Parameter Estimation with Data Outliers

Goal: Discuss the use of RANSAC to fit parameterized models to dateahwhcludes outliers.

It is common in computational vision to attempt to fit a parameéel model to image features despite:
e Data arising from false positives of a feature detector (such ad@aa@ corner point);
e The presence of multiple objects in the image.

Both of these situations can lead to outliers in the data set f@arameter estimation problem.

Readings: Szeliski, Sections 6.1 and 6.2, Appendices B1 through B3.
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Model Problem: Affine Pose Fitting

We return to the model problem of fitting the affine pose parametera talibration pattern given

corner data with an outlier.

It is tempting to try approaches which consider using a LS fit, rengpthe point with the largest error,

and refitting.

However, this type of approach is not generally successfuésarieast squares solution can be strongly
perturbed by a single outlier, and the outlier(s) need not ha&tigest errors.

Instead, RAndom SAmple Consensus (RANSAC) is a common approach
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RAndom SAmple Consensus (RANSAC) Algorithm
Suppose we are given data poifits}_,, which may include outliers.

Assume the following are given:

e Let J be the minimum number of data points needed to compute an>ap@at solutiong (for
affine fitting, J = 3 image points);

e Lete > (0 be an error tolerance (Typicaltly= po whereo is an estimate for the standard deviation
of the measurement noise and- 3.);

e LetT be the number of random sampling trials to do.
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RANSAC Algorithm (Continued)

Loop T’ times:
1. Randomly select J data poing;), j = 1,..., J.

2. Minimize the least squares objective

g* = argmin Z 1Ze) — frn (@117 ] 5 (note only theJ sampled points are used).

3. Identify the inliersin = {k |||z, — fe(@)|| < e, 1 <k < K}.

possiblyg™).

End loop

5. Solve forg™* using all pointst € In (i.e., all inliers).

6. Re-solve for the inlier sét as done in steps 3 and 4 above.

Can iterate steps 5-6 until the set of inliénsdoes not change substantially.

Steps 5-6 involve iteratively choosing weighis, = 1(0) if £ € In (or k ¢ In, respectively). Itis a
form of iteratively reweighted least squares (IRLS).
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RANSAC: Affine Pose Example

At least six independent constraints are needed to determen2Dhaffine pose parametergc RE.
The minimum number of labelled image poinis,c R? is thereforeJ = 3.

Initial RANSAC Solution RANSAC Solution

The pose parameters of the blue grid (above left) is solved useng th 3 sampled points (red). The
solution after IRLS (blue grid, above right) and inliers (red point$)e recruitment of more inlier data
points improves the solution. The mean solution (mauve gridegligible bias, despite the outlier.

The RMS noise in the data points was 2.6 (pixels), we used (pixels) (i.e.,p ~ 3).
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RANSAC: Choosing the Error Tolerance

The error tolerancefor the inlier test:||z;. — Axqo|| < € should be chosen so that:

1. data inliers typically pass the test. This suggestspoc wherecs is an estimate for the standard
deviation of the noise and~ 3.

2. data outliers typically fail the test. This suggests chagps to be as small as possible (subject to
the previous point).

RANSAC + IRLS Inliers (eps 4) RANSAC + IRLS Inliers (eps 8) RANSAC + IRLS Inliers (eps 12)
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The number of inliers used in the IRLS solution is shownefer 4, 8, 12 pixels, respectively. (Here the
RMS inlier noise isr = 2.6 pixels, so these correspondde= 1.5, 3, 4.6, respectively.) Data inliers are
being rejected fop = 1.5, ¢ = 4, while the outlier is being accepted about 10% of the timeyfer4.6,

e = 12. Usinge ~ 30 is a reasonable compromise.
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RANSAC.: Statistical Efficiency

The statistical efficiency of RANSAC can be compared to theigpease of using WLS where the
data outlier is known and receives a weight of O (all other zog@&t a weight of 1).

- - Ransac Example (RMS Error
RANSAC Example (Statistical Efficiency) ‘ p ( ‘ )
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The above left plot shows that fereither too small or too large the statistical efficiency susffel he
RMS inlier noise iss = 2.6 pixels, ande = 30 is seen to provide reasonable performance (although
this depends on the magnitude of the error in the outlier).

The above right plot indicates that RANSAC is unbiased for pihéblem for an intermediate range of
€, but a bias appears asncreases and the outlier is accepted as an inlier.
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RANSAC: How Many Trials?

Suppose our data set consists of a fractianmiers, andl — p outliers.

How many trialsI” should be done so that we can be reasonably confident thatsablea sampled
data set of sizd = 3 was all inliers?

The probability of choosing = 3 inliers from such a population is roughly whenK >> d (it is
exactlyp? if we sample with replacement).

So the probability that a given trial of RANSAC fails to selddhliers is1 — p*.
Therefore, the probability that RANSAC failed to have any of thizials selectl inliers is (1 — p?).

In other words,
Py=1—(1—-pH?

Is the probability that at least one of the RANSAC trials willesg d inliers.
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RANSAC: How Many Trials?

Given an estimate for the fraction of inliepan the data set, we could then chods&uch thatF, >
0.95, say. That s,
T > log(1 — Py)/log(1 — p%).

For example, for 70% inliers antl= 3, we requirel’ > 7.

Alternatively, if we only have 20% inliers, the same formula esathat?” should be chosen to be at
least 373.

The number of samples required grows rapidly with the both theglmtity of outliers and with the
numberd of inliers required to compute a candidate solution.
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RANSAC: How Many Trials? (Cont.)

Notel" above is simply the number of samples needed to ensuré ithiagrs is chosen with probability
B.

In practice, we need theganliers to provide a good candidate solution for the parameters

For example, the three data points for estimating the affine pasameterg cannot be colinear, and
preferably should be spread out in the image.
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Planar Homography for a World Plane
The perspective view of any plane in the world (such as a chechedbs modelled as:
( X1 \
—h X —h —h T
P = M;, M., 0 = Hx , wherez" = (Xl, XQ, 1) . (1)
\! )

Here X, X, are world coordinates on the 3D plane (with = 0) andp™ are homogeneous pixel

coordinates.

The mapping (1) is referred to agpkanar or 2D homography.
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Planar Homography: Degrees of Freedom

Since the overall magnitude &f does not matter in the homograpfy = Hz", there are effectively
8 unknown parameters. Four pairs of 2D image points are sufficient.

from Freeman and Torralba,
2011.

1. Estimate the homography. Solve the equations,p! = Hz! for k = 1,...,4 for H, with
|H||r =1, say.

2. Back project. Given a coordinate” on the ground plane, and the desired perpendicular mapping
to pixels in the warped imagé/! 7", find corresponding pixel coordinates in the original image,
namelyp” = H7".

3. Interpolate. The warped image at pixéll/ 7" is set to be the interpolated value of the original
image atp™
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Planar Homography: Normalization

It is convenient to normalize the third row &f, which provides the factor we need to rescale homo-

geneous vectors by.

One simple approach is to st ; = 1. However, this normalization does not allow homographieh wit
Hs 3 = 0to be represented (and provides a poorly scaled representatiom$enilith| /5 5| relatively

small).
Alternatively, we can normaliz& by assuming that
H;,; =1, and|Hs;| <2fori# j. (2)

That is, thej’” element on the third row aoff is set to one, under the condition that the other elements

on this row are not too large in absolute value.
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Fitting 2D Homographies

Given observed image poinfs; } &, from known 3D planar point§z,'} &, we then wish to minimize
the sum of squared standard errors

SE@ = 2 Y (G~ H@)S G~ @), ©
k=1

Here the parameterized model for tié point is

. 1 B
fk:(@ = i—iT_, HwZ; (4)
3Lk

where
° f’,} = (X1, Xog, 1)” corresponds to the world coordinates of tifepoint in the planeX; = 0;
e H, denotes th@ x 3 matrix consisting of the first two rows df;
e il denotes the third row off.

The unknown vectoq consists of the eight free coefficients &f remembering thatl; ; = 1.

Minimizing (3) is therefore a nonlinear least squares problem. ¥églno generate an initial guess for
the parameters, and deal with outliers.
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Algebraic Linearization

If we reweight the objective function (3) by multiplying each telogn
- 2
wy = [ (5)

then we find the weighted least squares objective

K
WLS(@) = 5 > welz — (@) 5 (7~ )
k=1

K
1 i — — — — I — — —
= S (R EhE — HaE S (R E A — Hia) (6)

is quadratic in the unknowng Hence minimizingV LS(q) is a linear least squares problem.

This reweighting raises two issues:
1. It emphasizes the noise in some observations over othergagaty statistical efficiency;

2. The weightgdepend on the unknowns ¢, perhaps leading to biased estimates. (For example, all
else being equal)’ LS(q) is reduced if the weights,. can be reduced.)
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Basic Approach for Fitting Planar Homographies

Planar Homography Estimation Algorithm:
1. Estimate/Guess the (isotropic) standard deviatignof the noise in the data poing.

2. Use Ransac to solve the linear WLS problem (6), identifyingseiteof data inliersk € In. Use
an isotropic, identically distributed noise modg}, = o3 1.

3. Use the solutioi’ from step 2 as an initial guess for nonlinear optimization saféwagpplied to
the nonlinear least squares problem (3). Restrict the sum in (Betoliers identified in step 2,

namelyk € In. UseY, = o?l.

4. Check the solution from step 3. For example, re-estimgtgy assuming the inlier erros. =
Z. — f1(q) are roughly Normal. In that case; ~ 1.5 median{||¢,|| for & € In}. Recompute the
inlier setin = {k|||ex|| < poo}. If there is a substantial change in the inlier set, repeat &eps
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Camera Rotation

Suppose the camera rotates about the (front) nodal point, eecetiiter of projection in world coordi-
nates.

camera A camera B

common pinhole
position of the Tameras

from Freeman and Torralba,
2011.

Any image can be thought of as being printed on a 3D world plaee (he camera’s image plane
reflected to be in front of the center of projection).

From a second orientation, this first plane can be mapped to thentimage plane using a homogra-
phy.
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Image Stitching

Given a collection of images obtained by rotating the cameaoaitathe front nodal point, they can all
be mapped back to a single image plane. To do this a homograshy lbe estimated for each image,
and that image then needs to be warped and blended into thetfosalc.

wer

Seeht t p: // ww. cs. bat h. ac. uk/ brown/ aut ostitch/autostitch. htm .
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