I,], G(x) are the four nearest neighbors of x
on the grid, Ap and Ag control the relative importance of the
data and spatial terms respectively, and where p is a robust
error norm. For all the experiments presented here p is

2. This sequence was generated by Lynn Quam and provided by David

Heeger.
3. The approach described here is ¢ quivalent to minimizing
E(i,d) = Y [pl, - d,,0,) + 5 IZp(z i, 0]

seS .‘eg_

where p is the Lorentzian error norm [13]. The more general version with
explicit outlier processes is presented here since the formulation allows the
addition of spatial coherence constraints on the analog outlier processes

although such constraints are not use: d for the current experiments.

© {d)

Fig. 2. Yosemite sequence. (a) Image 11 in the sequence (d); (b)
Piecewise smooth reconstruction (i); (c) Data outliers (m thresholded
at 0.5); (d) Spatial outliers (I thresholded at 0.5).

taken to be the Lorentzian

1(xY 2x
plx,0)=logl1+5 =| | ¥(x,0)=s5— ©

267 + x2

where yis the partial derivative of p with respect to x. This
y-function characterizes the “influence” that a particular
measurement has on the solution [19].

Error norms like the Lorentzian have the property that
beyond a particular point (where the second derivative of
the norm is zero) the influence of a measurement on the
solution begins to decrease. Measurements with residual
errors which fall beyond this point we refer to as outliers. In
the case of the Lorentzian, if the absolute value of the re-
sidual error is greater than +20 the measurement is con-
sidered an outlier [12]. To derive the coarse estimate we
choose o to be sufficiently large that no measurements are
treated as outliers. In general, using a robust error norm

may cause Ey to be nonconvex. To obtain the coarse esti-

mate, the values of the & are chosen so that the objective
function is convex and the function is minimized using
Newton’s method [11]. A coarse to fine strategy, with
warping between layers, is used to estimate large motions
within the differential framework.

Consider the Yosemite image sequence whose first image
is shown in Fig. 2a. In this sequence the camera translates
and rotates while “flying through” the synthetic Yosemite
valley resulting in a diverging flow field. The sequence is
synthetic, and the actual flow field is known and is shown in
Fig. 3c. For this sequence 20 iterations of the minimiza-
tion method were used and the parameters were taken to
be A, =100, A5 =10, 0, =100/ 2, 03 =10/+2, and
20 iterations of Newton’s method were used; these values
were used for all other experiments in this paper. For this
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TABLE 1
Vector Angular | Standard Percent of flow vectors with error less than:
Difference Error Deviation <1 <2 <3 <5’ <10
Coarse 0.479 8.0 7.0° 3.6% 11.7% | 21.4% | 39.8% | 72.6%

sequence a three-level pyramid was used in the coarse-to-
fine processing.

The horizontal and vertical components of the coarse
flow are shown in Fig. 3. This coarse flow estimate is very
noisy and since the sequence is synthetic, we can compute
the error in the flow using using the angular error measure
of Barron et al. [5]. They represent image velocities as 3D

Coae . T
unit direction vectors v = ﬁ(u,v, 1)". The error be-
u +v T+

tween the true velocity v, and the estimated velocity v, is

given by arccos(v; - v,). For an additional point of compari-
son we also compute the mean of the absolute vector differ-
ence in pixels between the estimated and the true flow
vectors [37]. The performance of the algorithm can be

quantified as shown in Table 1% of course, better initial

flow estimates could be obtained with a more sophisticated
coarse estimation process. These coarse results are pre-
sented as an initial baseline obtainable with a simple dense
optical flow algorithm. The next section will illustrate how
the medium-level processing significantly improves on
these coarse estimates.

Fig. 3. Yosemite sequence, coarse optical flow. (a) Horizontal compo-
nent of flow (leftward motion = black; rightward motion = white); (b)
Vertical component of flow (upward motion = black; downward motion
= white). (c) Actual vector field. (d) Computed coarse vector field.

4 MEepIUM-LEVEL PROCESSING

The low-level processes described in the previous section
are characterized by local processing and weak models of

4. Flow vectors and flow errors were not computed in the sky area since
the version of the Yosemite sequence used here does not contain clouds.

the scene based on regularization. Medium-level processes
can be seen as trying to find order and structure in the low-
level data and, in doing so, impose more powerful models
for interpreting the data. For example, if we have a hy-
pothesis that a region in the image corresponds to a planar
surface in the scene, we can use that information to con-
strain the interpretation of the motion of that region.

We make a very simple hypothesis (which may be
wrong) that regions of piecewise-smooth brightness in the
image correspond to planar surfaces in the scene. The goal
is to use information about image brightness to organize
our interpretation of the motion in the scene. From the spa-
tial outliers detected in the piecewise-smooth reconstruc-
tion of the image brightness (Fig. 2d) we detect a set of con-
nected regions R using a standard connected-components
labeling algorithm. The connected components for the ex-
ample image are shown in Fig. 4; there are approximately
1,000 regions, some of which are only a few pixels in area.
These regions become our planar-surface hypotheses. Is-
sues relating to under- and over-segmentation are ad-
dressed in Section 7.

Fig. 4. Yosemite sequence: connected components.

4.1 Fitting Parametric Models to Flow Estimates

The image motion of a rigid planar region of the scene can be
described by the following eight-parameter model [1], [48]:

4)

2
u(x, y) = ag + ayx + azy + agx” + azxy,

%)

where the a; are parameters to be estimated and where u(x, y)
and v(x, y) are the horizontal and vertical components of the
tlow at the image point x = (x, ). The image points (x, ) are
defined relative to some point (x,, y,) which can be taken to
be a single point (for example, the center of the image) or it
can depend on the image region (for example, it can be the
centroid of each region). Using the notation from [6] let:

0(x, Y) = a3 + agx + asy + agxy + a7y2,

X(X):lxyxzxyOOO

, 6
OOOxyyzlxy ©
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TABLE 2
Vector Angular Standard Percent of flow vectors with error less than:
Difference Error Deviation <1 <2 <3’ <5 <10°
Coarse 0.479 8.0° 7.0° 3.6% 11.7% 21.4% 39.8% 72.6%
Parametric 0.412 5.2° 3.3 3.0% 13.6% 26.2% 51.0% 95.1%
B [ . ]T @ regions have an area of at least 25, 100, or 400 pixels to be fit
A=k & B G A7 43 8y G5] - by a two, six, or eight parameter model, respectively. These

To robustly estimate the rotion a, of a region r € R we

minimize
rmn 2 p(“X x)a, —

Xer

o), (®)

where u,,(x) = [u,,(x, v), v,,(x, y)] is the coarse flow estimate
and o is a scale parameter. Since the coarse optical flow
estimates are expected to have gross errors it is important
that the estimation of the motion parameters be performed
robustly. For this reason we take p to be an error norm with
a redescending influence function [19] which has the prop-
erty of reducing the influence of outlying measurements on
the solution. For the experiments in this paper the error
norm was taken to be’
2

plx,0) = ©

:7+x

For this norm a residual error is considered to be an outlier
when its absolute value is greater than ¢ / J3.

Equation (8) is simply minimized using a continuation
method in which o starts at a high value and is gradually
lowered. For each value of o the objective function is mini-
mized using one step of Newton’s method. The effect of
this is to track the solution while gradually reducing the
influence of outlying measurements.

4.1.1 Variable-Order Fitting

In many situations, the full eight-parameter flow model is not
necessary to represent the metion of a region. To avoid over-
fitting the motion of a region we use a variable-order fitting
approach [8], [29] which first assumes a purely translational
model by fitting the parameters a 2 = g a3] The fit is then
refmed by fitting the six affine parameters a 0 = [aqg 0y a, a5 a4
115] The motion estimates are used to register the regions in
the two images by warping the second image towards the
first. The resulting temporal error remaining after registration
of region r is computed using the two estimates:

-y p(I(x —X(al, £ +1) - I(x, 1), a).

xer

a0

If € < € then an affine flow model is adopted for the re-

gion otherw1se a simple translational model is used. This
process is rePeated by computing the eight-parameter pla-
nar model a~ and comparing the results with the affine
estimates in exactly the same fashion.

To achieve an accurate fit there must be a sufficient num-
ber of constraints in the region. To try and ensure sufficient
constraints to accurately estimate the motion we require that

5. We could have chosen any of a number of error norms with re-
descending influence functions; for example the Lorentzian norm of the
previous section. What is more important than the particular function is the
qualitative shape of the influence function.

values were determined empirically and are conservative.

Note that we are using information about the image
brightness to choose the appropriate model. There are two
reasons for this. The first is that our goal is to find the mo-
tion parameters which register the two regions (i.e., mini-
mize the temporal derivative of the registered regions). The
second is that the coarse estimates may be very noisy and
may have been smoothed across motion boundaries. We do
not want to choose higher-order models to fit noisy or out-
lying flow vectors when a simple model accounts for the
spatio-temporal brightness variation.

4.1.2 An Example

The results of fitting the local parametric flow models to the
coarse optical flow data for the Yosemite sequence are
shown in Fig. 5. For this experiment o began at 4043 and
was lowered by a factor of 0.85 at each iteration to a mini-
mum of +/3; these values remained fixed for all experi-
ments in this paper. Forty iterations of the minimization
method were used to estimate each of the three parametric
fits. The recovered parametric flow is projected onto the
image to produce the dense flow estimates in Fig. 5. The
results are a significant improvement over the coarse flow
in Fig. 3. We can quantify the improvement as shown in
Table 2. The accuracy of the initial coarse flow is quite poor.
By fitting local parametric models to the coarse data some
of the noisy estimates are removed and the mean accuracy
of the flow improves but, given inaccurate estimates to start
with, only a small percentage of the flow vectors achieve
high accuracy.

The order of the model used is shown in Fig. 6a. Black
indicates that the region was too small to fit a parametric
model (i.e., smaller than 25 pixels) and the coarse flow es-
timate was used. Dark gray indicates regions where a
translational (two-parameter) model was used, light gray
indicates an affine model, and white corresponds to the full
eight-parameter model. For the majority of regions affine
models produce good results. The regions requiring a
higher order model fall in areas where the valley floor
curves up to meet the hills on the right. Many of these re-
gions are, in fact, not even planar.

Note that highly textured regions are more likely to be
modeled by a high-order flow model than are untextured
regions. If the image motion is actually planar, and the re-
gion is highly textured, then there will be high brightness
errors if a lower-order model is used. If the same region is
not textured, then a lower-order model can be used with
little penalty. This is a variation of the “aperture problem”
for regions.
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Fig. 5. Yosemite sequence. (a) Horizontal component of flow; (b) Verti-
cal component of flow. (c) Vector field.

(a) (b)

Fig. 6. Yosemite sequence. (a) Order of the model used (black = none,
dark gray = translation, light gray = affine, white = planar); (b) Flow
outliers (gray indicates regions where no parametric model was used,
black indicates outliers).

Outlying coarse-flow vectors which are inconsistent with
the parametric flow model are displayed in black in Fig. 6b.
The majority of flow vectors that were treated as outliers
(i-e., their influence was reduced) occur around the bound-
ary of the image where the initial coarse estimates were
poor.

4.2 Local Parametric Models of Image Motion
Fitting parametric models to the flow vectors in regions
significantly improves the subjective quality of the flow
field. Given the inaccuracy of the coarse flow estimates we
would like to refine the motion estimates in each region by
going back to the optical flow constraint equations at each
pixel. The approach is a straightforward generalization of
the approach described by Bergen et al. [6] for fitting a sin-
gle global parametric motion to the entire image.

For each region r € R the brighiness constancy assump-
tion is

I(x,t) = I(x - u(x; af)),t + l) Vxer
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where u(x; ag)) = X(x)aﬁi), a(ri) are the parameters for region
r,and i € {2, 6, 8} indicates the parametric model to be used

as determined by the initial fitting procedure. Given the
current fit a(y” for a region we warp the image at time t + 1

towards the image at time ¢. The original region at time ¢
and this warped region are used to estimate the spatial and

temporal derivaties I, I,, and I,. Let VI = [I,, I}, then to re-
fine the current fit we minimize

minz ((VI(X)X(X)5aS) + It(x)),0>,

(i)
ba; xer

(11)

and then the refined fit is taken to be a” + Ga?”.

To minimize (11) we use exactly the same continuation
method described above in which ¢ is gradually lowered
and at each stage we apply one step in Newton’s method.
Since the initial flow estimates are fairly accurate we do not
need to use a coarse-to-fine strategy as in [6].

The results of refining the flow for the Yosemite se-
quence are shown in Fig. 7. For this experiment o began at
20.043 and was lowered by a factor of 0.85 at each iteration
to a minimum of 10.04/3. Once again, 40 iterations of the
minimization method were used to refine the estimate. The
results are visually similar to the initial fit though some
improvement can be seen. Quantitatively, however, refin-
ing the motion estimates significantly improves the accu-
racy of the recovered flow field as shown in Table 3.

2

Fig. 7. Yosemite sequence. Refined motion estimates. (a) Horizontal
component of flow; (b) Vertical component of flow. (c) Vector field.

Fig. 8 shows where the brightness constancy assumption
was violated. Outliers are shown in black and correspond
to measurements where
VI()X(x)3a +1,(x))

=<l
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TABLE 3
Vector Angular Standard Percent of flow vectors with error less than.
Difference Error Deviation <1 <2 <3° <5 <10°
Coarse 0.479 8.0° 7.0° 3.6% 11.7% 21.4% 39.8% 72.6%
Parametric 0.412 52" 3.3° 3.0% 13.6% 26.2% 51.0% 95.1%
Refined 0.202 2.9 3.2 15.5% 49.4% 71.9% 87.1% 96.5%

Fig. 8. Yosemite sequence. Black regions correspond to places where
the brightness constancy assumgtion was violated. Gray indicates
small regions where no parametric model was used.

One might ask “Why not start with this region-based re-
gression approach and ignore the coarse flow computa-
tion?” This approach will work for large, slow moving, re-
gions. The problem with such an approach becomes appar-
ent when trying to estimate the motion of a small region
which is moving quickly. To deal with large motions using
a differential technique, it is necessary to use a coarse-to-
fine approach. But small regions may have little support at
the coarse levels making it impossible to recover their mo-
tion. The regularization present in the coarse stage typically
provides a good initial estimate for small fast moving re-
gions if they are part of a larger moving structure.

5 LocAL DEFORMATIONS

Local models of planarity are likely to be violated often in
practice, particularly in natural scenes. For this reason we
would like to use local parametric models to provide a
coarse description of the motion and allow deformations from
the parametric model to account for errors in the assump-
tion. This notion of modeling optical flow using a planar
motion plus a general flow field has recently been used to
recover 3D structure [40]. In a rigid scene, the image motion
of an arbitrary plane can be estimated and used to stabilize
two images in the sequence effectively removing the rigid
camera rotation. The residual motion in the scene, called
planar motion parallax, is an epipolar field in which the mag-
nitude of a residual motion vector is related to its depth
relative to the planar surface used to stabilize the sequence.
This simple relationship to 3D structure has been used for
recovering structure from motion [27], [40]. Unlike these
planar parallax approaches we do not stabilize the entire
scene based on a single planar motion but, rather, stabilize
an isolated patch based on its motion. The “deformations”
we estimate from this planar motion are the result of planar
motion parallax and are related to the patch’s 3D variation

from planarity. While we have not used this parallax to
recover local structure, the application of plane-+parallax
methods to local image regions is an interesting area for
further exploration.

We estimate local deformation, or parallax, using the ro-
bust optical flow estimation technique described in [11]
with the addition of a new term now coupling the flow es-
timate to the parametric-prediction of the flow. The flow
estimate at each point can be thought of as being connected,
via nonlinear springs, to its neighbors, the data (optical
flow constraint equation), and the estimated motion of the
planar-patch. This is illustrated in Fig. 9. The estimate is
pulled by all these forces and the strength of the force is
determined by the robust error norm p(x, 0). If the estimate
gets pulled too far from its neighbors, the data, or the pla-
nar-patch estimate, the spring essentially goes “slack.” This
is equivalent to rejecting that measurement as an outlier.

Surface Patch
i
]
Deformed
Estimate Neighbors

~ A @EHIB\

Optical Flow Constraint

Iu+va+It=0

R

Image t Image t+1

Fig. 9. Deformation model. The flow at a point is connected, via non-
linear springs, to its neighbors, the optical flow constraint at that point,
and the estimated parametric model of the planar patch.

Given the predicted flow in the planar patches, the image
at time t + 1 is warped back towards the image at time ¢ to
register them. The deformation du is estimated to account for
the discrepancy between the warped and original images.
This physical model is implemented as the minimization of
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(e)

1

|Il

|

Fig. 10. Yosemite sequence. Parametric fit plus local deformations. (a) Horizontal flow deformation; (b) Vertical flow deformation. (c) Flow defor-
mation (scaled by a factor of five to show the displacements). (d) Horizontal flow: Parametric plus deformations; (e) Vertical flow: Parametric plus
deformations. (f) Vector field (excluding the sky): Parametric plus deformations.

TABLE 4
Vector Angular Standard Percent of flow vectors with error less than:
Difference Error Deviation <1° <2 <3 <5 <10°
Coarse 0.479 8.0° 7.0 3.6% 11.7% 21.4% 39.8% 72.6%
Parametric 0.412 5.2 3.3 3.0% 13.6% 26.2% 51.0% 95.1%
Refined 0.202 2.9 3.2 15.5% 49.4% 71.9% 87.1% 96.5%
Deformed 0.176 2.3 2.3 18.7% 57.0% 81.2% 93.8% 98.8%

the following objective function with respect to Su:

En(8a,w,a) = 3 [p{(VI()8u(x) + 1,(x)), o)

X

2 [P(H(‘I(X; a) + 6u(x)) - (u(z; a) + du(z))
eG(x)

o

(12)

1
L
G

+ plBu(x), 0,,)],

where G(x) are neighbors of x, p is a robust error norm
which reduces the influence of outlying measurements, u(x; a)
is the refined flow from the medium-level processing, and
where the spatial and temporal derivatives are computed
with respect to the warped image pair.

The first term in Ep is a robust formulation of the stan-
dard optical flow constraint equation and enforces fidelity
to the data. The second term pulls the deformation in a di-
rection which minimizes the difference in the neighboring
flow vectors. The final term forces the flow to be similar to
the planar-patch estimate by penalizing for deformations.

Given the accurate initial estimate there is no need for a
coarse-to-fine approach and in our experiments we simply
minimize the objective function using Newton’s method. A
continuation method may be exploited using the scale pa-
rameters o« as was done in the previous section. We have

not found this to be necessary since the estimates from the
patches start the minimization near the global minimum.

The segmented image patches in the Yosemite sequence are
only approximately planar. Allowing local deformations to the
motion of the planar patches results in the deformations in
Figs. 10a and 10b. Fig. 10c shows the vector field correspond-
ing to these displacements with the flow vectors scaled by a
factor of five to make them visible. The final paramet-
ric+deformation flow is shown in Figs. 10d-f. For this experi-
ment we took p to be the Lorentzian for consistency with the
coarse motion estimation stage and used 40 iterations of the
minimization scheme. The parameters were taken to be
0p=30/+2, 05=005/v2, and 6, =05/+2 in (12);
these same values were used for all image sequences in this
paper. Visually the flow after deformation varies more
smoothly than the refined fit and quantitatively the defor-
mation stage results in a significant improvement in the
accuracy of the flow as shown in Table 4. Compare the re-
covered flow field in Fig. 10f with the ground truth in
Fig. 3c. Fig. 11 shows where the data term and the spatial
term were treated as outliers.
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Fig. 11. Yosemite sequence: planar+deformation outliers. (a) Data
outliers; (b) Spatial outliers.

6 EXPERIMENTAL RESULTS

To illustrate the performance of the approach we consider a
variety of image sequences containing different types of
camera motion, independent and articulate objects, and both
indoor and outdoor scenes with varying amounts of texture.
As mentioned in the text, most of the parameters used in the
Yosemite sequence experiment remain unchanged for all the
other experiments; where that is not the case it will be noted
below. All experiments other than Yosemite used 30 itera-
tions of both the coarse and refined parametric fitting proc-
esses, 20 iterations of the deformation process were used, and
40 iterations of the segmentation process.

6.1 Yosemite Sequence (Wrap-Up)

The Yosemite sequence experiments presented throughout
the text chronicle the quantitative improvement in the flow
at each step in the processing. The recovered flow field in
Fig. 10f is visually similar to the ground truth in Fig. 3¢; for
further comparison Fig. 12 shows both the angular error at
each pixel (Fig. 12a) and the vector difference field (Fig. 12b)
in the nonsky regions. The largest angular errors occur in
regions which were in fact nonplanar (most of the scene
contains rolling hills). The vector difference image gives
another look at the performance. Here we see a few outliers
and then the largest errors occurring on the foreground
rock face which is the fastest moving portion of the image.
If the reader refers back to Fiz. 6a they will see that the face
was modeled as an affine motion. The error in the estimate
may be a result of choosing a model which is too simple.

(@) (b)

Fig. 12. Yosemite sequence. (a) Angular error (scaled to show detail);
(b) Vector difference field.

The results of the planar+deformation approach are
compared with other published results for the Yosemite

sequence in Table 5 (cf. [5]). The accuracy of the approach is
in the range of the most accurate approaches but with 100%
density (not counting the sky). Methods followed by a “*”
have errors computed without the sky region while the
other methods include the sky. In [5], the errors for Lucas
and Kanade [31] and Fleet and Jepson [17] improve to 3.37°
and 2.97°, respectively, when the sky is omitted though the
density remains low. The accuracy of the other approaches
might also be expected to improve in accuracy by approxi-
mately 25% if the sky is ignored (see [5]) which still remains
below the accuracy of the planar+deformation model.

TABLE 5
CoMPARISON OF VARIOUS OPTICAL FLOW ALGORITHMS
Technique Average | Standard | Density
Error Deviation
Anandan [2] 15.84 13.46° 100%
Singh [41] 13.16 12.07° 100%
Nagel [36] 11.71° 10.59° 100%
Horn and Schunck o o o
(modified) [21] 11.26 16.41 100%
Uras et al. [45] 10.44° 15.00° 100%
Fleet and Jepson [17] 4.29 11.24 34.1%
Lucas and Kanade [31] 4.10° 9.58" 35.1%
Weber and Malik [50] 3.42° 5.35° 45.2%
Black and Anandan [12]* 4.46 4.21° 100%
Black [101* 3.52° 3.25° 100%
Parametric+Deformation* 2.29° 2.25° 100%

6.2 Nap-of-the-Earth Sequence

The next experiment considers a natural image sequence,
similar to the Yosemite sequence, taken by a helicopter fly-
ing through a canyon (Fig. 13a). The helicopter is translat-
ing forward and to the left while rotating to the right and
the resulting flow field is strongly diverging. The sequence
illustrates that there is nothing particularly special about
the Yosemite sequence and that the approach will work for
a similar natural sequence. The spatial discontinuities are
shown in Fig. 13b and the recovered horizontal an vertical
motion is shown in Figs. 13c and 13d, respectively. The pa-
rameters were: for the segmentation process, 40 2 6,42 > 20
and 40>0.4/2 24 and the refined parametric fit,

15> 6 / /3 2 5. The vector field in Fig. 13f gives a qualita-
tive sense of the motion while Fig. 13e shows the type of
parametric model used for each region (translational (dark
gray), affine (light gray), or planar (white)). Notice that
there are problems with undersegmentation at the bound-
ary between the land and sky. This results in a nonzero
flow in the sky where there is no texture.

6.3 SRI Tree Sequence

A second natural outdoor sequence is provided to illustrate
the effect of the algorithm at motion discontinuities. The
first image in the SRI tree sequence is shown in Fig. 14a. In
this sequence the camera translates parallel to the image
plane resulting in a horizontal optical flow field where the
magnitude of the flow at a pixel is inversely proportional to
the depth of the point in the scene. Despite the fact that the
images are highly textured, the segmentation (Fig.14b)
produces regions of adequate size to estimate the motion.
The order of the models used within regions is shown in
Fig. 14c. Recall that black regions indicate that the region
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Fig. 13. Nap-of-the-earth helicopter sequence. (a) First image; (b) Spa-
tial discontinuities; (c) Planar+Deformations: horizontal flow; (d) Pla-
nar+Deformations: vertical flow; (e) Order of the model used; (f) Flow
field.

was too small for parameterized motion estimation and the
coarse flow is used. There is no significant vertical dis-
placement so only the horizontal component of the motion
is shown in Fig. 14. Fig. 14d and Fig. 14e show the coarse
horizontal displacement and flow, respectively, while
Fig. 14f and Fig. 14g show the final planar+deformation
displacement and flow. The data and spatial outliers de-
tected during the deformation stage are shown in Figs. 14h
and Fig. 14i, respectively. The horizontal bands in the data
outlier image are due to noise in the image sequence. The
spatial outliers correspond well to the branches of the trees.
The parameters were: for the segmentation process,
2520,4/2210 and 2020.¥222 and the refined

parametric fit, 15 2 ¢ / /3 2 5.

6.4 Walking Sequence
The next experiment shows the application of the approach
to a sequence containing both camera motion and an inde-
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pendently moving object in a cluttered indoor environment.
In the sequence the camera pans to roughly track the
walking figure. This results in a roughly uniform, and
large, motion for the background while the motion of the
person is small. The camera motion is not pure rotation
resulting in some flow variation with depth. The parame-
ters were: for the segmentation process, 15 2 6,+/2 > 5 and
100 > O"Sﬁ >4 and for the refined parametric fit,

15 2 ¢/ +/3 2 5. Fig. 15b shows the brightness discontinui-
ties found in the first image of the sequence (Fig. 15a). The
coarse flow estimates are shown in Figs. 15d, 15e, and 15f.
The final parametric+deformation results are shown in
Figs. 15g, 15h, and 15i. The bottom two images show the
data and spatial outliers after deformation. Notice that the
boundary of the moving person is well localized in Fig. 15k.
This sequence illustrates that the brightness segmentation
may help in the accurate localization of motion boundaries.

7 OPEN QUESTIONS AND FUTURE DIRECTIONS

Accurate and dense estimates of optical flow have a wide
variety of applications to diverse problems such as image
coding, structure from motion, and the recognition of hu-
man activities. The goal of this work has been to explore
two aspects of the optical flow problem. First we are inter-
ested in how to choose the appropriate area of integration
within which to employ parameterized models of optical
flow. This is an important problem since large areas of inte-
gration result in accurate motion estimates. But large, arbi-
trarily shaped, regions may have multiple motions within
them or may not satisfy the assumptions of the parameter-
ized model (e.g., planarity). We have referred to this prob-
lem of choosing the appropriate region for integration as
the generalized aperture problem [23].

The second aspect of the work involves the use of static
brightness information to improve the estimation of image
motion. Previous attempts to integrate motion and brightness
have often focused on using brightness discontinuities to
improve the localization of motion discontinuities. Here we
have exploited brightness segmentation to help us address
the first problem of choosing the region of integration.

Our simple assumption of piecewise constant brightness
is clearly not satisfied in general. For example consider im-
age sequences consisting of random dots. Humans have
little trouble estimating motion in such sparse sequences
but brightness segmentation will be of no help in organiz-
ing the moving dots. While the interaction between motion
and brightness is clearly more complex than that presented
here, our results suggest that the integration of these cues
can significantly improve optical flow estimation. The inte-
gration of multiple cues however is a hard problem and we
have presented only one simple approach.

In addition to the general issues of cue integration, this
work leaves a number of unanswered questions and sug-
gests interesting future research directions. For example,
given a collection of planar patches in the scene and their
motion, we would like to estimate the 3D motion of the
camera. A rigid-body assumption could be incorporated
into the flow estimation to constrain the motion of patches
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()

Fig. 14. SRl tree sequence. (a) First image; (b) Spatial discontinuities; {c) Order of the model; (d) Coarse horizontal displacement; (e) Coarse flow
field; (f) Planar+Deformations: horizontal displacement; (g) Planar+Deformations: flow field; (h) Data outliers; (i) Spatial outliers.

to be consistent with a rigid scene. An immediate applica-
tion of this would be the detection of independently mov-
ing regions in the scene whose motion is inconsistent with a
rigid 3D interpretation [33].

Due to oversegmentation based on brightness, the local-
ization of objects, as opposed to surfaces patches, may re-
quire grouping patches together based on common motion.
The approaches of Ayer et al. [4] and Wang and Adelson
[46] present possible methods for achieving this grouping
and do not appear to exhibit the kinds over-segmentation
we see with our method. While it should be relatively
straightforward to extend these methods to group our seg-
mented patches the local deformations to some extent al-
ready provide this grouping, or merging, at a low level. It
may be desirable to exploit the deformed motion at the re-
gion boundaries in deciding which regions to group into
larger regions.

Additionally, having the motion of segmented image re-
gions means that the occlusion relationships between the
regions can be analyzed over time. The addition of tempo-
ral integration might also improve the accuracy, efficiency,

and robustness of the method. Moreover, it may be possible
to incorporate a layered representation which can represent
occluded portions of regions viewed over many frames as
in the work of Wang and Adelson [46]. This segmented and
layered representation of a video stream might be useful for
video coding; for example, MPEG-4.

Undersegmentation is also an issue. For example, in our
experiments with moving people, their legs are often seg-
mented into a single region based on brightness. We would
like to be able to detect that a single motion does not give a
good fit to this region and break it into parts in the appro-
priate places. One possibility is to use the local deformation
as a measure of strain and introduce breaks when the strain
is too great [24]. An alternative way to cope with under-
segmentation is to allow multiple motions within a region
and use either a robust estimation approach [12] or a mix-
ture model approach [23] to recover the multiple motions.

The segmentation approach presented here is merely used
to illustrate the idea of exploiting static segmentation in mo-
tion estimation. It is interesting to note that the idealized
brightness model used for segmentation is one of piecewise
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)

(k)

Fig. 15. A cluttered scene in which the camera is panning and a person is walking. (a) First image; (b) Spatial discontinuities; (¢) Order of the
model; (d/e) Coarse horizontal/vertical displacement; (f) Coarse vertical flow field; (g/h) Planar+Deformations: horizontal/vertical displacement; (i)

Planar+Deformations: flow field; (j) Data outliers; (k) Spatial outliers.

constant brightness. Not only is this an unrealistic model of
brightness in natural scenes but, if the segmented regions
were actually of constant brightness, then the optical flow
constraint equation would provide no motion information
within the image regions. The segmentation method actually
produces regions with small variations around the mean
brightness within the region. This variation is controlled by
the o parameters and is necessary for reliable motion estima-
tion. Future work should explore the use of texture segmen-
tation techniques (e.g., [18]) which would yield regions with
adequate texture for motion estimation.

The segmentation and motion approaches presented
here rely on a number of parameters, particularly the scale
parameters o. The segmentation method used here is

somewhat sensitive to the choice of parameters but, since
the segmentation information is used primarily for illustra-
tion, we chose these parameters by hand. The motion esti-
mation method, on the other hand, is not very sensitive to
the choice of parameters as has been demonstrated else-
where [12]. In nearly all the experiments, the parameters for
the motion estimation are identical and standard statistical
techniques can be used to estimated these parameters
automatically [3], [28], [30], [39]. Additionally, statistical
measures of the accuracy of the motion estimation within a
region might be used to provide a confidence measure.
Finally, this paper has presented the fitting and defor-
mation process as a one-shot algorithm. In fact, it may be
useful for this process to iterate in the context of an incre-



BLACK AND JEPSON: ESTIMATING CPTICAL FLOW IN SEGMENTED IMAGES USING VARIABLE-ORDER PARAMETRIC MODELS

mental estimation scheme where estimates are refined over
an image sequence (cf. [4], [10], [35]).

8 CONCLUSION

This paper has presented a new model for estimating opti-
cal flow based on the motion of planar regions plus local
deformations. The approach exploits brightness informa-
tion to organize and constrain the interpretation of the mo-
tion by using segmented regions of piecewise smooth
brightness to hypothesize planar regions in the scene.
Parametric flow models are estimated in these regions in a
two step process which first computes a coarse fit and then
refines it using a generalization of the standard area-based
regression approaches. Since the planar-patch assumption
is likely to be violated, we allow local deformations from
the parametric flow using a physically-based model in
which a regularized optical flow estimate is partially con-
strained by the parametric motion estimate.

The approach produces good results on a wide variety of
image sequences for two primary reasons. The first is that
the segmented regions provide large areas for integrating
multiple constraints and, as opposed to methods which
choose a particular fixed region size/shape (e.g., [31]), the
segmented regions are less likely in general to contain mul-
tiple motions; or, said another way, are more likely to cor-
respond to actual planar surfaces in the scene. The second
reason is that the brightness segmentation provides good
localization of motion boundaries since motion disconti-
nuities often coincide with trightness discontinuities. The
approach illustrates the importance of both of these prop-
erties (large areas of integration and use of brightness in
localizing motion boundaries).
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