
Parameter Estimation with Data Outliers

Goal: Discuss the use of RANSAC to fit parameterized models to data which includes outliers.

It is common in computational vision to attempt to fit a parameterized model to image features despite:

• Data arising from false positives of a feature detector (such as an edge or corner point);

• The presence of multiple objects in the image.

Both of these situations can lead to outliers in the data set fora parameter estimation problem.

Readings: Szeliski, Sections 6.1 and 6.2, Appendices B1 through B3.

CSC420: Estimation in the Presence of Outliers c©Allan Jepson, Oct. 2011 Page: 1



Model Problem: Affine Pose Fitting

We return to the model problem of fitting the affine pose parameters for a calibration pattern given

corner data with an outlier.

It is tempting to try approaches which consider using a LS fit, removing the point with the largest error,

and refitting.

However, this type of approach is not generally successful since a least squares solution can be strongly

perturbed by a single outlier, and the outlier(s) need not have the largest errors.

Instead, RAndom SAmple Consensus (RANSAC) is a common approach.
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RAndom SAmple Consensus (RANSAC) Algorithm

Suppose we are given data points{~zk}
K
k=1, which may include outliers.

Assume the following are given:

• Let J be the minimum number of data points needed to compute an approximate solution~q (for

affine fitting,J = 3 image points);

• Let ε > 0 be an error tolerance (Typicallyε = ρσ whereσ is an estimate for the standard deviation

of the measurement noise andρ ≈ 3.);

• Let T be the number of random sampling trials to do.
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RANSAC Algorithm (Continued)

LoopT times:

1. Randomly select J data points,~zk(j), j = 1, . . . , J .

2. Minimize the least squares objective

~q ∗ = arg min





J
∑

j=1

||~zk(j) − ~fk(j)(~q)||2



 , (note only theJ sampled points are used).

3. Identify the inliers,In = {k | ||~zk − ~fk(~q)|| < ε, 1 ≤ k ≤ K}.

4. If the number of inliers,|In|, is the largest seen so far, remember the current inlier set,In (and

possibly~q ∗).

End loop

5. Solve for~q ∗ using all pointsk ∈ In (i.e., all inliers).

6. Re-solve for the inlier setIn as done in steps 3 and 4 above.

Can iterate steps 5-6 until the set of inliersIn does not change substantially.

Steps 5-6 involve iteratively choosing weights,wk = 1(0) if k ∈ In (or k /∈ In, respectively). It is a

form of iteratively reweighted least squares (IRLS).
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RANSAC: Affine Pose Example

At least six independent constraints are needed to determine the 2D affine pose parameters,~q ∈ R
6.

The minimum number of labelled image points,~zk ∈ R
2 is thereforeJ = 3.

Initial RANSAC Solution RANSAC Solution

The pose parameters of the blue grid (above left) is solved using the J = 3 sampled points (red). The

solution after IRLS (blue grid, above right) and inliers (red points).The recruitment of more inlier data

points improves the solution. The mean solution (mauve grid) has negligible bias, despite the outlier.

The RMS noise in the data points was 2.6 (pixels), we usedε = 8 (pixels) (i.e.,ρ ≈ 3).
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RANSAC: Choosing the Error Tolerance

The error toleranceε for the inlier test:||~zk − Ak~q0|| < ε should be chosen so that:

1. data inliers typically pass the test. This suggestsε = ρσ whereσ is an estimate for the standard

deviation of the noise andρ ≈ 3.

2. data outliers typically fail the test. This suggests choosing ε to be as small as possible (subject to

the previous point).

0 1 2 3 4 5 6 7 8 9
0

500

1000

1500

2000

2500

3000

3500

4000

F
re

qu
en

cy

Number of Inliers

RANSAC + IRLS Inliers (eps 4)

0 1 2 3 4 5 6 7 8 9
0

2000

4000

6000

8000
F

re
qu

en
cy

Number of Inliers

RANSAC + IRLS Inliers (eps 8)

0 1 2 3 4 5 6 7 8 9
0

2000

4000

6000

8000

10000

F
re

qu
en

cy

Number of Inliers

RANSAC + IRLS Inliers (eps 12)

The number of inliers used in the IRLS solution is shown forε = 4, 8, 12 pixels, respectively. (Here the

RMS inlier noise isσ = 2.6 pixels, so these correspond toρ = 1.5, 3, 4.6, respectively.) Data inliers are

being rejected forρ = 1.5, ε = 4, while the outlier is being accepted about 10% of the time forρ = 4.6,

ε = 12. Usingε ≈ 3σ is a reasonable compromise.
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RANSAC: Statistical Efficiency

The statistical efficiency of RANSAC can be compared to the special case of using WLS where the

data outlier is known and receives a weight of 0 (all other points get a weight of 1).
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The above left plot shows that forε either too small or too large the statistical efficiency suffers. The

RMS inlier noise isσ = 2.6 pixels, andε = 3σ is seen to provide reasonable performance (although

this depends on the magnitude of the error in the outlier).

The above right plot indicates that RANSAC is unbiased for thisproblem for an intermediate range of

ε, but a bias appears asε increases and the outlier is accepted as an inlier.
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RANSAC: How Many Trials?

Suppose our data set consists of a fractionp inliers, and1 − p outliers.

How many trialsT should be done so that we can be reasonably confident that at least one sampled

data set of sized = 3 was all inliers?

The probability of choosingd = 3 inliers from such a population is roughlypd whenK >> d (it is

exactlypd if we sample with replacement).

So the probability that a given trial of RANSAC fails to selectd inliers is1 − pd.

Therefore, the probability that RANSAC failed to have any of theT trials selectd inliers is(1 − pd)T .

In other words,

P0 = 1 − (1 − pd)T

is the probability that at least one of the RANSAC trials will selectd inliers.
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RANSAC: How Many Trials?

Given an estimate for the fraction of inliersp in the data set, we could then chooseT such thatP0 >

0.95, say. That is,

T > log(1 − P0)/ log(1 − pd).

For example, for 70% inliers andd = 3, we requireT > 7.

Alternatively, if we only have 20% inliers, the same formula states thatT should be chosen to be at

least 373.

The number of samples required grows rapidly with the both the probability of outliers and with the

numberd of inliers required to compute a candidate solution.
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RANSAC: How Many Trials? (Cont.)

NoteT above is simply the number of samples needed to ensure thatd inliers is chosen with probability

P0.

In practice, we need thesed inliers to provide a good candidate solution for the parameters~q.

For example, the three data points for estimating the affine pose parameters~q cannot be colinear, and

preferably should be spread out in the image.
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Planar Homography for a World Plane

The perspective view of any plane in the world (such as a checkerboard) is modelled as:

~ph = MinMex















X1

X2

0

1















= H~xh, where~xh = (X1, X2, 1)T . (1)

HereX1, X2 are world coordinates on the 3D plane (withX3 = 0) and~ph are homogeneous pixel

coordinates.

The mapping (1) is referred to as aplanar or 2D homography.
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Planar Homography: Degrees of Freedom

Since the overall magnitude ofH does not matter in the homography~ph = H~xh, there are effectively

8 unknown parameters. Four pairs of 2D image points are sufficient.

from Freeman and Torralba,

2011.

1. Estimate the homography. Solve the equationsαk~p
h
k = H~xh

k for k = 1, . . . , 4 for H, with

||H||F = 1, say.

2. Back project. Given a coordinate~r h on the ground plane, and the desired perpendicular mapping

to pixels in the warped image,M r
in~r

h, find corresponding pixel coordinates in the original image,

namely~ph = H~r h.

3. Interpolate. The warped image at pixelM r
in~r

h is set to be the interpolated value of the original

image at~ph
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Planar Homography: Normalization

It is convenient to normalize the third row ofH, which provides the factor we need to rescale homo-

geneous vectors by.

One simple approach is to setH3,3 = 1. However, this normalization does not allow homographies with

H3,3 = 0 to be represented (and provides a poorly scaled representation for those with|H3,3| relatively

small).

Alternatively, we can normalizeH by assuming that

H3,j = 1, and|H3,i| ≤ 2 for i 6= j. (2)

That is, thejth element on the third row ofH is set to one, under the condition that the other elements

on this row are not too large in absolute value.
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Fitting 2D Homographies

Given observed image points{~zk}
K
k=1 from known 3D planar points{~xh

k }
K
k=1, we then wish to minimize

the sum of squared standard errors

S3E(~q) =
1

2

K
∑

k=1

(~zk − ~fk(~q))TΣ−1
k (~zk − ~fk(~q)). (3)

Here the parameterized model for thekth point is

~fk(~q) =
1

~hT
3 ~xk

H1~x
h
k, (4)

where

• ~xh
k = (X1,k, X2,k, 1)T corresponds to the world coordinates of thekth point in the planeX3 = 0;

• H1 denotes the2 × 3 matrix consisting of the first two rows ofH;

• ~hT
3 denotes the third row ofH.

The unknown vector~q consists of the eight free coefficients ofH, remembering thatH3,j = 1.

Minimizing (3) is therefore a nonlinear least squares problem. We need to generate an initial guess for

the parameters, and deal with outliers.
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Algebraic Linearization

If we reweight the objective function (3) by multiplying each termby

wk =
[

~hT
3 ~xh

k

]2

, (5)

then we find the weighted least squares objective

WLS(~q) =
1

2

K
∑

k=1

wk(~zk − ~fk(~q))TΣ−1
k (~zk − ~fk(~q)),

=
1

2

K
∑

k=1

((~hT
3 ~xh

k )~zk − H1~x
h
k )TΣ−1

k ((~hT
3 ~xh

k )~zk − H1~x
h
k ) (6)

is quadratic in the unknowns~q. Hence minimizingWLS(~q) is a linear least squares problem.

This reweighting raises two issues:

1. It emphasizes the noise in some observations over others, decreasing statistical efficiency;

2. The weightsdepend on the unknowns ~q, perhaps leading to biased estimates. (For example, all

else being equal,WLS(~q) is reduced if the weightswk can be reduced.)

CSC420: Estimation in the Presence of Outliers Page: 15



Basic Approach for Fitting Planar Homographies

Planar Homography Estimation Algorithm:

1. Estimate/Guess the (isotropic) standard deviation,σ0, of the noise in the data points~zk.

2. Use Ransac to solve the linear WLS problem (6), identifying theset of data inliers,k ∈ In. Use

an isotropic, identically distributed noise model,Σk = σ2
0I.

3. Use the solution~q from step 2 as an initial guess for nonlinear optimization software applied to

the nonlinear least squares problem (3). Restrict the sum in (3) to the inliers identified in step 2,

namelyk ∈ In. UseΣk = σ2
0I.

4. Check the solution from step 3. For example, re-estimateσ0 by assuming the inlier errors~ek =

~zk − ~fk(~q) are roughly Normal. In that case,σ0 ≈ 1.5 median{||~ek|| for k ∈ In}. Recompute the

inlier setIn = {k | ||~ek|| < ρσ0}. If there is a substantial change in the inlier set, repeat steps3-4.
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Camera Rotation

Suppose the camera rotates about the (front) nodal point, i.e., the center of projection in world coordi-

nates.

from Freeman and Torralba,

2011.

Any image can be thought of as being printed on a 3D world plane (i.e., the camera’s image plane

reflected to be in front of the center of projection).

From a second orientation, this first plane can be mapped to the current image plane using a homogra-

phy.
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Image Stitching

Given a collection of images obtained by rotating the camera about the front nodal point, they can all

be mapped back to a single image plane. To do this a homography has to be estimated for each image,

and that image then needs to be warped and blended into the finalmosaic.

Seehttp://www.cs.bath.ac.uk/brown/autostitch/autostitch.html.
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