Parameter Estimation

Goal: We consider the problem of fitting a parameterized model to niass.

Model fitting arises, for example, when:

e Matching image features with a known 3D shape (the unknown paeasnarel/.,, and, perhaps,
M;,; and radial distortion);

e Fitting lines or curves to image gradient or edge data;
e Fitting the PCA model of a face, say, to an image,;
e Fitting motion models to video data.

We will consider many of these specific problems later in thisrse.

Rule of Thumb: Never estimate parameters without at least thinking aboubtpked noise model.
Readings: Szeliski, Sections 6.1 and 6.2, Appendices B1 through B3.
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Model Problem: Calibration using Checkerboard Corners

Example: Camera calibration. Given multiple images of a known calibration object, estentie
intrinsic and extrinsic camera parameters.

Extracted corners
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This image is from the “Camera Calibration Toolbox in Matlaggeht t p: / / www. vi si on. cal t ech. edu/ bouguetj/cali b_doc/.

The origin of world coordinates is at one corner point, and thekddoard is in the plan&,, ; = 0.

Specific Case: Given the labeled checkerboard corner points in each image (pegblue boxes
above), estimate the 3D pose of the checkerboard in each imadeha intrinsic camera parame-

ters.
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Checkerboard Corners Positions from Camera Parameters

Let {Z,}1*_, denote the set of observed (and labelled) image checkerboaret gmints,z;. € R>.

For each corner point, suppose
Z = fi(@°) + s, (1)

where

e 7' is the vector of unknown parameters, which includes the poséind rotation of the checker-
board in the camera’s coordinates, along with any unknown Bitriparameters for the camera,;

° fk(cf) is the predicted image position of th& corner point from perspective projection, given the
vector of pose parametegs

e the noise vectoii;, is the errorzj, — ﬁ((jo), between the observed position and the correct position
of the k" corner point.

Given the observation§z), } 2 |, the parameterg are estimated by minimizing some measure of the
Implied noise vectors,.. The particular measure used is dictated byrtbise model
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Independent Gaussian Noise

A reasonable first approximation is to assume that the noisesinlibervations is:
e statistically independent,
e Mean zero, and

e Normally distributed.

That is, the errofi, = Z, — f.(q), in the k" observationz,, is modelled as an independent random

sample from the 2D Normal probability density functipf | 0, ), where
1 R
p(ﬁ ‘ m) Z) 6—%(n—m)TE Li—m) (2)

DL

Is the 2D Normal probability density function. Here the paramedess
e 11, the mean of the distribution, and
e >, the2 x 2 (symmetric, positive definite) covariance matrix.

See the next three slides for a quick review.
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Recall the 1D Normal Distribution

The 1D probability density function for a Normal distribution vineann and variance? is:
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These are “Bell curves.” The left plot is for mean= 0 and standard deviatian= 1.

The right plot is for mean ando = 0.1. It is simply compressed on the horizontal axis (by a factor of
10) , and stretched on the vertical axis (by the same factor offI{®se two stretches are such that the
integral of the probability density remains equal to one.

Note that foro = 0.1, we havep(z | 0, 0%)|,—o =~ 3.99. Can we conclude from this that the probability

of x can be bigger than 17?
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Multivariate Normal Distributions

More generally, al-dimensional Normal distribution is given by:
e N(m,>) denotes a normal distribution;
e m € R?is the mean;

e ¥ ¢ R s the covariance matrix. As such,is symmetric (i.e.yx” = ¥) and positive definite
(i.e.,2"xa > 0 for all @ € R"\{0}).
e The probability density function fal (1, X2) is,
1 1= o \Ts—1(=_ =
2l YY) = —5(@—m)" 3 (:E—m). 3
Here Y| = det(X) denotes the determinant of

A two dimensional example of a Normal distribution is shown lo@ hext slide.
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Constant Standard Error Ellipsoids

Samples from 2-dim Normal

Samplesg, from the 2D distributionV (i, ) are shown to theright. 4
We definer to have astandard error of s if
(Z—m)'S e —m) = s (4)

The purple, green and red ellipses are the curves for standard er °

s = 1,2, and3, respectively.

These elliptical shapes for constant standard error beconraxgieansidering the eigenvalues decom-
position,> = UAUT, whereA = diag[\;, \o] and\;, Ay > 0 (recallX is positive definite).

Consider the 2D coordinatesobtained fromz' by translating the origin to the mean point, and
rotating/reflecting by/*, that is, = U’ (# — m). In these coordinates, equation (4) becomes

9 9
aTA g = L 2 = ¢
Al A

This is the equation of an ellipse having the principal axggad with theu; andu, axes. The lengths
of these axes args\/\; and2sy/)\,, respectively.
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lllustration of the Noise Model

Below we illustrate equation (1), namely = ﬁ(cj) + 7y, With 7, ~ N (0, 35):

The noise modeﬁ@ + i, With 7@, ~ N(0,%}), is shown (left), with ellipses for standard error equal
to 2 around each corner point. (These covariances are only iliust)a

The detail figure (right) shows one observed corner pgir(blue’ +’ ), the model pointﬁ(cf) (red
' "), and the error vecta?, = z, — f.(¢) (green line).

The observed point is almost on the 2-standard-deviation ellipdicating the standard err&)/é,f It

IS just less than.
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Maximum Likelihood Estimation

Trick Question: What'’s the probability of observing an errgr = 2. — ﬁ((j)?l More helpfully, let
B(¢) be the 2D box

Then the probability of observing noise in the regign+ B(e) is the integral ofp(7|0, 3;,) over this
set. This equals(7i.|0, 21 )€? plus higher order terms as— 0 (see Wikipedia, Rectangle Method).

Since the noise in each of the observations is assumed to &gandent, the probability thall of the

noise values are in the regiofis+ B(e), fork =1,..., K, is
K K
P = [ |ptc 10.20€ + 0] = T |p@ — i@ 10,20 + 0()]
k=1 k=1

For a fixede, we might try to choose the parametérahich maximize this probability”.. Or, more
simply, we wish to choos&to maximize thdikelihoodof all the observations;., namely

K
Data Likelihood: p(%i,..., 2k | @) = [[p(z — fi(@) |0, %) (5)
k=1
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Recap: Maximum Likelihood Estimation

In summary, given:

e the parameterized modé;l(cj’) for the image position (in pixels) of the?” checkerboard corner
point;

e Whereqg are the unknown parameters, including the intrinsic and extrresmera parameters; and
e the observed but approximate corner pomtgin pixels); and

e the noise model for the observed namelyr;, = 2z, — ﬁ(@“) ~ N(ﬁ, ;) are independent. Here

—

g are the correct parameters, and we initially assume the noiseéa@osesy;, are known.

Then we wish to maximize the data likelihood (5) with respectto

K
Data Likelihood: p(%i,..., 2k | @) = [[p(z — fi(@) | 0. %)
k=1

The resulting vector, say*, is called anaximum likelihood estimatefor the parametera.
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Maximizing Log-Likelihood

Sincelog(L) is monotonically increasing fol. > 0, maximizing the data likelihood is equivalent to
maximizing theLog-Likelihood, log(p(z1, . . ., Zk | 7).

From equation (5) we have

HEN

log(p(Z1; ..., 2k | ) = 108;[ p(Z = fr(@) | 0, Zk] Z[log (Z — fe(@) | O, Zk))}

k=1

K
1 1= 7 (\Ty—l= 7
_E: —5(Z—fe(D)" Z (Ze—Tx(D)
= log <(2ﬂ-’2k’)d/26 2(Z—f1(q E \Fk I<;Q>

= 3|5 - @S - fi) - G lostenl)|

4 Const.

= — % [Z(5k — fl@)"S G = frl@)

k=1

Hered = 2 and “Const.” is a constant independent;of

CSC420: Parameter Estimation Page: 11



Minimizing the Sum of Squared Standard Errors

Alternatively, it is equivalent to minimize:

1

SSSE() = S°E(@) = 5 (& — fl@)5 (G — ful@). (6)
k=1

We refer toS® E(q) as the sum of squared standard errors.

Here “standard’ refers (usefully, but somewhat non-standardly)@atrmalization by the inverse
covariance matrices, .
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Flavours of Least Squares

Since it is rare to know the noise covarianggsit is common to make two types of simplifications in
the noise model,

Isotropic: 3, = o7, (7)
Identically Distributed: >, = %, (8)
Isotropic and Identically DistributedY, = 021, (9)

wherek =1.2,..., K.
For the isotropic case, the curves of constant error are circle=ahsf ellipses.

For identically distributed noise, the constant error curvesheeame for every observed point.
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Weighted Least Squares

For the isotropic case, the max-likelihood estimate (6) besome
1 K
WLS(q) = 5 > wi (B — Sl @) (3 — fe(@)
k=1

K
1 o
= 5w 13 — @I, (10)
k=1
wherew;, = 1/07 are the weights. This is calledneighted least square§WLS) problem.

Note that weightsu;, = ak_Z are inversely proportional to the variance of the observed ppint

Reweighting the data therefore implies a statement about suereesl variances of the data points, we
will return to this issue later.
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Ordinary Least Squares

For the isotropic and identically distributed noise moddk #quivalent to minimize

K

LS@ = 23 G~ F@) (G - fil@) ank—fk @I (11)

k=1
Here we have omitted a constant weight = 1/07 which appears in (10). This constant does not

effect the minimization.

This is called arordinary or unweighted least squaregLS) problem.
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Linear and Nonlinear Least Squares

Finally, any of the previous least squares problems are said limédx@r least squares problemsf
£1(q) has only a linear dependence on the param@teFsat is, f1.(7) = Aq+ by for a constant matrix
A, and vectorgk.

We show below that linear least squares problems can be redusetli/ing a linear system of equa-
tions.

For the camera calibration problerﬁ,(cj} are nonlinear functions aof. Therefore the problem of
minimizing S°E(q) is called anonlinear least squares problemand similarly for the corresponding
weighted or unweighted versions.

Generally we require numerical optimization software to solvdinear least squares problems. See,
for example, the textbook by Nocedal and Wright, 2006.
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Punting? the Calibration Problem

For now, the checkerboard fitting problem has served our purpose of:

1. Introducing maximum likelihood estimation for models witldépendent, multidimensional, Gaus-

sian noise;
2. Deriving the equivalent sum of squared standard errors formalaiid (q), above;

3. Introducing several specific cases of minimizing the squéaesdiard error where the approximate
noise models are isotropic and/or identical for all observation

In order to develop some general intuition for maximum likelidl@stimation, we consider a simpler

estimation problem next.

In particular, we consider scaled orthographic instead of petispgorojection. This leads to a linear
least squares problem.
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Scaled Orthographic Case

A scaled orthographic mapping of the checkerboard plane is dyen

(Xl\
f:s(lg 6)M 5(2 :M<§;>+5:A(X')qf (12)
\1 )

Since (12) is linear in{ — (X1, X5)T, it can be rewritten in terms of some constant 2 matrix M

and2-vectorb.

The rightmost equation above is

X710 X900 10

MX +b =
0 X7 0 X901

T —
) (M1,1 My Mio Mo by bz) = A(X)g. (13

Hereq'is the above 6-vector of coefficients, consisting of the elemsef M/ andb.

The linear mappingg = MX +b = A()?)q* is called amaffine transformatiorf the coordinates(;
and.X,. (See Szeliski, Sec. 6.1.)
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Affine Model

For the scaled orthographic case the predicted corner poinfs(@e= A(X;)7, which is linear in the
unknownsg. (For simplicity, we are considering only one affine image ofdheckerboard.)

The parameterg are called thaffine posgarameters.

The sum of squared standard errors, nan$gli(q) in (6), is

1 K

S3E(q) = 5 > (G — Ad) SN (E — Ard), whereA, = A(X,). (14)
k=1

In order forg™* to minimize S®E(q) it must be the case that the gradient5f=(q) with respect tay
must be zero af*.

That is, we get th@ormal equations

. 0S*E & N
U=z (@) = =D AT (& — A,
k=1

This is a linear equation in the unknown vec§ot
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Linear Least Squares Solution

The normal equations can be rewritten as

K
> AT A
k=1

Here’ € R%<C is the Hessian of®E(q) (aka the Fisher information matrix).

Fq = qF =

K
ZAi,fzklzk] = 7 (15)
k=1

From (15), the maximum likelihood estimatejis = F'~'7. (For the current problent; is full rank iff
the checkerboard corner poinf’sk are not all colinear.)

Max-Likelihood Estimation Algorithm. Construct the terms’ ands in the normal equations, (15),
and solve the resulting linear system.
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Properties of the Sum of Squares of Standard Errors

When the noisei;,. = 2. — A;.¢" is sampled independently from the 2D Normal distributikzﬁfﬁ, >k)
fork=1,..., K, we have:

e The mean of the max-likelihood estimatgs(using equation (15)) is equal to the true solutin
e Equivalently, the expectatioR[7*] = .

e Here the expectation is over the distribution of noise givethayindependent, mean zero, Gaus-
sian noise model.

e An estimator is said to be unbiased #f¢*] = ¢°, whereg? is the true value.

e Any linear least squares estimator (with mean-zero noise angingualar normal equations) is
unbiased.

e For theS?E(q) estimator, theovarianceof ¢* equalsF—!, the inverse of the Fisher information
matrix F' introduced in equation (15).
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Simulating Maximum Likelihood Solutions

The Matlab codaf f CheckDenp. msimulates the max-likelihood inference of affine pose.

Above left shows 100 samples of the noisy corner poifis}s |, where the red ellipses indicate
standard errors equal to 3. Most points are seen to have a standanéssrinan 3.

Above right shows the solution™ of (15) (blue grid), given the observed poinis(blue crosses). The
differencesz). — f(cf*), are the inferred noises (green lines). The mauve grid shows the rh#dan o
solutionsg™ over many different noise samples.

This illustrates that, with mean-zero noise, linear least segjprovides an unbiased estimate.
CSC420: Parameter Estimation Page: 22



Ordinary and Reweighted Least Squares

Above left, LS: A random sample (blue crosses) from the same data set of noisy quyimds is
used with ordinary least squares, equation (11). The red circlesabedhat thenoise model used for
estimation(only) is isotropic with identical weights, say, = 1/03. The blue grid is the LS solution
for this set of noisy corner points, while the mauve grid is thamaver many samples.

Above right, WLS: Similar to the LS example, except the top point has had itgwencreased by a
factor of 100. This increase in the weight is equivalent tordaiel decrease in the covariance for that
point (i.e.,w; = 1/(0¢/10)?). Note the fitted model (blue grid) closely approximates thisipohlso,

note the average model (mauve grid) is still unbiased.
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Least Squares with an Ouitlier

This set of data (blue crosses) includes a single outlier (voltlme cross), which causes large errors
in the LS solution (blue grid).

The mean solution (mauve grid), over similar outlier locatjos®iased away from the true solution.

Sensitivity to Outliers: For least squares, the cost of any model fit error (green lines)drgtic in
the error magnitude. Due to this quadratic cost, it is often ohetmpdecrease a few very large errors
and, effectively, distribute them around to the other condgaareating many medium-sized errors.
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Aspects of Estimator Performance

In choosing or designing an estimator, we should consider:

e Bias: Is the expected value of the estimator, $8j*|, equal to the true solutioii’? (If so, the
estimator is said to be unbiased.)

e Variance: How large is the covariance of the estimatb{(q* — E[7*])(7* — E[7*])!]?

e Statistical Efficiency: Given a measure of the estimator error, such as the root mean dquare
(RMS) reconstruction error:

1/2
oo (s[s S -ae])

wherez is the true position of thé!" point, define the statistical efficiency as the ratio

R(G™)/R(q7). (17)

Hereq "' denotes the optimal estimator from th&F objective function in (6).

e Tolerance to Outliers: Does the estimator performance, say in terms of RMS error, degrade
gracefully in the presence of outliers?
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Statistical Efficiency

The statistical efficiencies (SE) for the previous estimatorfistezl below (fromaf f Checker Denp. m):
e SE = 1.00 for the S3FE estimator, indicating it is perfectly efficient.

e SE = 0.67 for the LS estimator. Recall the LS approach used above trdas@ils as isotropic
and identically distributed. The loss of statistical effiag is due to the information lost in using
this simple noise model. Equivalently, note the RMS error haseiased by 50% from the optimal
value (i.e.,l/SE =1/0.67 = 1.5).

e SE/ = 0.51 for the WLS estimator used above, for which we reweighted onet byl a factor of
100 over the LS estimator. This further loss of efficiency is thuthe inaccuracy of the implied
noise model for the re-weighted point (i.e;, < 0(/10 andw;, « 100wy = 100/53).

e SI/ = (.26 for the LS estimator in the presence of the outlier. This vak&eases to zero as the
outlier becomes more distant. The current value illustrataglieaRMS error has quadrupled over
the optimal estimator (w/o an outlier), indicating the sewusitiof LS to outliers.

Our next task is to consider estimation in the presence oieosit!
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The following textbook contains sections on parametenesdion:
Richard Szeliski, Computer Vision: Algorithms and Applicats,
Springer; 1st Edition, November 24, 2010.

Section 6.1 and 6.1 of Szeliski's book discuss the pose astmand

alignment problems.

Appendices B1 through B3 of Szelizki’'s book discuss maximuke-li
lihood estimation and least squares.

The book is available frorht t p: / / szel i ski . or g/ Book!/ .

For information about numerical methods for solving noadin opti-
mization problems, such as nonlinear least squares, see:

J. Nocedal, and S.J. Wright, Numerical optimization, Spgirgeries in
operations research, Springer, 2006.
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