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THE NUMERICAL SOLUTION OF NONLINEAR EQUATIONS HAVING
SEVERAL PARAMETERS. PART III: EQUATIONS WITH Z2-SYMMETRY*

A. D. JEPSON-, A. SPENCEr, AND K. A. CLIFFE

Abstract. The computation of symmetry-breaking bifurcation points of nonlinear multiparameter prob-
lems with Z2 (reflectional) symmetry is considered. The numerical approach is based on recent work in
singularity theory, which is used to construct systems of equations and inequalities characterising various
types of symmetry-breaking bifurcation points. Numerical continuation methods are then used to follow
paths of symmetry-breaking bifurcations, and hence compute regions in parameter space for which a problem
has qualitatively similar bifurcation diagrams.

The power of the numerical approach is illustrated by computations of axisymmetric flows in the finite
Taylor problem.
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(1.1)

1. Introduction. We consider nonlinear equations of the form

F(x, A, ce) O, F:XRRP Y,

where x X, a Banach space, A R is a distinguished (or bifurcation) parameter,
a R p is a vector of control parameters, and F is a nonlinear mapping from X R R p

to Y, a Banach space. There has been much recent interest in the computation of
singular points of (1.1), i.e., the points (Xo, Ao, a0), say, at which F Fx(xo, Ao, ao)
is singular, because of their importance in understanding nonlinear phenomena (see,
for example, [12], [20], [23]). The conference proceedings [18] reflects this interest
and provides a good survey of numerical methods for the calculation of singular points
of (1.1). For convenience throughout this paper we shall refer to the case X Y R
as the scalar problem and all other cases as vector problems, irrespective of whether
or not X is finite dimensional.

In 14] the application of singularity theory by Golubitsky and Schaeffer 12] was
used to derive numerically convenient defining equations and inequalities for sin-
gularities arising in scalar problems of the form (1.1). These defining conditions were
used to organize singular points into a "hierarchy of singularities." This allowed a
straightforward, unified explanation of a numerical approach to the computation of
regions in the control parameter space within which the bifurcation diagrams of (1.1)
were qualitatively similar.

The aim of the paper is to extend the ideas presented in [14] to vector problems
of the form (1.1), where, in addition, F satisfies a reflectional symmetry (or Z2-
covariance) condition, commonly written in the form SF(x, A, a) F(Sx, A, o), S= I,
S #/. To do this two distinct steps must be made which we now outline.

* Received by the editors December 15, 1986; accepted for publication (in revised form) June 1, 1990.
? Department of Computer Science, University of Toronto, Toronto, Ontario, Canada M5S 1A4. This

research was supported by Natural Sciences and Engineering Research Council of Canada, the British
Council, and the University of Toronto.

: School of Mathematics, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom. This
research was supported by Natural Sciences and Engineering Research Council of Canada and Science and
Engineering Research Council of the United Kingdom.

Theoretical Physics Division, AERE Harwell, Oxfordshire OX11 0RA, United Kingdom. This research
is part of the longer-term research carried out within the Underlying Program of the United Kingdom
Atomic Energy Authority.

809



810 A. D. JEPSON, A. SPENCE, AND K. A. CLIFFE

First, in 2, the results in [14] are extended to cover the Z2-symmetric case
f(-x, A, a)=-f(x, A, a), x R. A new Z2-hierarchy of singularities is given which
shows considerable differences from the nonsymmetric hierarchy. However, once this
Z2-hierarchy is derived, much ofthe discussion in 14] on the numerical implementation
applies with at most minor and obvious differences. Thus we omit all of the general
discussion of how to move up and down the hierarchy, how to compute bifurcation
diagrams for given values of a, or how to compute regions in control parameter space
for which the problem has qualitatively similar bifurcation diagrams. However, many
of these ideas are mentioned with respect to the example calculations in 6.

The second step is to show how the results in 2 can be applied to vector problems
satisfying the symmetry condition and the condition that dim Null (F)= 1. This is
done in 3 using a generalisation of the Lyapunov-Schmidt reduction [2], [15], by
which a vector problem is reduced to an equivalent scalar problem satisfying the
Z2-symmetry condition. The reduction process can be reversed to great effect. All of
the numerically useful results in 2 for the scalar problem are shown to apply to the
vector problem. Also various types of extended systems for the calculation of symmetry-
breaking bifurcation points can be derived, and it is shown that they all inherit the
useful numerical properties of the conditions for the scalar problem. For example,
under a general stability assumption, it is shown that these extended systems are regular
at the bifurcation points. Section 4 contains a short discussion on the implementation
of one particular extended system.

To illustrate the applicability and power of the numerical approach we consider
in 5 and 6 the calculation of axisymmetric flows in the Taylor problem. The nonlinear
equations are the Navier-Stokes equations in a cylindrical annulus. A finite element
method is used to derive a discretized form like (1.1), where p 2 and the number of
equations is roughly 10 For reasons of space we omit most of the detail of the
discretization and refer the reader to 8] for a complete account including the utilization
of the symmetry. Bifurcation diagrams and control parameter space plots are given
(cf. [14]) and an especially interesting high-order singularity (the Z2-codimension 3*
singularity in 11]) is computed.

This paper is the third in a series on the application of ideas from singularity
theory to nonlinear multiparameter problems. The first paper [14] describes the basic
approach, and the second [16] discusses vector problems without symmetry. Finally,
we make two remarks. Through the Z2-symmetry is common in applications, much
more complicated symmetries also arise with a correspondingly more complex bifurca-
tion phenomena (see, for example, [12], [21]) and the ideas in this paper can also be
applied in such cases (see [1]). Second, we are grateful to a referee for pointing out
that the assumption X c y is an unnecessary restriction, since provided a Z2-action
is defined on X and Y and F is Z2-covariant then we can always assume X Y.

2. Singularity theory for Z2-symmetry functions. In this section we discuss the
case of x being a scalar state variable in the multiparameter nonlinear problem

(2.1a) f(x, A, a)=0, f: R x R x Rp R,
subject also to the Z-symmetry condition

(2.1b) f(-x, A, a)= -f(x, , a).
We assume f is smooth, that is, C in a neighbourhood of zero. Clearly x 0 is a
solution of (2.1) for all A, a and it can be shown [12, Chap. VI] that f can be written
in the form

(2.2) f(x, , a)= a(z, , a)x
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for z x2 and some smooth a. (Note that a is not unique (see [12, p. 249]) but that
this causes no difficulty since the theory produces defining conditions in terms of
derivatives of a which are uniquely determined in terms of derivatives of f.) We are
interested in the values of A, a such that (0, A, a) is a singular point of (2.1); that is,

(2.3) fc(O, & a) =0

or, equivalently,

(2.4) a(0, A, ce) 0.

In 2.1, we present the classification of singular points of (2.1) in a form that is suitable
for numerical computation. The important numerical properties of this classification
are then discussed in 2.2.

2.1. The Z2-hierarchy. The results in this section are essentially given in [11] and
[12, Chap. VII; we refer the reader to these references for more detail of the theory.
The aim of this section is to describe a numerical strategy for (2.1a, b) based on that
theory. As in 14] we introduce a graph, which we call the Z2-hierarchy, in which the
singularities of Z2-codimension less than 4 are arranged. The graph, Fig. 1, is structured
to emphasise the relationships between the singularities and to illustrate the systematic
nature of our numerical approach. The (q, j)-singularity is defined to be the singularity
which the polynomial at the (q,j)-node has at (x, ,)= (0, 0). A (q,j)-singularity has
Z2-codimension q. The node labelled (3", 0) represents a one-parameter family (called
a modal family) of codimension-3 singularities, and will be discussed further below.
The numeric labels above the nodes in the hierarchy (u 1,..., 11) correspond to
the numbering used in Table 5.1 of 12, p. 263]. In the sequel we drop the Z2 and refer
simply to the hierarchy, codimension, etc.

The defining conditions given in Proposition 3.47 in [11] can also be recovered
from the hierarchy. As in [14] we write the defining conditions in the form of an
extended system

(2.5a) H,(0, A, ce)=06 R+’

and nondegeneracy conditions (or side-constraints)

(0, A, a)40, k= 1 Kqj(2.5b) Cq,j

-3 -2 -1

FIG. 1. Zz-Hierarchy. Here 6 +1, m aza/ azzaxx[ 1/2, D2 azx azzaxa,
azzzazxaax + 2azzaazzax, 2azxxazaazz + atx)ta

and D
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For a particular (q,j)-singularity, (q,j) # (3*, 0), system (2.5a) is formed by choosing
a path from the top of the hierarchy down to the (q,j)-node. Equation (2.5a) is then
just the restriction that all the labels beside branches on this path must vanish (all
paths give equivalent Hq,j’s). For example,

(2.6a) H2,_2(z A, a)=-(a, az, azz).

The side-constraints (2.5b) are obtained by requiring that the labels on all the branches
leaving the (q, j)-node must not vanish. In particular, for the (2, -2)-singularity we have

2(2.6b) C2,-2 azzz O, C,-2 a O.

The derivatives of a can, of course, be rewritten in terms off and x (e.g., az becomes
fxxx). The one exception to these rules for constructing defining conditions is for the
(3", 0)-modal family.

The normal form

(2.7) x + 2mAx + A2x 0, -+- 1, m2 # 6

given in the (3*,0)-node of the hierarchy represents a family of inequivalent
codimension-3 singularities. That is, two different values of rn in (2.7) produce two
polynomials that are not equivalent. The parameter rn is called a modal parameter.
The conditions

(2.8a) a3..o(0, A, a) =- (a, az, aa O,

2.(2.8b) C.,o azz # O, C3 ,o =- D2 O, C33.,0 aa O,

which can be obtained in the hierarchy using the method described above, are necessary
and sufficient conditions (see Theorem 2.13 below) for f to be equivalent to some
member of the (3", 0)-family. It is convenient to denote the member having modal
parameter rn as the (3", 0, m)-singularity. In order to get defining conditions for this
singularity we must append another equation, namely,

(2.9) M3.,o(0 A, a; rn)=0,

to (2.8a). Here,

(2.10a) M3*,o(X A, a; m)=- az/lazzal1/- m,

or

(2.10b) M3*,o(X, A, a; m)=-(az)2W-azza, w=-
sign (aza)

2

A3*’(x’A’ce )H3.,o(X, A, a; m)-=
M3.,o(X, A, ce; m)

An additional type of side-constraint appears with the (3*, 0)-family, namely,

(2.12) C*,o(O, h, a =- az, O,

which is obtained from the label on the dotted branch in the hierarchy. The meaning
of the additional side-constraint is rather subtle, and we only sketch its significance

(2.11)

and sign (rn) is to be taken equal to sign (aza). These two forms are equivalent in that
their use in (2.9) leads to the same value of m. However, in numerical computations,
(2.10a) is more convenient for Irnl << 1 while (2.10b) is better for Irn] >> 1. Therefore the
(3", 0, rn)-extended system is
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here. If in Definition 3.2 of [11] the condition that S, X, and A be C functions is
replaced with S, X, A C (which provides topological Z2-equivalence), then the range
of the model parameter m breaks up into two (6 =-1) or four ( +1) pieces. In
particular, if azzaaa < 0 then the two ranges are m > 0 and m < 0, otherwise for azzaaa > 0
the four ranges are me(-c,-1), (-1, 0), (0, 1), and (1, ). In each of these ranges
the (3", 0, m)-singularities and their unfolding behaviour are topologically equivalent.
The boundaries of these regions are of interest. The points of m + are signaled by
one of the side constraints azz or aa vanishing, and the points are m--+1 are given
by D2 vanishing. These points are called connector points and correspond to transitions
out of the (3", 0)-family to the q 3 level, or below. The remaining endpoint, at m 0,
is called a regular distinguished point and corresponds to a particular member within
the (3", 0)-family. It occurs when the label on the dotted branch (i.e., aza or,
equivalently, m) vanishes.

The fact that the above conditions are defining conditions for f to have a (q,j)-
singularity is the content of the following theorem.

THEOREM 2.13. With 0 <= q <= 3, assume that

(2.13a) Hq.(O, ., a; m)=0

is the extended system derived from the Z2-hierarchy, and that

(2.13b) Cq, # O, k 1,. , kq,j,

are the corresponding side-constraints.
Then for (q,j) (3", 0)( (3", 0), respectively), (2.13a), (2.13b) are satisfied if and

only if (0, A, c) is a (q,j)-singularity ((3", 0, m)-singularity) for (2.1a). Moreover, for
(q,j) (3", 0), conditions (2.8a) and (2.8b) are satisfied if and only iff is Z2-equivalent
to a member of the (3", 0)-family.

Proof There are only minor differences between the current theorem and [11,
Prop. 3.47]. First, we have allowed the contact transformations in Definition 3.2 of
[11] to reverse the signs of f, x, and A. This eliminates endless + signs in the normal
forms and simplifies the presentation. However, we note that in order to obtain an
appropriate bifurcation diagram these reflections must be taken into account (i.e.,
undone)! Second, we have chosen an explicit form for the side-constraint, D 0, of
the (3, 0)-singularity. The form of D used here can be obtained by setting the vector
v in Proposition 3.47 to be v=(-az,, azz)/(azz) /3. The details of this are trivial and
are omitted. [3

The defining conditions discussed above solve the "recognition problem" for
Z-singularities having codimension q =< 3. That is, given any f with a singular point
at (0, ,, c), the Z2-hierarchy can be used to determine if the codimension of the
singularity is less than 4 and, if it is, the particular singularity type. The idea is simple:
starting at the top of the Z2-hierarchy we descend any branch having label that vanishes
at (0, ,, ce). We end up either below the q 3 level, in which case (2.1a) has a singularity
of codimension larger than 3, or at a (unique) node with nonzero labels on all the
descending branches emanating from this node. From Theorem 2.13 we can conclude
that f is contact equivalent to the polynomial inside this node (with, in the case of the
(3", 0)-node, the particular value of m satisfying (2.9)).

The direct numerical implementation of this recognition process would very likely
be a disaster. The presence of roundoff errors would mean that the criteria that a label
is "zero at (0, ,, c)" must be replaced by "nearly zero at (0, ,, ce)". Unfortunately,
precise and reliable criteria for how near is near enough depend critically on the nature
of f near (0, A, c). The defining conditions can, however, be used to great advantage
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in a different way. Given a point (x, A, a) (not necessarily a solution of (2.1a)), we
ask if there is a singular point of a specified type nearby. In particular we seek a
solution of the extended system (2.13a). This is a nonlinear system of q + 1 equations
in terms of the p + 1 unknowns (A, a).

If p =q then, given a sufficiently good initial guess, and that

(2.14)
OHq,j

(0, A, a" m) is nonsingular
a(x, )

at the root, standard numerical algorithm can be reliably used. Our general approach
of descending and ascending the hierarchy, discussed in [14] can often be used to
provide good initial guesses; in the next section we show that (2.14) can also be
expected to hold (except at isolated points).

2.2. Regularity of the defining conditions. Recall that the notion of a versal unfold-
ing [12, p. 258] is used to capture the intuitive idea of structural stability. Suppose f
satisfies (2.1) and is a versal unfolding for a singularity at (0, ho, Go). Consider small
perturbations of f given by

f(x, h, a, e)=- f(x, h, a)+ eg(x, h, a),

where g is a smooth function satisfying (2.1b). The behaviour of (2.1a) near (x, , a)
(0, ho, ao) is essentially unaltered by these small perturbations since the versal unfolding
property of f ensures

f(x, A, a, e)= T(x, A, a, e)f(X(x, A, a, e), A(A, a, e), B(a, e))

for (x, A, a, e) near (0, Ao, ao, 0). Here T, X, A, B are smooth functions which satisfy
1_1, Def. 3.2] and

T(x, h, a, O)= l, X(x, h, a, O)= x, A(h,a, 0)=h, B(a, O)= a.

In particular, f has a singular point at (0, A(ho, ao, e), B(ao, e)) of exactly the same
type as the original singularity off at (0, ho, ao). Thus the singularity off can be said
to be structurally stable. Given that errors are inherent in the development ofmathemati-
cal models, and in numerical computations, it is reasonable to restrict our attention
to structurally stable phenomena.

The connection between versal unfoldings and property (2.14) is given in the
following theorem.

THEOREM 2.15. Let 0 <- q<--_3. Suppose Hq,(O, h, a, m) is the (q,j)-extended system
obtained from the Z2-hierarchy and (0, ho, ao, m) satisfies (2.13a) and (2.13b). Then
f(x, h, a) is a versal unfolding off(x, h, ao) if and only if

(2.15) rank (0, ho, ao; m) q+l,
0(, )

that is, for p q, (0, o, ao) is a regular solution of Hq,j O.
The proof of this result is rather technical, is not needed to understand the

remainder of this paper, and is relegated to the Appendix. We note that the proof for
the cases q =< 2 and q 3", along with the necessary tools for the remaining cases, are
developed in 11 ].

Clearly Theorem 2.15 is an extremely useful result. In particular, continuation
methods readily compute paths of regular points and so paths of singular points can
be computed by continuation. If the side-constraints are also monitored, then higher-
order singular points can be detected. In [14, 4,5] a method is described for
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computing regions in parameter space Rp which have "qualitatively similar" bifurcation
diagrams, and for moving up and down the hierarchy for nonsymmetric problems. A
similar procedure applies in the Z2-symmetric case, and is illustrated in 6 by an
example.

In applying this procedure it is often convenient to treat the (3", 0)-family as if
it were a codimension-2 singularity (e.g., when topological equivalence is sufficient).
Recall from Theorem 2.13 that membership in the (3", 0)-family is defined by (2.8).
As we show below, (2.8a) can be expected to have regular solutions and therefore the
same path-following techniques can be applied.

COROLLARY 2.16. Suppose that, for some some me R, (0, Ao, ao) is a versally
unfolded (3", 0, m)-singularity. Then (0, Ao, ao) is a solution of (2.8a) and il, i2
{1,. .,p} can be chosen such that

(2.16) 0A3*,o (0, ho, ao) is nonsingular.

Proof The result follows by noting that A3*,o can be obtained from H3.,o by deleting
the last row, and then applying Theorems 2.13 and 2.15. [3

The following corollary discusses the fact that, in the process of taking one step
up or one step down, the hierarchy usually presents no numerical difficulties (cf. [14,
Thm. 5.8]).

COROLLARY 2.17. Suppose <--q<--3, p=q, and (0, Ao, ao) is either:
(i) a universally unfolded (q, j)-singularity of (2.1 a) with (q, j) (3", 0); or

(ii) a (3", 0, m)-singularity with (2.16) satisfied for (il, i)=(1,2). Let (q’,j’) be
such that the (q’, j’)-node appears above the (q, j)-node, with a single branch connecting
the two.

Then for (q’,j’) (3", 0)( (3", 0), respectively) (0, Ao, ao) is either a regularpoint
or a simple turning point of the system

(2.17) Hq,,j,(O, h, a)=0 (A3.,o(0, h, a)=0).

Proof The hypotheses imply that the extended system for the (q’,j’)-node can
be obtained by crossing one element out of the system for the (q,j)-node, and that
the Jacobian of the (q,j)-system is nonsingular. Therefore the Jacobian for the (q’,j’)-
system must have full rank at (0, Ao, ao). q

Finally we have a result which indicates that one of the side-constraints changes
sign as a path of singularities crosses a higher-order singularity, which proves to be
useful for the numerical detection of these higher-order singularities.

COROLLARY 2.18. Suppose p, (q,j), (q’,j’) and (0, Ao, ao) are as in Corollary 2.17.
Let (0, A (s), a (s)) be a smooth parameterization of the solution path of (2.17) with
A(0)=Ao, a(0)=ao, and (((O), &(O))((dA/ds)(O), (da/ds)(O))#O. Finally, let
C(O, A, a) be the label on the branch connecting the (q’,j’)-node with the (q,j)-node. Then

d
(2.18) as

Proof. Let

(2.19a)

c(o,,(s), ,(s))l_-o o.

H(0, A, a) =0

denote the extended system for the (q’,j’)-node. Then, as in Corollary 2.17,

(2.19b)
C(O, I, a)
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is the extended system for the (q,j)-node. Since (A(s), c(s)) is a solution path for
(2.19a), we have

(2.20)

However, by assumption,

OH
o(a,)

(o,,o ,o)(X()’ o.
(0)/

o () is nonsingular.
o(,x, c) o,0

In particular, (, (0), c(0)) cannot be a null vector for this Jacobian, and from (2.20),
we see that (2.18) must be satisfied. F1

Clearly, the success of the numerical approach relies on the results of Theorems
2.13, 2.15 and of Corollaries 2.16-2.18. It is convenient to group these ideas into one
concept, namely, that of an extended system with side-constraints being wellformulated.
This could be done now for Hq, and C kq,.j, but since the concept has more general
applicability we leave the actual statement until 3.2.

3. Vector problems with Zz-symmetry. In this section we describe how the results
in 2 can be extended to cover vector problems satisfying a Zz-symmetry condition.
The process relies on a generalisation of the well-known Lyapunov-Schmidt reduction.
This section is split into three subsections. In the first we outline the theory of the
generalised reduction in the presence of symmetry, and derive an equivalent scalar
equation (the reduced equation). In the second subsection, by essentially reversing the
reduction process, defining conditions are constructed for the vector problem which
inherit the desirable properties discussed in 2. Finally in the third subsection we
derive suitable extended systems for the actual numerical calculation of symmetry-
breaking bifurcation points.

3.1. The generalised reduction with Zz-symmetry. Consider

(3.1) F(x, A, a) 0, F:XxRxRP-> Y,

where X, Y are Banach spaces with X c Y. Assume Uo := (Xo, Ao, ao) is a solution of
(3.1) satisfying

(3.2a) F := F(uo) is a Fredholm operator of index zero, (see [22]);

(3.2b) N(F] span {o}, N[(Fx)*] span {o*},

where (F)* is the adjoint operator associated with F.
In addition we assume that (3.1) satisfies the following symmetry condition: there

exists a linear operator S: Y-> Y such that

(3.3a) SI, S2=I onY,

(3.3b) SI, S2=I onX( Y),

(3.3c) F(Sx, A, a)= SF(x, A, a).

The mapping S induces splittings of X and Y into symmetric and antisymmetric
subspaces

(3.4a) X= X(Xo, Y= Y( Y,

where

(3.4b) x XCSx x, x X, cc, Sx -x,
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with similar definitions for Ys and Ya. By differentiating (3.3c) it follows that

(3.5) SFx(x, A, ce) Fx(x, , a)S for x Xs.
Therefore, for Xo Xs,N[F] is invariant under S, and it follows that either 4o X or
bo Xa. Also, (3.3c) implies that F satisfies F:X RP+I- Y. Therefore, if bo Xs,
the analysis can proceed entirely within X and Ys, and the symmetry is unimportant.
Hence, for the rest of this paper we restrict our attention to the symmetry-breaking ease

(3.6a) tho X.
In this case we also require

(3.6b) F Isom (X, Y),

which gives

(3.6c) F’X Y is Fredholm with index zero.

Then it follows from (3.5) that

(3.6d) qo*Y =0.

In the application we are considering the point (Xo, Ao, ao), and hence the null
vectors 4o and qo*, are not known a priori. Indeed, the accurate location of a suitable
(Xo, o, ao) is a goal of the computation. However, initial guesses and q* for both
bo and qo* will be generally available, and it is these approximations we use to perform
the reduction.

We choose subspaces X1, X2, Y1, and Y2 and projections P and Q as in [16,
eqns. (3.4), (3.5), respectively] but, in addition, we assume

(3.7) SXi Xi, SYi Yi, i= 1, 2

and define projections P, Po, Q, and Qa by

(3.8a) P’:XX, R[P]=X, NIP’]=X,,, Po=I-P,
(3.8b) Q Y Y, R[Q] Y, N[Q] Ya, Qa I- Qs.

Also we assume (2.6) of [15]

(3.9) N[P] S[(I- Q)F] {0},

which ensures [15, Thm. 2.10]:

(3.10) (I- Q)Fx(I- P) X1 - Y is nonsingular.

In addition we have the following lemma.
LEMMA 3.11. Suppose qo, qo* satisfy (3.6) and P, Q, P, Q are as above. Let

u (X, A, a)XxRxRp, then

(3.1 la) $4 -,
(3.1 lb) PP PP O,

(3.1 lc) Fx(u) LS(u)+ L’(u),

Moreover, for u sufficiently close to Uo,

(3.12a)

(3.12b)

(3.12c)

QQ= QQ=O,

LS:=Q F,P, L:=Q

L (u)" X Ys is nonsingular,

L’(u)’X, Y, is Fredholm of index zero,

N[L"(Uo)]=span{cko}, R[L(uo)]={Y Y,,lq*o y=0}.
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Proof From (3.7) it follows that P and Q commute with S. Therefore P(Q)
commutes with ps(Q, re.spectively), and R[.P] is invariant under S. Now we obtain
from (3.3b) that $4 +4. However, S--4 can be shown to imply Pqo=0, which
contradicts (3.9), and therefore Sb =-4. A similar argument can be used to show
t*S=-*, and therefore we have (3.11a). The relations in (3.11b) follow from the
commutativity noted above and (3.11a).

To prove (3.11c) we use (3.4b) and (3.5) to show that the cross terms Q’FP and
QFP" both vanish. Finally, (3.12) is an easy consequence of (3.2), (3.6), and
(3.11c). U

The reduction process proceeds by writing (3.1) as

(3.13a) (I-Q)F(f,A,a)=O, Pf=e;
(3.13b) QF(I), h, a)=0,

where e R. The Implicit Function Theorem and (3.10) ensure the existence and local
uniqueness of a solution

(3.13c) l)(e, A, a)=Xo+Xl(e,A a) 4- eta, PXl 0

of (3.133) for (e, A, ce) near (0, Ao, no) with Xl(0, Ao, Co) 0. Substitution of this solution
into (3.13b) provides the reduced equation

(3.14) h(e, A, a):= *QF(Y(e, A, a), A, c)=0.

(Here we have used q*Q q* Q", which can be obtained from (3.7), (3.8), and (3.11).)
An important consequence of requiring that the reduction process respect the

Z2-symmetry (i.e., requiring (3.7)) is that the reduced function, h, inherits the reflec-
tional symmetry of F (see, for example, 12, p. 306]). This is easily shown after noting
that Sl)(e, A, a) f(-e, A, a) and is stated as

(3.15) h(-e, A, a)= -h(e, A, a).

Lemma 3.11 motivates the following definition.
DEFINITION 3.16. Let F and h be as above, and suppose a(z,A, a) satisfies

h(e,A, a)=ea(e2, A, a). Then (Xo, Ao, no) is said to be a (q,j)-singularity (i.e., a
(q,j)-Z2-symmetry-breaking bifurcation point) of (3.1) if a(z, A, a) satisfies the scalar
defining conditions (2.13a, b) at (0, Ao, no). Similarly, the (3", 0)-family and the
(3", 0, m)-singularity are defined in terms of a(z, A, a) and the conditions listed in 2.
Moreover, F is said to be a versal (universal) unfolding of the singularity at (Xo, Ao, no)
if h is a versal (universal, respectively) unfolding about (0, Ao, no).

Some effort is required to show that this definition is consistent. In particular, it
must be shown that any suitable choice of P and Q in the reduction process leads to
a reduced function having the same type of singularity and unfolding behaviour at
(0, Ao, no). This is done for the nonsymmetric case in [15], and the result for the
Z2-symmetric case follows with minor modifications. The required setting is quite
technical and therefore we omit the details.

3.2. Defining conditions for vector problems. Definition 3.16 indicates that defining
conditions for (3.1) to have a (q,j)-singularity (which we take to include the (3", 0, re)-
singularity) can be obtained directly from the reduced equation and the conditions
derived in 2. However, a direct application of this approach does not lead to a
computationally efficient scheme. The source of the difficulty is that the reduced
function h(e, A, a) is only defined on the solution set of (3.13a). If an iterative procedure
is used to solve the (q,j)-extended system applied to h, then, for each iteration, (3.13a)
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must be solved for 12(e, ,, a). A more efficient approach can be obtained by extending
the definition of h to include points not on the solution set of (3.13a). The following
treatment is an extension of that in [16, 4] to the Zz-symmetric case.

Let w (e, A, a, c)RxRxRPx Ys and define f(w) to be the solution of

(3.17a)

(3.17b)

QSF(, A, a) c Ys,
(I-Q)QaF(f,A, a)=0, ppaf= eb,

for w near Wo := (0, ho, ao, 0), with

(3.17c) f(Wo) Xo.

The particular form of (3.17a, b) has been chosen to be especially convenient for the
discussion in 3.3. We note that Lemma 3.11 and the Implicit Function theorem ensure
the existence and local uniqueness of (w). The corresponding reduced function,

(3.18) /(e, A, a, c):= *QaF(I,(w), A,

can easily be shown to satisfy

(3.19a) h(e, A, a) =/(e, A, a, 0),

(3.19b) /(-e, A, a, c)=-/(e, A, a, c).

In the sequel we drop the tilde from/.
Let Hq,j(w) and Cqk,j(W) be the extended system and side-constraint functions

(defined in 2) applied to h(e,h, a, c). It now follows from Definition 3.16 that
Uo (f(Wo), ho, ao) is a (q,j)-singularity of (3.1) if and only if (ho, ao) satisfies

(3.20a) Gq,(O, Ao, Co, O) =0, Gd(w) :=
Hq,j(w)

gs eq+

(3.20b) C ,o, ao....qk,j(0, 0)#0, k= 1 Kqj.

Finally, as we show below, we can apply a change of coordinates to write (3.20) in
terms of (x, A, a) for x in a X-neighbourhood of Xo.

LEMMA 3.21. (Inheritance). Let u (x, h, a), x Xs, and (u) := (h, a, QF(u)).
Define
(3.21) Fq,j(u) := Gq,i(O ff(u)).

Then, for u in a X R RP-neighbourhood of Uo, a smooth inverse mapping ()-1"
R Rp Ys --> Xs R Rp exists. Moreover, for Wo := (0, v(Uo)) (0, Ao, ao, 0),

OHq, Rp q+l

0(A, a)(Wo)" R x --> R

is surjective (nonsingular for p q) if and only if
0.,,(Uo).V’ X. x R Rp - Y R"+1

Ou

is surjective nonsingular for p q).
The proof follows the lines of that for [16, Thm. 4.11] and is omitted.

Given this result, defining conditions for (3.1) tO have a (q,j)-singularity at u are

( QSF(u) )(3.22a) Fq,j(u)
\Hq,j(O, ff(u))

=06 Y Rq+l,

(3.22b) ck,(0, #(u)) 0, k 1, , Kq,j.

Moreover, from the Lemma it easily follows that all results about the suitability of the
defining conditions (2.13a, b) for the scalar problem (2.1), namely, Theorems 2.13,
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2.15, and Corollaries 2.16-2.18, carry directly over to the vector case (3.1) through the
use of the defining conditions given in (3.22a, b). A brief summary of these results
follows:

(i) Specificity. Conditions (3.22a, b) are satisfied at Uo (Xo, Ao, Co) if and only
if Uo is a (q,j)-singular point of (3.1).

(ii) Regularity. Suppose u0 satisfies (3.22a, b). Then F(x, , ) is a versal unfold-
ing if and only if OF,j/Ou is surjective.

(iii) Transversality ofside-constraints. Let (q’, j’) and (q, j), with q’ < q, correspond
to a pair of nodes in the hierarchy that are connected by a single branch. Then if Uo
is a universally unfolded (q,j)-singularity and u(s) is a path of (q’,j’)-singularities
with u(0)= Uo, u(0) 0, then the side-constraint corresponding to the label on the
(q’,j’)-(q,j) branch switches sign as s passes through zero. (Here we have given a
rough statement; the precise formulation must deal with the (3", 0)-family, as done in
Corollary 2.18.)

These three properties are important for the numerical implementation of the
approach described in [14]. We refer to a set of defining conditions that have these
three properties as well formulated.

In addition we have the following.
(iv) Well behaved at degeneracies. Let (q’,j’) and (q, j) be as in property (iii)

above (or, more precisely, as in Corollary 2.17). Suppose Uo is a uniformly unfolded
(q,j)-singularity of (3.1) (and, if (q,j)=(3*,0), appropriate al and a2 are chosen
according to Corollary 2.17). Then u0 is either a regular point or a simple turning point
in the path of (q’,j’)-singularities passing through Uo.

We remark that property (iv) is not included in the concept of well-formulated
defining conditions since it does not generalise (e.g., in the nonsymmetric case, a path
of pitchfork bifurcation points (q 2) undergoes a bifurcation at a universally unfolded
hilltop bifurcation point (q 3); [12]). It is expected that the other three properties
do generalise, in particular, that well-formulated defining conditions can always be
found. Finally we note that, when new singularities are considered, we need only
develop the defining conditions for the low-dimensional reduced equation. If these
conditions can be shown to be well formulated then the inheritance lemma provides
the same properties for the defining conditions induced for the full problem. This
represents a considerable technical improvement over the direct approach (see [7],
[13]).

3.3. Computational forms. It remains to show how the vector defining conditions
(3.22a, b) can be evaluated at a given point (x, A, a) Xs R Rp. In this section we
show how (3.22a) can be rewritten into several different, mathematically equivalent
forms. The different forms are not computationally equivalent, however, and the choice
of a particular one depends on the relative costs of various matrix-vector computations.
This is further illustrated by the application to the Taylor problem considered in the
subsequent sections.

We assume that 0 and PS are known explicitly, and F is written in the form

(3.23) F(u)=
F"(u) Q"F(u)

Then (3.21 becomes

(3.24)
l:S(u) )G.;(u) :=

/4,.;(0. (u))
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and we are left with computing Hq.j(0, (u)). To do this we differentiate (3.18). For
example,

(3.25a) a(w) := h(w) *Laf,,
(3.25b) a (w):= h (w) q*[La + FxfD, + F,f],

where La: L"(u) is as in (3.11c), and the derivatives of are evaluated at w=
(0, #(u)) (0, A, a, FS(u)). At this point f and f are not yet known, although linear
equations for them can be obtained by differentiating (3.17a, b). In particular, we obtain

LS(u)l’](w)=O, (I-Q)L"(u)f =0, PP"
By writing f =f+f (in the obvious notation), we find fs__0 (see (3.12a)) and

(3.26)

where

."(u)(u) ()(Y Y,,) x R,

Q)L"(u))’Xo Y1 Y,,) x R,(3.27a) (u):- (I-.np,
(3.27b) 4*" Xa - R with *4 1.

By using (3.10) and Lemma 3.11 it is not difficult to show that

(3.28) a(u)’Xo Y Yo x R is nonsingular;

hence (3.26) has a unique solution. Similarly, x=+, and Ox are uniquely
defined by

(3.29a) F(u)(u)= -(I-Q)F(u), =0,

(3.29b) (u)O:(u)=(-(I-O)[F:O+F:]f:)0
=0.

Finally, through the use of the (scalar)Z-hierarchy, we obtain

(3.30a) Fo,o(u):=
h *La =OeXxR,

(3.30b) h. *[ta. +Fxaa + F.a:]

=0eXxR.
Here, as in (3.25), L and the derivatives of F, fl are evaluated at u, with the derivatives
of fl given by (3.26) and (3.29). Similar manipulations provide expressions for the
other derivatives of h required to form the side-constraints and the other (q, j)-extended
systems. As in the above examples, only the solutions of linear systems are required
to obtain Fq,(u) and C,(u).

We note that, after the solution u Uo is found, (3.9), (3.11), (3.26), and (3.27)
provide

(3.31) fl(0, (Uo))= oe N[F]
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for some R\{0}. If, as is usually the case, a continuation method is being used to
compute solutions of Fq,j(u)--0, then the computed null vector fa (suitably normal-
ized) can be used as the approximate null vector b for the next step. In order to use
the form (3.30a) or (3.30b) we also require an approximate "left null vector" (q*) for
the next step. For example, we might use q0*, the left null vector associated with the
current solution Uo. It is easy to check that qo* q*(u0), where q*(u) satisfies

(3.32a) (v*,/3)a(u) -QL"(u),

(3.32b) q*(u) (v*(I Q)+ Q)Qa,

and v*" Y Y, R, /3 R. The left vector q*(u) for uS uo can also be used to
advantage in the evaluation of the extended system. We do not pursue this here, but
refer the interested reader to [16] for similar calculations.

In the example computations discussed in the subsequent sections it was incon-
venient to solve transposed systems of the form (3.32a). We end this section by
considering another form for Fq, which does not require the solution of transposed
systems. The idea is to treat the necessary derivatives of f as independent variables,
appending their defining conditions to the extended system. The details of similar
manipulations are given in [16, 5] and so we merely state that (3.30a) and (3.30b)
are equivalent to

(3.33a) Fo,o(U, ):= F(u)I 0,

(3.33b) =0,

respectively, with th,, w, e Xa, vs e Xs (see [7]). Similar expressions can be developed
for the other types of singularities (see 4). We note that the regularity of solutions
of (3.33a), (3.33b), or indeed any other system derived in this way, is a direct con-
sequence of the regularity of the original system (3.22a). The side-constraints can also
be monitored without using q*, as is discussed in the next section.

4. Numerical implementation. In this section we discuss briefly some of the main
points in the numerical implementation of the systems given in 3 for the computation
of singular points. In that section it was shown that there are at least two different
choices for the (0, 0)-extended system, namely, (3.30a) and (3.33a), and that by taking
different choices for the projection Q in (3.8) there are other, mathematically equivalent,
extended systems (cf. [16] for the nonsymmetric case). The choice of extended system
depends very much on the details of the implementation for any specific problem. In
the example on the Taylor problem in 5, X R n, where n 103, F arises from a
finite element discretisation of the Navier-Stokes equations, and the methods for the
calculation of the symmetry-breaking bifurcation points are designed to fit into a large
general purpose finite element code for two-dimensional partial differential equations
including incompressible flow problems. Thus decisions on the choice of method are
not made purely with respect to the Taylor problem.
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There are many aspects to the numerical implementation of any method but for
this discussion there are two points which should be mentioned. First a direct method
based on the frontal method [10] is used to compute LU factors of matrices arising
from the finite element discretisation. For problems of moderate size, say, having a
few thousand unknowns, it is acceptable to alter the structure of the Jacobian Fx by
replacing one column by another column to ensure the resulting matrix is nonsingular.
This modification to the matrix structure does not adversely affect the efficiency of the
frontal method since the variable corresponding to the extra column is simply held in
the active matrix throughout the decomposition. Second, at the time the software was
written the system (3.30a) had not been analysed by the authors. When (3.30a) did
become available it was not used because the frontal method software was at an early
developmental stage and could not easily produce the LU factors of F[. A second
assembly and factorisation would have been required to produce this information, and
would have been too expensive. At present this is no longer a limitation of the software
and either system could now be used, but for our application (3.30a) does not produce
savings sufficient to warrant recording the algorithms.

Such considerations lead us to use methods based on systems like (3.33a) and
(3.33b) even though at first sight they may appear unsuitable because of the inclusion
of the unknowns , u, etc., in the systems. The solution procedure is based on that
described in [7] and [24] and is not repeated here. We merely note that, to check a
side constraint, q*d 0, say, after the nonlinear solver has converged, it is sufficient
to solve

(4.1) (F
Then a 0:=>q*d 0. Note that matrices like (4.1) arise in the solution procedure
described in [24] and so little extra work is required.

It is worth mentioning that for the finite element method used in 5 the evaluation
of terms like Fx,q,U (which arise in the Jacobians of the extended systems) is no more
complicated than the evaluation of F. Hence there is no reason not to use high-order
derivative terms. This is particularly important in the consideration of the singularities
of codimension 1, 2, and 3", which involve several such terms.

Finally, for convenience, we outline how to set up extended systems for the (1, -1)
and the (3", 0, m)-singularities corresponding to (3.33b). The approach is similar to
that described in 3.3 to derive (3.33a, b) and so we omit all details. The condition
az(W) := h(w) =0 (cf. (3.25a, b)) leads to the following equations where u (x, A, a):

(4.2) Fx( u)q, + F,c,,coZ +-F,c,g,,dpodpo =0,

l* qo 0

and these are appended to (3.33a) to compute a (1,-1)-singularity. To compute a
(3", 0, m)-singularity, append (4.2) to (3.33b).. The Taylor problem. In this section we are concerned with the application of
the systems developed in 3 to the problem of calculating steady axisymmetric flows
in the Taylor problem [6]. The experimental situation we have in mind consists of two
concentric circular cylinders. The inner cylindrical wall rotates and the outer cylinder
and both ends are stationary. The annular gap between the cylinders is filled with a
fluid, and it is the motion of this fluid that is studied. One of the ends consists of a
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movable annular collar so that the length of the annulus may be adjusted. Benjamin
[2] and Benjamin and Mullin [3] have carried out several experimental investigations
of flow in the above apparatus and have discovered an interesting variety of bifurcation
phenomena. The apparatus has two parameters which may be adjusted: namely, the
speed of the inner cylinder (in nondimensional form the Reynolds number, R) and
the length of the annulus (in nondimensional form the aspect ratio, F); the apparatus
is mirror symmetric about the midplane of the annulus. (The apparatus also possesses
a symmetry about the axis of the cylinders, but since this symmetry is not broken by
the computed solutions it is not important for our analysis (recall the discussion leading
to (3.6a).)

A discrete model of this boundary value problem was obtained using a finite
element method and numerical solutions obtained using standard continuation methods
(e.g., the pseudo-arclength approach of [17]) in conjuction with the extended systems
described in this paper. The equations are given in [6]-[8] and are not reproduced
here. It is sufficient to know that after nondimensionalisation, the unknowns are the
primitive variables (Ur, U+, Uz) and p, with (r, gb, z) the polar coordinates in the region
D={(r, z)10<= r_-< 1,-0.5=<z-<0.5}.

The boundary conditions are that Ur and uz are zero on the entire boundary of
D, and that u is zero on the outer cyclinder (r 1) and 1 on the inner cylinder (r 0).
On the ends (z +0.5) u+ is zero except near the inner cylinder, where it increases
smoothly to 1 over a small distance, e. The exact value of e and the variation of u6
will depend on the details of the experiment; however, provided e < 0.05, we have
found the results to be insensitive to the precise value of e. We note that e must be
positive because when e =0 the rate of dissipation of energy in the fluid becomes
infinite [3]. The Z2-symmetry in the equations can be expressed as [7], [8]

S{u(r, z), u(r, z), Uz(r, z), p(r, z)}
(5.)

{u(r, -z), u(r, -z), -u(r, -z), p(r, -z)}

and clearly S /, S2= L
The finite element method involves covering the region D with a mesh of nine-node,

isoparametric quadrilateral elements and approximating the velocities (ur, uz, u+) by
piecewise biquadratic functions and the pressure by piecewise linear functions, which
are, in general, discontinuous across element boundaries. The meshes used to obtain
the results given in 6 were uniform in the r- and z-directions except near the corners
where the inner cylinder meets the ends, where local refinement was used (see [6]). A
typical mesh is shown in Fig. 2. For the calculation of symmetric flows and symmetry-
breaking singular points, only half the region D need be discretized, whereas for
asymmetric flows and other types of singular point the whole of D must be discretized.

Symmetry plane

FIG. 2. The finite element mesh.
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The meshes for the full region may be characterized by the triple (NR, NZ, NC),
where NR and NZ are the numbers of elements in the r- and z-directions and the
mesh has 2NC 1 elements in each of the two corners where there is local refinement.
A mesh for one half of the region D will be denoted by (NR, NZ, NC, S) and is
essentially equivalent to that part of an (NR, 2NZ, NC) mesh with z <-0. The total
number of degrees of freedom on an (NR, NZ, NC) mesh is 3(2NR + 1)(2NZ + 1)+
60(NC 1) + 3NR.NZ + 12(NC 1) and 3(2NR + 1)(2NZ + 1) + 30(NC 1) +
3NR.NZ + 6(NC 1) on an (NR, NZ, NC, S) mesh. The calculations presented in 6
were done on (10, 10,5) and (10,5,5, S) meshes having 1878 and 987 degrees of
freedom, respectively.

Further details of the finite element implementation can be found in [8]. We
merely state that the resulting finite-dimensional system may be written as

(5.2) F(x, R, F, r/) =0,

where x represents the motion of the fluid, R is the Reynolds number, F is the aspect
ratio, and / the radius ratio. Also F satisfies the Z2-symmetry condition for an
appropriate discretiation of (5.1). Finally, we remark that we do not discuss any
questions of the convergence of the numerical scheme in this paper, but refer the
reader to [5], [19] for preliminary results on this topic.

6. Results. In this section we present some numerical results for the finite Taylor
problem obtained with the techniques described in this paper. The physical situation
we are concerned with is when the length of the annular region is comparable to the
separation of the cylinders, so that the aspect ratio is near 1. Under these conditions
the flows have either one or two Taylor cells. The two-cell flows may be symmetric
about the mid-plane or asymmetric. (The single-cell flows are, in fact, highly asymmetric
two-cell flows with one cell so weak as to be barely observable [6].) At sufficiently low
Reynolds number all the flows are symmetric and have two cells because the Navier-
Stokes equations have a unique solution at low Reynolds number.

At aspect ratio and radius ratio 0.615 (i.e., the situation studied in [3]), symmetric
two-cell branch was computed, on a symmetric grid, using standard continuation
techniques. The presence of the symmetry-breaking bifurcation, which leads to the
development of the single-cell flows, was detected by monitoring the sign of the
determinant of the antisymmetric Jacobian matrix. This requires an LU decomposition
of the antisymmetric Jacobian matrix after the solution has been obtained, and since
each solution requires about five Newton steps, this increases the computational cost
by approximately 20%. The path of symmetry-breaking bifurcations passing through
the detected point, with radius ratio fixed at 0.615, was then computed. The side-
constraints for the (0, 0)-singularity were monitored along the path and a change in
sign indicated the presence of a (1,-1)- and a (1, 1)-singularity. The paths of these
two singularities were computed using system (3.33b) for the (1, 1)-singularity and the
corresponding system for the (1,-1)-singularity (see 4). The paths of these sin-
gularities in the F-r/ plane are shown in Fig. 3. Along each singular path the side-
constraints were monitored, which indicated a (2,-2)-singularity on the path of
(1,-1)-singular points and (3", 0, rn)-singularity where the (1,-1) and (1, 1) paths
touch. Also two paths of nonsymmetric codimension-1 singularities are given. A path
of nondegenerate hysteresis points on the asymmetric part of the solution emanates
from the (2,-2)-singularities. Similarly, a path of nonsymmetric transcritical bifurca-
tion points emanates from the (3", 0, m)-singularity. These paths were calculated using
systems for nonsymmetric singularities analogous to (3.33) (see [16]).
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FIG. 3. F-r/parameter space. The lines represent paths of codimension one singularities. The parameter
space is divided into open regions by the paths and representative bifurcation diagrams are given for each region.
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FIG. 4. Parameter space near the (2,-2)-singularity.
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FIG. 5. Parameter space near the (3, O)-singularity.



NUMERICAL SOLUTION OF EQUATIONS WITH Zz-SYMMETRY 827

Figure 3 shows the parameter space F-r/ divided up into disjoint regions, by the
paths of singularities. In each region the bifurcation diagrams are qualitatively similar
and the forms of the diagrams are indicated on the figure. Figures 4 and 5 show
expanded forms of the regions near the (2, -2)- and (3", 0)-singularities, respectively.
Figure 4 should be compared with the diagram of the canonical form and its unfolding
(transition set) in [12, p. 269]. (Note that there is a minor error in that figure--the
path of hysteresis points should be tangential to the path of (1,-1)-singularities at the
(2,-2)-singularity.) Figure 5 also should be compared with the canonical form in [12,
p. 276] since aazz < 0. We note that the case rn > 0 is simply a reflection in A of the
m < 0 case.

Finally it should be mentioned that much of the interesting structure near the
(2, -2)- and (3", 0)-singularities is not experimentally observable. The reason for this
is that at the larger radius ratios the transition to time-dependent nonaxisymmetric
flow occurs at a lower Reynolds number than the singularities in question.

Appendix.
Proof of Theorem 2.15. We apply a separate analysis for each singularity having

codimension less than 4. We begin by sketching a general approach which can be used
for all the singularities. However, simpler proofs are often available for any particular
type of singularity, and these are not pursued here.

Let (q,j), q<-3, denote one of the singularities for (2.1) (including the (3", 0, m)-
singularity). Suppose Uo (Xo, Ao, no)=0 is a (q,j)-singularity of (2.1). Let Hq.j(u;f)
denote the extended system obtained from the Z2-hierarchy as applied to f (see 2).

Therefore

(A.1) Hq,j(O;f) =0E Rq+l.

In the sequel we omit the subscripts q, j from Hqd.
The first step of the proof is to show that the rank of (OHIO(A, a))(0; f) is invariant

under contact transformation. In particular, we have the following lemma.
LEMMA A.1. Suppose p q and

OH
A. 1

a0(A, 0; f is nonsingular.

Define

(A.2a)

where

g(x, A, a):= T(x, A )f(X(x, A ), A(A ), a),

(A.2b) X(x, )t xW(x2, A ), Y((O, O) O,

(A.2c) A(0) 0, A (0) # 0, T(0, 0) 0.

That is, (A.2a) is a Z2-equivalence relation. Then in the obvious notation, the extended
system applied to g satisfies

OH
(A.3)

0(A,a-- (0; g) is nonsingular.

This lemma is also proved using a case-by-case analysis, for which we provide a

general outline below. For the moment we assume that Lemma A.1 has been proven,
and consider the remainder of the proof of Theorem 2.15.
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Lemma A.1 ensures that we need only consider functions f that have been put
into normal form. That is, we can take

(A.4a) f(x,,,a)=h(x,,)+x{i=l ap(z, , a)}
with z x2 and

(A.4b) h(x, , xa(z, , ),

given by the polynomial in the (q, j)-node of the hierarchy. Using the notation in [12,
Chap. VI], it now remains to show that (A.1) is equivalent to (see, 12, Thm. 3.3, p. 259])

(A.5) gx.,(Z2) T(h, Zz)+R{xpi(z,,,O)li=l,...,q}.

(For brevity, we assume here that the reader is familiar with the material in 12].) This
final computation is significantly aided by the explicit expressions for T(h, Z2) for
each of the singularities in question, provided in Table 5.2 of [12]. Below we provide
an example of this last calculation for the (3", 0, m)-singularity.

Let h(x, ,) be the normal form for the (3", 0, m)-singularity, that is, (A.4b) is
satisfied with

(A.6) a(z,,)=(zZ+2mz,+6,2), 6=+1, mR.

Given any germ xb(z, h) x., (Z2) we write out the coefficients of the Taylor expansion
for b(z, ,) about (0, 0) in a vector

(A.7a)

where

(A.Yb)

v := (boo, bl0, bl, b2o, b21, b22)r,

b(z, h Y bijz’-Jh .
i,j

(In general, the coefficients of the nonomials that are not higher-order terms, that is,
not in the module P(h, Z2) given in Table 5.2 of [12], are included in the vector v.)
Next a matrix is formed by writing down a basis for a complementary space of P(h, Z2)
in T(h, Z2), and appending terms obtained from the unfolding. In particular, for the
(3*, 0, m)-singularity we obtain

0 0 0

(A.8) M
0 , a,o R6X6 R3
1 0

e ae 6=1.
azza

i ;mOaz  o0 aaa
The first column of M corresponds to z2+ 2mA + 12, which is a germ in T(h, Z2). The
condition thatf in (A.4) is a universal unfolding (i.e., that (A.5) is satisfied) is equivalent
to

(A.9) det M 0

(see [11, Prop. 3.48], , 7, where the same construction has been used).
By multiplying the last three rows of M by the matrix

(A.10) V:=- 2 0
2

0 0 -2]
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we obtain

(a.lla) M M
1 //22

0 a
azo, e4x4(A.1 lb) M12 E

r
(A.1 lc) r g(2aza m[a= + 6aaa]).

It is clear from (A.10) and (A.11) that (A.9) is equivalent to

(A.12) det M2 0.

Moreover, it is trivial to check that

0 0
(A.13) r =0a M3*,o,m(0), r M3.,o, (0)=0,

where M3*,o, is as in (2.10a) (a similar result can be shown for M3.,o, given by (2.10b)
when m #0). It now follows from (A.11b) and (A.13) that

(A.14) 0H.,o.
0(a, )

(0)= 1,

and the desired equivalence results follow from (A.12).
The same approach can be used for the other (q,j)-singularities; we omit the

details. We are left with the following proof.
Proof of Lemma A.1. We begin by eliminating the trivial case of scaling, that is,

for transformations (A.2a) with

(A.15) T To, X Xox, A Aoa.
Here, To, Xo, and Ao are nonzero constants. In this case a straightforward computation
can be used to show (A.3). For the remainder of the proof it is convenient to assume
that f has already been rescaled so that the transformation (A.2) also satisfies

(A.16a) T(0, 0)= 1, (0, 0)= 1,

(A.16b) A(A) A +/2A2+ O(A3).
A second simplification results from the fact that we need only consider infinitesimal

contact transformations. The argument for this is common to any paicular type of
singularity, and goes as follows. Let T, X, A be as in (A.2) with (A.16) satisfied. Define

(A.7a) T(x, a; t)= tr(x, a)+(1 t),

(A.17b) X(x, A; t)= tX(x, A)+(1- t)x,

(A.7c) A(a; t)= tA(a)+(1- t)a,

(A.17d) h(x, A, a; t):= T(x, A; t)f(X(x, A; t), A(A; t), a)

for [0, 1]. Then it follows that the transformation (A.17d) is a Z2-equivalence relation
with (A.16) satisfied for all t. In the obvious notation, define

0H(0; )
(A.18) g(t)= t[0,1].

0(a, )
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If it can be shown that

(A.19) td’(t)=A(t)J(t)’ t[0, 1],

then the lemma follows from the relation (see [9, Thm. 7.3, p. 28])

(A.20) det J()= tr[A(s)] ds det J(0)

and the fact that J(O)=(OH/O(h, a))(0;f), J(1)=(OH/O(h, a))(0; g).
Therefore we are left with proving (A.19). Note, however, that h(x, , a; t+r)

and h(x, , a; t) are contact equivalent, and that the corresponding transformation
satisfies (A.16). Hence (A.19) will follow if we can show that, for a general function

f (with a (q,j)-singularity at (0, 0, 0)),

dJ OH
(a.21) d-- (0) a(0)J(0), J(0) := 0(,,a) (0", f),

for A(0) a smooth function of J’, , and . Here and in the sequel = dT/dt, etc.
The entire proof now relies on proving (A.21). We illustrate the necessary calcula-

tions by considering the (3", 0, m)-singularity (the other singularities can be treated
in a similar, and often simpler, way). We assume that f is of the form (A.4) with a
suitable scaling so that

(A.22) a(z, ,)= z2+2mhz+ 6A2 + hots,

where hots denotes higher-order terms (that is, elements of P(f; Z2), which includes
cubic and higher-order terms in z and ,).

Note that Theorem 2.13 ensures a, az, and a all vanish at (0, 0). In fact, since
(A.17c) satisfies (A.16) for all t, it follows that h(x, , a; t) is of the form (A.4) with

(A.23) a(z, ; t)= z2+2mhz+ 6,2+ hots,

where rn and 6 do not vary with t.
We now proceed in the same manner that led to (A.8), only this time higher-order

terms arise in M. In particular, we find

(A.24) M(t)=

0 0 0 a\
0 0 rn az
0 0 a |
1 1 [azzh 1/2azza
2m rn azx azx ll

o

R66, ce R3, rn 6 R, 6 +1.

Moreover, it is easily checked that, for V as in (A.10), 2/and ]’/12 as in (A.11a), we
have

(A.25) M,2(t)
OH

(0; h(x, h, a; t))=: J(t).

Note that (A.10) and (A.23) show that

(A.26) Q=0.
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By differentiating (A.17a, b, c, d) with respect to t, and using (A.16), a straightforward
calculation shows that

(A.27a) /f/(0) 3-M(0).

Here 3- R66 has the form

1 2 3

(A.27b) 3- 0 }2,
* }3

where * denotes the blocks that can be nonzero. Moreover, the nonzero elements
correspond to coefficients in , J, X.

Finally, for /defined as in (A.11a), we have

d//(0)=(I Ov) dM (I OV) 3-M Od--- 0 - (0)=
0

(A.28a)

where

t(’0) t,
1

I 0

It is clear from (A.28b) that 3- has the same block structure as depicted in (A.27b).
Therefore it follows from (A.28) that

(A.29)
dJ

(o) -llJ(0),
dt

where 3-1 is the principal 4 4 submatrix in 3-. This proves (A.21), and completes our
proof of Lemma A.1. [3

We remark that the unfolding conditions given in [11, Prop. 3.48] for 3 and
5 are correct only if f is in normal form. The proper conditions for general f can be
obtained from Theorem 2.15.
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