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Abstract

We consider the segmentation of a trajectory into piece-
wise polynomial parts, or possibly other forms. Segmen-
tation is typically formulated as an optimization problem
which trades off model fitting error versus the cost of intro-
ducing new segments. Heuristics such as split-and-merge
are used to find the best segmentation. We show that for
ordered data (eg., single curves or trajectories) the global
optimum segmentation can be found by dynamic program-
ming. The approach is easily extended to handle differ-
ent segment types and top down information about segment
boundaries, when available. We show segmentation results
for video sequences of a basketball undergoing gravitional
and non-gravitaional motion.

1 Introduction

We consider the segmentation of a motion trajectory into
piecewise polynomial parts, or possibly other forms. Many
problems require such a trajectory segmentation, including
segmenting 1D data into spline segments [1], segmenting
edge chains into lines and/or arcs [6, 5, 8] and processing of
piecewise smooth motions, such as cursive handwriting [9].

Segmentation is typically expressed as an optimization
problem which trades off model fitting error versus the cost
of introducing new segments. When there are multiple seg-
ment types, variable costs may assigned so that simpler,
lower order, segments are preferred. Alternatively, we can
formulate segmentation in a Bayesian framework that as-
signs a higher prior probability to models containing fewer
segments [2], or in a minimum description length (MDL)
framework that trades off model complexity for data fit [5].
Since the segmentations are not known in advance, how-
ever, these approaches rely on heuristics such as split and
merge algorithms [6, 5, 8] or multiscale continuation meth-
ods [1]. We show that when the data is described by a single
parameterized curve, the global optimum segmentation can
be found by dynamic programming. The approach is easily

extended to handle different segment types, and top down
information about segment boundaries, if available.

Due to the use of dynamic programming, our approach is
limited to the segmentation of trajectories having one well
defined independent variable. Many problems require low
order polynomials to be fit to collections of points or curves
in 2D [6, 5, 8]. To apply our approach to such problems,
we would require that each grouping hypothesis provides a
unique 1D ordering of the data points. This is not a serious
issue for the tracking application we consider below, since
time provides the required 1D ordering and the individual
objects can be tracked unambiguously.

This paper consists of two parts. First we present a novel
segmentation scheme which extracts piecewise polynomial
segments of a trajectory using dynamic programming. Next
we show how this simple algorithm can be applied to mo-
tion trajectories of a single object, such as a basketball,
undergoing gravitational and non gravitational motion (see
Fig. 1). The segmentations we obtain appear to be suitable
for the extraction of scene dynamics [7].

2 Trajectory segmentation

Consider the segmentation of a trajectoryX(t) into
piecewise polynomial segments. The total segmentation
cost is the total sum squared errors in the polynomial fit
plus a costλ for each new segment introduced

Cost=
N∑
n=1

 tn∑
t=tn−1

∥∥∥X(t)− X̂n(t; θn)
∥∥∥2

+ λn

 (1)

whereX(t) is the observed motion,̂Xn(t; θn) is thenth
polynomial segment with polynomial coefficientsθn, and
N is the number of segments in the model. The term,λn >
0, is the penalty for introducing segmentn. 1

Minimizing Eq. (1) can be interpreted as maximizing
probability of the data according thepenalized likelihood

1Note that Eqn. (1) does not enforce continuity ofX̂(t). This could be
done adding constraints to the polynomial coefficientsθn.
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Figure 1. Video sequences. The ball and forearm are highlighted in each frame. See text for details.

function

P (X|Θ,Λ) =
N∏
n=1

e−λn

 tn∏
t=tn−1

N (X(t); X̂n(t; θn), σ)


(2)

whereX = {X(1), . . . ,X(T )}, Θ = {θ1, . . . , θN}, Λ =
{λ1, . . . , λN}, N (x;µ, σ) is a normal distribution, andσ is
the measurement noise. This is similar to the dynamic pro-
gramming formulation of stereo matching [3] except that,
instead of matching pairs of scan lines, we are searching for
an optimal segmentation.

2.1 Dynamic Programming

The global minimum of Eqn. (1) can be found by dy-
namic programming. LetStt0 be the best segmentation up to
and including samplet, such that the most recent breakpoint
is att0 ∈ {1, . . . , t}. At time t+1 each segmentationStt0 is
extended by replacing the cost fromt0 to t with the cost of
a new segment fromt0 to t+ 1. St+1

t+1 is set to the minimum
St+1
t0 over all possible breakpointst0 ∈ {1, . . . , t+ 1}. The

algorithm starts witht = 0, S0
0 = 0 and increasest from

1 to T , whereT is the length of the sequence. The best
segmentation is given bySTT . At each step the algorithm
performs a least squares fit oft polynomial models on the
subintervals(t0, t) for t0 ∈ {1, . . . , t}. For a sequence of
lengthT ,O(T 2) segment fits will be performed.

This algorithm is easily extended to deal with multiple
segment types. Suppose there areK different segment types

with associated costsλk, 1 ≤ k ≤ K. Each segmentn
will have costλn = λk for somek. By assigning smaller
costsλk to simpler segment types the algorithm trades off
data fit for simplicity of the segment type within each fitting
interval. If there areK segment types, a total ofO(KT 2)
segment fits will be performed.

It is often desirable to incorporate top-down information
into the segmentation. If a breakpoint is known to occur
at a particular timet0, we perform a restricted search of
Eqn. (1) wheretn = t0 for somen. Similarly, if a segment
typek is known to occur over interval(t1, t2) we constrain
λn = λk, tn−1 = t1, andtn = t2 for some segmentn.

3 Segmentation of image motion

We consider the segmentation of the motion trajectory
of an object, such as a basketball, undergoing gravitational
and nongravitational motion (see Fig. 1). The ball may fall,
bounce, or roll along a horizontal surface. In addition, an
active object, such as the hand, may exert forces on the ball
by pushing, lifting, or holding. In each sequence the fore-
arm and the ball were tracked by an adaptive view-based
tracker described in [4].

Provided the depth variation is small relative to the abso-
lute scene depth (ie., a weak perspective model), we can
model the projected motion of the ball in the image by
quadratic motion segments:

X̂(t) =
(
X̂(t)
Ŷ (t)

)
=
(
a0 + a1t+ a2t

2

b0 + b1t+ b2t
2

)
(3)
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Figure 2. (a) Segmentation of halfdrib into quadratic
pieces for λ = 100 (circles denote frames shown in
Fig .1, dotted lines denote missed breakpoints).
(b) Stability of segmentation as λ varies.

This constant acceleration model is appropriate both grav-
itational or nongravitational motion, provided the hand ex-
erts a roughly constant force on the ball. Special cases of
this motion include ballistic (gravitational) motion:(

X̂(t)
Ŷ (t)

)
= P + h(t)D(θ) + v(t)

(
0
1

)
(4)

whereP = (Px, Py)T is the starting point,h(t) = h1t
is the translation speed,D(θ) = (cos θ, sin θ)T is the di-
rection of translational motion, andv(t) = v1t + v2t

2 is
the gravitational motion. The acceleration due to gravity
is g = (0, 2v2)T pixels/frame2. A second case is rolling
motion: (

X̂(t)
Ŷ (t)

)
= P + h(t)D(θ) (5)

whereh(t) = h1t + h2t
2. h2 has nonzero values for de-

celeration due to (sliding) friction, whileh1 andh2 are both
zero for a resting object.

In this paper we consider only fronto parallel (side view)
motion thus the image motion becomes(X̂(t), Ŷ (t)) =
(a0 + a1t, b0 + b1t+ b2t

2) for the gravitational model and
(X̂(t), Ŷ (t)) = (a0 + a1t+ a2t

2, b0) for the rolling model.
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Figure 3. Segmentation of liftdrib into quadratic
pieces (dotted line denotes a missed breakpoint).

Fig. 2a shows the segmentation of thehalfdrib sequence
into piecewise quadratic segments. Note that every inter-
val is fit by separate polynomials,̂X(t) and Ŷ (t), but for
cases where the motion is essentially vertical, onlyŶ (t) is
shown. The bounces (frames 337–369, 391–439) and colli-
sions (frames 337, 370, 391, etc.) are easily detected. From
the first bounce we estimate gravity at approximately1.67
pixels/frame2 and the tracker noiseσ at approximately0.59
pixels. The system also finds the onset of pushing onevery
otherbounce (frames330, 385, and435). During pushing,
the acceleration is well modeled by a constant acceleration
of approximately2.1 to 2.2 pixels/frame2. Note that while
the segmentation is stable over a wide range ofλ (Fig. 2b),
we are unable to detect theremovalof the hand. From the
video, we know that the hand was removed (and the ball re-
turned to gravitational motion) sometime after the onset of
pushing, but before the ball hit the ground (see the dotted
lines in Fig. 2a).

Fig. 3 shows the segmentation results for theliftdrib se-
quence. Again, the segmentation is imperfect: The first lift
is detected (frames 738–742), with an acceleration of ap-
proximately -2.5 pixels/frame2 (ie., upwards), but the re-
moval of the hand after the second lift (frame 789) was
missed. At the end of the sequence the hand is holding the
ball. Here the motion is not well modeled by quadratic seg-
ments, and over segmentation results. In Sec. 3.2 we use the
hand’s motion to improve the segmentation for these two
sequences, but first we demonstrate segmentation into mul-
tiple motion types.

3.1 Multiple motion types

Fig. 4a shows the tracking data (bothX(t) andY (t)) for
the offtable sequence. Here the ball rolls along the table,
falls, bounces on the ground, hits the wall, and continues
to bounce on the ground. Fig. 4b shows the segmentation
into both quadratic and linear models. To enforce a prefer-
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Figure 4. Segmentation of offtable. (a) Motion tra-
jectory. (b) Quadratic (Q) and linear (L) segments.

ence for simpler linear models, we usedλL = 50 for linear
models. (λQ = 100 for quadratic models, as before.) A lin-
ear model is fit while the ball is rolling on the table, while
a quadratic model is fit during falling and bouncing. Note
that we (correctly) detect an extra breakpoint inX(t) (frame
2295) where the ball bounces off the wall. Also note that
the motion ends with a rolling segment once the bounces
become small. The extra breakpoint (frame 2246) is caused
by a tracker error.

3.2 Exploiting context: hand proximity

When the hand and the ball overlap in the image, it is
likely that the hand is actually touching the ball in the scene.
During such contact, the hand may apply arbitrary forces to
the ball, hence a quadratic motion model is inappropriate.

To handle such cases, we introduce a third segment
type (H, for “hand”) which allows arbitrary piecewise lin-
ear motion during an interval. We set the segment cost
λH < min (λL, λQ) to ensure that only the hand model
will be fit during contact intervals.

Fig. 5 shows the segmentation ofliftdrib using the hand
model. The bars at the bottom of the figure show inter-
vals where the hand and the ball contact in the image. The
hand is contacting the ball during both lifting segments, and
at the end of the sequence, where the hand is holding the
ball. Note that there are brief intervals of apparent con-
tact (frames 761, 821) where the the ball moves directly
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Figure 5. Segmentation of liftdrib using hand prox-
imity (H denotes hand segments).

behind the hand. Such apparent contact does not alter the
segmentation as long as the noise within the contact interval
is smaller than the cost of introducing a new hand segment.

Since we cannot determine the proximity of the hand and
the ball exactly, we use a rather loose tolerance. This finds
contacts well, but tends to overestimate the duration of con-
tact. However, since there is no fitting cost associated with
hand segments, we need a way to prevent the hand segments
from absorbing their entire contact intervals. To achieve
this, we add a duration cost,̂σT , to each hand segment,
whereT is the length of the interval and̂σ an estimate of
the tracker noise. Fig. 5 shows the segmentation ofliftdrib
for λH = 20 andσ̂ = 0.5. The addition of the hand model
with duration cost yields a very good segmentation (com-
pare with Fig. 3).
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