The Singular Value Decomposition

Goal: We introduce/review the singular value decompostion (SVD) ofadrix and discuss some
applications relevant to vision.

Consider a matrix\/ € R"™**. For convenience we assume> k (otherwise considet/”). The
SVD of M is a real-valuednatrix factorization M = USV'. The SVD can be computed using an
exceptionally stable numerical algortihm.

The 'compact’ SVD for tall-rectangular matrices, liRé, is generated in Matlab by:

% When n >= Kk
[U S, V] = svd(M 0);
% Here Uis nx k, Sis k x k diagonal, Vis k x k.

See also the matlab calls:
e[U S V] = svd(M ’econ’); Givesacompact form of SVD for both < k£ andn > k.

e[U S, V] = svd(M,; Gives anon-compact representatibnisn x n, V isk x k.

See “Singular Value Decomposition” in Wikipedia, or thesd& textbook by Gilbert Strang (1993)
(see Section 6.7).
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Properties of the SVD

Some properties df, S,V are:

e U, S,V provide a real-valued matrix factorization &f, i.e., M = USV".

e U is an x k matrix with orthonormal columng/” U = I, wherel, is thek x k identity matrix.
e I/ is an orthonormak x k matrix, V' = V1,

e Sis ak x k diagonal matrix, with the non-negatigengular valuess, s, . . ., s;, on the diagonal.

e By convention the singular values are given in the sorted arders, > ... > s, > 0.

Summary: Forany square or tall-rectangular matrix/, the SVD shows that the matrix-vector prod-
uct M7 can be represented as:

1. Anorthogonal change of coordinatels” z;
2. An axis-aligned scalingf the result,S(V*Z); and

3. The application of the resultingpefficients in an orthonormal basig (S (V1 7)).

Each of these steps is easily inverted. A similar story holdsvide-rectangular matrices, i.e\/ €

R™* for n < k.
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Additional Propertiesof the SVD

In addition we have:
e The rank of)M is given by the number of singular valugsthat are non-zero.
e If n =k, thenU is an orthonormal matrix;” = U~!, soUTU = UU"T = I,,.

e The pseudo-inverse df is defined to b/ = VRU”, whereR is a diagonal matrix. The thg"
entry on the diagonal dRisr; = 1/s, if s; # 0, andr; = 0if s; = 0. HereR is the pseudo-inverse
of the diagonal matrix.

We consider the uniqueness of the SVD next, this can be skippéehe first reading.
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Uniqueness of the SVD

Consider the SVD)M = USVT, for any square or tall-rectangular matrix, i.8{, ¢ R™* with n > k.

1. The singular values are unique and, for distinct positingudar valuess; > 0, the j* columns of
U andV are also unique up to a sign change of both columns.

2. For any repeated and positive singular values,ssay s;.; = ... = s; > 0 are all the singular
values equal tg;, the corresponding columns bfandl” are unique up to any rotation/reflection
applied toboth sets of columns (i.el/.;; — U, ;W andV,;; — V. ;.;W for some orthogonal
matrix ).

3. More care must be taken with one or more singular values at &rpposes; > 0 ands;,; =
. = s = 0. Here the(j + 1)* through thek! columns ofU are less constrained, and can be
any set of(k — j) orthonormal vectors in the: — j)-dimensional left null space df/. Moreover
these columns off can be chosen independently of the Igst- j) columns ofV (which form a
orthonormal basis for the right null space/af).

Summary: These “symmetries” in the SVD are identical to those of thermigetors of a symmetric
matrix, excepffor the third point above, which states there is additional freedothe singular vectors

for singular values equal ta
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SVD, Least Squares, and Pseudo-Inverse
Applications of the SVD include solving least squares prolstem
T = argmin ||AZ — b||%, (1)

whereAisn x k and|| - || is the standard vector 2-norm (Euclidian length).

Let A = USVT denote the SVD of A. Then the range 4fis contained in (or equal to) the subspace
spanned by the orthogonal columnslaf We cannot reduce any error #ww’ — b that is perpendicular
to the range ofA. Thus, it is equivalent to minimize

7 = argmin ||[U" AT — UTb||> = argmin ||[UT(USV)# — UTb|[?
— argmin ||(SVT)Z — UTD| > (2)

From (2) it follows that an optimal solution i8 = (VRUT)EWhereR Is the pseudo-inverse of (as
given on p.3). Note that for large matrices= V (R(U”b)) is much more efficient to compute.

Note the solution matrix used above, namglRRU”, equals the pseudo-inverge.
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SVD and the Matrix Square Root

Supposek’ is a symmetricn x n matrix. Moreover, assume thaf is non-negative definite, which

means for every vectar ¢ R"” we haver ' Kz > 0.

We then compute the matrix square rootfof namelyk /2, as follows:

1.

2.

Computd U, S, V] = svd(K).

SinceK is symmetric and non-negative definite, it follows without lo$generality that we can
setU = V.

. ThusK = VSV, thus the columns of are eigenvectors dk with the ;' eigenvalue being;.
Defines'/2 = diag([s;’*, sy'*, ..., s'*]), and note that the singular values are non-negative.

. ThereforeJ = V. SV2V T is a symmetria: x n matrix, such thafs’ = J.J. So.J is a suitable matrix

square rootx/2.

. Moreover, it also follows thaf is non-negative definite and, as sudhis similar to thepositive

square rootof a positive real number.
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Covariance M atrices

Consider a multivariate normal distribution ferdimensional vectorsy ~ N(m, K), where:
e N(m, K) denotes the normal distribution;
e m € R" is the mean;

e K ¢ R™" s the covariance matrix. As such, is symmetric (i.e. X’ = K) and positive definite
(.e.,u"Ku > 0forall @ e R"\{0}).
e The probability density function fai (m, K) is,

1 12 T 1= =
2 - — —5(@—m)t K= (F—m)
T~ Nm,K) = (27T]K]))W26 2 :

Here| K| = det(K) denotes the determinant éf.
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Sampling from a M ultivariate Nor mal Distribution

To sample from the Normal distributiaN (7, K') we do the following:

1. Generate a x 1 vectoru where each element is independently sampled froni(0, 1) (i.e., the
1D Normal distribution with mean and covariance).

2. Compute the matrix square root&f namelyk /2, as defined on p.6.
3. Thend = K'V/2ii generates a fair sample fromi(0, K ).

4. SetZ = 1 + d, we claim this is a fair sample froV (17, K).

To check that the covariance adfis actually K, first note that the mean af= 0. Then, by definition,
the covariance of is:

C = E(dd") = B(K'"*ia" K% = K'?B(ua")K'? = KVLK'? = K,

confirming thatd has the covarianck, as desired.
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Sample Covariance and Principal Directions

Given a set of sample vecto{s?j}f:l, with eachz; € R", the sample mean and covariance are defined

to be:

! 1
ij, andC = =)
j=1

k
My =

(& — 1) (T — 1) 3)

1

el I

J

Samples from 2-dim Normal

A 2D example is shown to the right. The blue points denote tI
samplesr,. The ellipses denote curves of constant standard de 4
ation, when measured in terms of the sample covari@ghceThat il
is, the curver + d(f) satisfiesl(0)"C-1d(0) = p, for p = 1,2, 0r 3 |
(corresponding to the yellow, green and red ellipses, respegtivel

-2 0 2 4
X

The black lines above indicate tpei nci pal directi ons fromthe sample mean, i.e., the major
and minor axes of the ellipses. These are the directions ofvegeors ofC,. The length of the/"
line segment, from the sample mean to the red ellipse, is eql,»a;/ﬁ) wherep = 3 ands; is the ;"
singular value of’.
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Minimum Residual Variance Bases

Given a set of sample vectofs;}"_,, with each?; € R", form the matrixX € R"*". As before, the

—

sample mean i$ >°"_| 7, = ..

Optimal Basis Selection Problem: Select g»-dimensional basisgj}ﬁ?:l that minimizes the following:

k

SSD, = Bgﬁggp;r%n | — (s + Ba;)|[* (4)
Here B = (51, - .,Ep) Is then x p matrix formed from the selected basis. The right-most minima

above indicates that (for a given bad#y, we choose the coefficients which minimize the least
squares errois” = ||Z; — (1, + Bd;)||*. The basis selection problem is then to choBse minimize
the sum of these least-squares err@%:1 E]2 (aka, the sum of squared differences (SSD)).

An optimal choice of the-dimensional basisi?, makesSSD, = Zle E* as small as possible, and
SSD, is called theminimum residual varianctr any basis of dimension
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Example: Minimum Residual Variance Basis

Consider choosing an optimal 1D basis for the previous 2D elamp

Residual SSD: 491.5 Residual SSD: 164.4

-4 -2 0 2 4 6 -2 0 2 4
X X

The cyan lines above indicate two choices for the basis direéti The mauve lines connect selected
samplesr; with their best approximatiorn; + 5aj. The squared length of these mauve lines are the
least squares errois; = min,, ||Z; — (17, + ba,)||2. The residual SSD equaEle EZ, and is given

in the title of each plot.

In the right plot above we have seto be the first principal direction. That ijs the first column of
U whereC, = USV. The figure illustrates that this choice minimizes the residagbnce.
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Principal Component Analysis. PCA

The following Theorem provides the general result.

Theorem: (Minimum residual variance fror0 < p < n, the basisB formed from the firsp principal
components of the sample covariance matfjxi.e., the firstp columns of the matrix/ of an SVD of
Cy, = USVT) minimizes the residual variance

k
SSD(B) =Y min||Z; — (i, + Bdj)|’, (5)
j=1 Y
over all possible choices of dimensional) bases. Moreover, the optimal valugSD,, is given by
SSD, = ) s, (6)

wheres; is thej" singular value of the sample covariance

NoteSSDy = »_._, s;is the total variance in the original data set. A#glD, monotonically decreases
to 0 asp increases ta. A useful statistic is the fraction of the total variance that barexplained by a
p-dimensional basigy, = (SSDy — SSD,)/SSD,.
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PCA Applied to Eyes

Subset of 1196 eye imagex(x 20 pixels, rewritten as 500-dimensional sample vecig)s

BRErE - MeSEEw
FERRE= of Nl

e Fractiol EpI dbypr
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0.4r

Fraction of Variance

0.3

0.2

01 . . .
0 5 10 15 20
Singular value index

The fraction of the total variance),,, captured by an optimal dimensional subspace is plotted above.
The basis is formed from the firgtprincipal components of the 500-dimensional data set. Kpte
approaches 75% for a 20-dimensional basis.
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Eigen-Eye Subspace M odel

The mean iamge and some principal components for the eye tlatashown below:

Mean Eye Basis Images 1 through 6

Basis Images 10, 15, 20, 25, 30, 35

—

The first few principal directions (representing the dominant dwastof variation in the data set)

are shown on the top row. These appear to correspond to largesbealimg effects and the variation
around the eyebrow.

The higher order principal directions appear to capture vanatad a smaller spatial scale.

CSC420: Intro to SVD Page: 14



Eye Reconstructions

Given the sample covarian€g of the data, and the SVD, = USV7, let U, denote the firsh columns
of U. Then, according to the theorem on p.12, this choice of basiswaes the residual variance.

Original Image Reconstructions for p = 5, 20, 50:

Given a new eye image (centered and scaled), we can represent this image in thellhasig solving

the least squares problefp = arg ming ||7 — (ms + U, @)]|*.

The reconstructed imaged,) = m,+U,d is shown for two cases above. Note that the reconstruction

Is reasonable for a 20-dimensional basis, and improves as tlemsiiom (i.e.p) increases.
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