
Parameter Estimation

Goal: We consider the problem of fitting a parameterized model to noisydata.

Model fitting arises, for example, when:

• Matching image features with a known 3D shape (the unknown parameters areMext and, perhaps,

Mint and radial distortion);

• Fitting lines or curves to image gradient or edge data;

• Fitting the PCA model of a face, say, to an image;

• Fitting motion models to video data.

We will consider many of these specific problems later in this course.

Rule of Thumb: Never estimate parameters without at least thinking about theimplied noise model.

Readings: Szeliski, Sections 6.1 and 6.2, Appendices B1 through B3.
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Model Problem: Calibration using Checkerboard Corners

Example: Camera calibration. Given multiple images of a known calibration object, estimate the

intrinsic and extrinsic camera parameters.

This image is from the “Camera Calibration Toolbox in Matlab”,seehttp://www.vision.caltech.edu/bouguetj/calib_doc/.

The origin of world coordinates is at one corner point, and the checkerboard is in the planeXw,3 = 0.

Specific Case: Given the labeled checkerboard corner points in each image (e.g., the blue boxes

above), estimate the 3D pose of the checkerboard in each image, and the intrinsic camera parame-

ters.
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Checkerboard Corners Positions from Camera Parameters

Let {~zk}Kk=1 denote the set of observed (and labelled) image checkerboard corner points,~zk ∈ R
2.

For each corner point, suppose

~zk = ~fk(~q
0) + ~nk, (1)

where

• ~q 0 is the vector of unknown parameters, which includes the position and rotation of the checker-

board in the camera’s coordinates, along with any unknown intrinsic parameters for the camera;

• ~fk(~q) is the predicted image position of thekth corner point from perspective projection, given the

vector of pose parameters~q;

• the noise vector~nk is the error,~zk− ~fk(~q
0), between the observed position and the correct position

of thekth corner point.

Given the observations{~zk}Kk=1, the parameters~q are estimated by minimizing some measure of the

implied noise vectors~nk. The particular measure used is dictated by thenoise model.
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Independent Gaussian Noise

A reasonable first approximation is to assume that the noise in the observations is:

• statistically independent,

• mean zero, and

• Normally distributed.

That is, the error~nk = ~zk − fk(~q), in thekth observation~zk, is modelled as an independent random

sample from the 2D Normal probability density functionp(~n |~0, Σ), where

p(~n | ~m, Σ) =
1

2π|Σ|1/2e
−1

2(~n−~m)T Σ−1(~n−~m) (2)

is the 2D Normal probability density function. Here the parametersare:

• ~m, the mean of the distribution, and

• Σ, the2× 2 (symmetric, positive definite) covariance matrix.

See the next three slides for a quick review.
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Recall the 1D Normal Distribution

The 1D probability density function for a Normal distribution with meanm and varianceσ2 is:

p(x |m, σ2) =
1√

2πσ2
e

1
2

(x−m)2

2σ2 .
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These are “Bell curves.” The left plot is for meanm = 0 and standard deviationσ = 1.

The right plot is for mean0 andσ = 0.1. It is simply compressed on the horizontal axis (by a factor of

10) , and stretched on the vertical axis (by the same factor of 10).These two stretches are such that the

integral of the probability density remains equal to one.

Note that forσ = 0.1, we havep(x | 0, σ2)|x=0 ≈ 3.99. Can we conclude from this that the probability

of x can be bigger than 1?
CSC420: Parameter Estimation Page: 5



Multivariate Normal Distributions

More generally, ad-dimensional Normal distribution is given by:

• N(~m, Σ) denotes a normal distribution;

• ~m ∈ R
d is the mean;

• Σ ∈ R
d×d is the covariance matrix. As such,Σ is symmetric (i.e.,ΣT = Σ) and positive definite

(i.e.,~u TΣ~u > 0 for all ~u ∈ R
n\{~0}).

• The probability density function forN(~m, Σ) is,

p(~x | ~m, Σ) ≡ 1

(2π|Σ|))d/2
e−

1
2(~x−~m)T Σ−1(~x−~m). (3)

Here|Σ| = det(Σ) denotes the determinant ofΣ.

A two dimensional example of a Normal distribution is shown on the next slide.
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Constant Standard Error Ellipsoids

Samples,~x, from the 2D distributionN(~m, Σ) are shown to the right.

We define~x to have astandard error of s if

(~x− ~m)TΣ−1(~x− ~m) = s2. (4)

The purple, green and red ellipses are the curves for standard errors

s = 1, 2, and3, respectively. −2 0 2 4
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These elliptical shapes for constant standard error become clear by considering the eigenvalues decom-

position,Σ = UΛUT , whereΛ = diag[λ1, λ2] andλ1, λ2 > 0 (recallΣ is positive definite).

Consider the 2D coordinates~u obtained from~x by translating the origin to the mean point,~m, and

rotating/reflecting byUT , that is,~u = UT (~x− ~m). In these coordinates, equation (4) becomes

~u TΛ−1~u =
u2

1

λ1
+

u2
2

λ2
= s2.

This is the equation of an ellipse having the principal axes aligned with theu1 andu2 axes. The lengths

of these axes are2s
√

λ1 and2s
√

λ2, respectively.
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Illustration of the Noise Model

Below we illustrate equation (1), namely~zk = ~fk(~q) + ~nk, with ~nk ∼ N(~0, Σk):

The noise model~fk(~q) + ~nk, with ~nk ∼ N(~0, Σk), is shown (left), with ellipses for standard error equal

to 2 around each corner point. (These covariances are only illustrative.)

The detail figure (right) shows one observed corner point~zk (blue’+’), the model point~fk(~q) (red

’·’), and the error vector~ek = ~zk − ~fk(~q) (green line).

The observed point is almost on the 2-standard-deviation ellipse, indicating the standard error
√

~e T
k Σ−1

k ~ek

is just less than2.
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Maximum Likelihood Estimation

Trick Question: What’s the probability of observing an error~nk = ~zk − ~fk(~q)?1 More helpfully, let

B(ε) be the 2D box

B(ε) = [−ε

2
,
ε

2
]× [−ε

2
,
ε

2
].

Then the probability of observing noise in the region~nk + B(ε) is the integral ofp(~n|~0, Σk) over this

set. This equalsp(~nk|~0, Σk)ε
2 plus higher order terms asε→ 0 (see Wikipedia, Rectangle Method).

Since the noise in each of the observations is assumed to be independent, the probability thatall of the

noise values are in the regions~nk + B(ε), for k = 1, . . . , K, is

Pε =

K
∏

k=1

[

p(~nk |~0, Σk)ε
2 + O(ε4)

]

= ε2K
K
∏

k=1

[

p(~zk − ~fk(~q) |~0, Σk) + O(ε2)
]

.

For a fixedε, we might try to choose the parameters~q which maximize this probabilityPε. Or, more

simply, we wish to choose~q to maximize thelikelihoodof all the observations~zk, namely

Data Likelihood: p(~z1, . . . , ~zK | ~q) ≡
K
∏

k=1

p(~zk − ~fk(~q) |~0, Σk). (5)
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Recap: Maximum Likelihood Estimation

In summary, given:

• the parameterized model~fk(~q) for the image position (in pixels) of thekth checkerboard corner

point;

• where~q are the unknown parameters, including the intrinsic and extrinsic camera parameters; and

• the observed but approximate corner points~zk (in pixels); and

• the noise model for the observed~zk, namely~nk = ~zk − ~fk(~q
0 ) ∼ N(~0, Σk) are independent. Here

~q 0 are the correct parameters, and we initially assume the noise covariancesΣk are known.

Then we wish to maximize the data likelihood (5) with respect to~q:

Data Likelihood: p(~z1, . . . , ~zK | ~q) ≡
K
∏

k=1

p(~zk − ~fk(~q) |~0, Σk).

The resulting vector, say~q ∗, is called amaximum likelihood estimatefor the parameters~q.
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Maximizing Log-Likelihood

Sincelog(L) is monotonically increasing forL > 0, maximizing the data likelihood is equivalent to

maximizing theLog-Likelihood , log(p(~z1, . . . , ~zK | ~q)).

From equation (5) we have

log(p(~z1, . . . , ~zK | ~q)) = log

[

K
∏

k=1

p(~zk − ~fk(~q) |~0, Σk)

]

=

K
∑

k=1

[

log(p(~zk − ~fk(~q) |~0, Σk))
]

=

K
∑

k=1

log

(

1

(2π|Σk|)d/2
e−

1
2(~zk−~fk(~q))T Σ−1

k
(~zk−~fk(~q))

)

=

K
∑

k=1

[

−1

2
(~zk − ~fk(~q))TΣ−1

k (~zk − ~fk(~q))− d

2
log(2π|Σk|)

]

= − 1

2

[

K
∑

k=1

(~zk − ~fk(~q))TΣ−1
k (~zk − ~fk(~q))

]

+ Const.

Hered = 2 and “Const.” is a constant independent of~q.
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Minimizing the Sum of Squared Standard Errors

Alternatively, it is equivalent to minimize:

SSSE(~q) = S3E(~q) =
1

2

K
∑

k=1

(~zk − ~fk(~q))TΣ−1
k (~zk − ~fk(~q)). (6)

We refer toS3E(~q) as the sum of squared standard errors.

Here “standard’ refers (usefully, but somewhat non-standardly) to the normalization by the inverse

covariance matricesΣ−1
k .
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Flavours of Least Squares

Since it is rare to know the noise covariancesΣk, it is common to make two types of simplifications in

the noise model,

Isotropic: Σk = σ2
kI, (7)

Identically Distributed:Σk = Σ0, (8)

Isotropic and Identically Distributed:Σk = σ2
0I, (9)

wherek = 1, 2, . . . , K.

For the isotropic case, the curves of constant error are circles instead of ellipses.

For identically distributed noise, the constant error curves arethe same for every observed point.
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Weighted Least Squares

For the isotropic case, the max-likelihood estimate (6) becomes

WLS(~q) =
1

2

K
∑

k=1

wk (~zk − ~fk(~q))T (~zk − ~fk(~q))

=
1

2

K
∑

k=1

wk ||~zk − ~fk(~q))||2, (10)

wherewk = 1/σ2
k are the weights. This is called aweighted least squares(WLS) problem.

Note that weightswk = σ−2
k are inversely proportional to the variance of the observed point~zk.

Reweighting the data therefore implies a statement about the assumed variances of the data points, we

will return to this issue later.
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Ordinary Least Squares

For the isotropic and identically distributed noise model, itis equivalent to minimize

LS(~q) =
1

2

K
∑

k=1

(~zk − ~fk(~q))T (~zk − ~fk(~q)) =
1

2

K
∑

k=1

||~zk − ~fk(~q))||2. (11)

Here we have omitted a constant weightw0 = 1/σ2
0 which appears in (10). This constant does not

effect the minimization.

This is called anordinary or unweighted least squares(LS) problem.
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Linear and Nonlinear Least Squares

Finally, any of the previous least squares problems are said to belinear least squares problemsif
~fk(~q) has only a linear dependence on the parameters~q. That is,~fk(~q) = Ak~q +~bk for a constant matrix

Ak and vector~bk.

We show below that linear least squares problems can be reduced to solving a linear system of equa-

tions.

For the camera calibration problem,~fk(~q) are nonlinear functions of~q. Therefore the problem of

minimizingS3E(~q) is called anonlinear least squares problem, and similarly for the corresponding

weighted or unweighted versions.

Generally we require numerical optimization software to solve nonlinear least squares problems. See,

for example, the textbook by Nocedal and Wright, 2006.
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Punting2 the Calibration Problem

For now, the checkerboard fitting problem has served our purpose of:

1. Introducing maximum likelihood estimation for models with independent, multidimensional, Gaus-

sian noise;

2. Deriving the equivalent sum of squared standard errors formulation, S3E(~q), above;

3. Introducing several specific cases of minimizing the squared standard error where the approximate

noise models are isotropic and/or identical for all observations.

In order to develop some general intuition for maximum likelihood estimation, we consider a simpler

estimation problem next.

In particular, we consider scaled orthographic instead of perspective projection. This leads to a linear

least squares problem.
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Scaled Orthographic Case

A scaled orthographic mapping of the checkerboard plane is givenby

~x = s
(

I2
~0
)

M̂ex















X1

X2

0

1















= M

(

X1

X2

)

+~b = A( ~X)~q. (12)

Since (12) is linear in~X = (X1, X2)
T , it can be rewritten in terms of some constant2 × 2 matrix M

and2-vector~b.

The rightmost equation above is

M ~X +~b =

(

X1 0 X2 0 1 0

0 X1 0 X2 0 1

)

(

M1,1 M2,1 M1,2 M2,2 b1 b2

)T

= A( ~X)~q. (13)

Here~q is the above 6-vector of coefficients, consisting of the elements ofM and~b.

The linear mapping~x = M ~X +~b = A( ~X)~q is called anaffine transformationof the coordinatesX1

andX2. (See Szeliski, Sec. 6.1.)
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Affine Model

For the scaled orthographic case the predicted corner points are~fk(~q) = A( ~Xk)~q, which is linear in the

unknowns~q. (For simplicity, we are considering only one affine image of thecheckerboard.)

The parameters~q are called theaffine poseparameters.

The sum of squared standard errors, namelyS3E(~q) in (6), is

S3E(~q) =
1

2

K
∑

k=1

(~zk − Ak~q)TΣ−1
k (~zk − Ak~q), whereAk = A( ~Xk). (14)

In order for~q ∗ to minimizeS3E(~q) it must be the case that the gradient ofS3E(~q) with respect to~q

must be zero at~q ∗.

That is, we get thenormal equations

~0 =
∂S3E

∂~q
(~q ∗ ) = −

K
∑

k=1

AT
k Σ−1

k (~zk − Ak~q
∗ ),

This is a linear equation in the unknown vector~q ∗.
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Linear Least Squares Solution

The normal equations can be rewritten as

F~q ∗ ≡
[

K
∑

k=1

AT
k Σ−1

k Ak

]

~q ∗ =

[

K
∑

k=1

AT
k Σ−1

k ~zk

]

≡ ~r. (15)

HereF ∈ R
6×6 is the Hessian ofS3E(~q) (aka the Fisher information matrix).

From (15), the maximum likelihood estimate is~q ∗ = F−1~r. (For the current problem,F is full rank iff

the checkerboard corner points~Xk are not all colinear.)

Max-Likelihood Estimation Algorithm. Construct the termsF and~r in the normal equations, (15),

and solve the resulting linear system.
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Properties of the Sum of Squares of Standard Errors

When the noise~nk = ~zk − Ak~q
0 is sampled independently from the 2D Normal distributionN(~0, Σk)

for k = 1, . . . , K, we have:

• The mean of the max-likelihood estimates~q ∗ (using equation (15)) is equal to the true solution~q 0.

• Equivalently, the expectationE[~q ∗] = ~q 0.

• Here the expectation is over the distribution of noise given bythe independent, mean zero, Gaus-

sian noise model.

• An estimator is said to be unbiased iffE[~q ∗] = ~q 0, where~q 0 is the true value.

• Any linear least squares estimator (with mean-zero noise and non-singular normal equations) is

unbiased.

• For theS3E(~q) estimator, thecovarianceof ~q ∗ equalsF−1, the inverse of the Fisher information

matrixF introduced in equation (15).
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Simulating Maximum Likelihood Solutions

The Matlab codeaffCheckDemo.m simulates the max-likelihood inference of affine pose.

Above left shows 100 samples of the noisy corner points{~zk}Kk=1, where the red ellipses indicate

standard errors equal to 3. Most points are seen to have a standard error less than 3.

Above right shows the solution~q ∗ of (15) (blue grid), given the observed points~zk (blue crosses). The

differences,~zk − ~f(~q ∗), are the inferred noises (green lines). The mauve grid shows the mean of the

solutions~q ∗ over many different noise samples.

This illustrates that, with mean-zero noise, linear least squares provides an unbiased estimate.
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Ordinary and Reweighted Least Squares

Above left, LS: A random sample (blue crosses) from the same data set of noisy cornerpoints is

used with ordinary least squares, equation (11). The red circles indicate that thenoise model used for

estimation(only) is isotropic with identical weights, saywk = 1/σ2
0. The blue grid is the LS solution

for this set of noisy corner points, while the mauve grid is the mean over many samples.

Above right, WLS: Similar to the LS example, except the top point has had its weight increased by a

factor of 100. This increase in the weight is equivalent to a tenfold decrease in the covariance for that

point (i.e.,wk = 1/(σ0/10)2). Note the fitted model (blue grid) closely approximates this point. Also,

note the average model (mauve grid) is still unbiased.
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Least Squares with an Outlier

This set of data (blue crosses) includes a single outlier (bottom blue cross), which causes large errors

in the LS solution (blue grid).

The mean solution (mauve grid), over similar outlier locations, is biased away from the true solution.

Sensitivity to Outliers: For least squares, the cost of any model fit error (green lines) is quadratic in

the error magnitude. Due to this quadratic cost, it is often cheaper to decrease a few very large errors

and, effectively, distribute them around to the other constraints, creating many medium-sized errors.
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Aspects of Estimator Performance

In choosing or designing an estimator, we should consider:

• Bias: Is the expected value of the estimator, sayE[~q ∗], equal to the true solution~q 0? (If so, the

estimator is said to be unbiased.)

• Variance: How large is the covariance of the estimator,E[(~q ∗ − E[~q ∗])(~q ∗ − E[~q ∗])T ]?

• Statistical Efficiency: Given a measure of the estimator error, such as the root mean squared

(RMS) reconstruction error:

R(~q ∗) =

(

E

[

1

K

K
∑

k=1

||~fk(~q
∗ )− ~x 0

k ||2
])1/2

, (16)

where~x 0
k is the true position of thekth point, define the statistical efficiency as the ratio

R(~q opt)/R(~q ∗). (17)

Here~q opt denotes the optimal estimator from theS3E objective function in (6).

• Tolerance to Outliers: Does the estimator performance, say in terms of RMS error, degrade

gracefully in the presence of outliers?
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Statistical Efficiency

The statistical efficiencies (SE) for the previous estimators arelisted below (fromaffCheckerDemo.m):

• SE = 1.00 for theS3E estimator, indicating it is perfectly efficient.

• SE = 0.67 for the LS estimator. Recall the LS approach used above treats all errors as isotropic

and identically distributed. The loss of statistical efficiency is due to the information lost in using

this simple noise model. Equivalently, note the RMS error has increased by 50% from the optimal

value (i.e.,1/SE = 1/0.67 ≈ 1.5).

• SE = 0.51 for the WLS estimator used above, for which we reweighted one point by a factor of

100 over the LS estimator. This further loss of efficiency is dueto the inaccuracy of the implied

noise model for the re-weighted point (i.e.,σk ← σ0/10 andwk ← 100w0 = 100/σ2
0).

• SE = 0.26 for the LS estimator in the presence of the outlier. This value decreases to zero as the

outlier becomes more distant. The current value illustrates that the RMS error has quadrupled over

the optimal estimator (w/o an outlier), indicating the sensitivity of LS to outliers.

Our next task is to consider estimation in the presence of outliers.
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