
The Singular Value Decomposition

Goal: We introduce/review the singular value decompostion (SVD) of amatrix and discuss some

applications relevant to vision.

Consider a matrixM ∈ R
n×k. For convenience we assumen ≥ k (otherwise considerMT ). The

SVD of M is a real-valuedmatrix factorization, M = USV T . The SVD can be computed using an

exceptionally stable numerical algortihm.

The ’compact’ SVD for tall-rectangular matrices, likeM , is generated in Matlab by:

% When n >= k
[U, S, V] = svd(M, 0);
% Here U is n x k, S is k x k diagonal, V is k x k.

See also the matlab calls:

• [U,S,V] = svd(M, ’econ’); Gives a compact form of SVD for bothn < k andn ≥ k.

• [U,S,V] = svd(M); Gives a non-compact representation,U is n × n, V is k × k.

See “Singular Value Decomposition” in Wikipedia, or the classic textbook by Gilbert Strang (1993)
(see Section 6.7).
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Properties of the SVD

Some properties ofU, S, V are:

• U , S, V provide a real-valued matrix factorization ofM , i.e.,M = USV T .

• U is an × k matrix with orthonormal columns,UTU = Ik, whereIk is thek × k identity matrix.

• V is an orthonormalk × k matrix,V T = V −1.

• S is ak×k diagonal matrix, with the non-negativesingular values, s1, s2, . . . , sk, on the diagonal.

• By convention the singular values are given in the sorted orders1 ≥ s2 ≥ . . . ≥ sk ≥ 0.

Summary: Forany square or tall-rectangular matrixM , the SVD shows that the matrix-vector prod-

uctM~x can be represented as:

1. An orthogonal change of coordinates, V T~x;

2. An axis-aligned scalingof the result,S(V T~x); and

3. The application of the resultingcoefficients in an orthonormal basis, U(S(V T~x)).

Each of these steps is easily inverted. A similar story holds forwide-rectangular matrices, i.e.,M ∈

R
n×k for n < k.
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Additional Properties of the SVD

In addition we have:

• The rank ofM is given by the number of singular valuessj that are non-zero.

• If n = k, thenU is an orthonormal matrix,UT = U−1, soUTU = UUT = In.

• The pseudo-inverse ofM is defined to beM † = V RUT , whereR is a diagonal matrix. The thejth

entry on the diagonal ofR is rj = 1/sj if sj 6= 0, andrj = 0 if sj = 0. HereR is the pseudo-inverse

of the diagonal matrixS.

We consider the uniqueness of the SVD next, this can be skipped on the first reading.
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Uniqueness of the SVD

Consider the SVD,M = USV T , for any square or tall-rectangular matrix, i.e.,M ∈ R
n×k with n ≥ k.

1. The singular values are unique and, for distinct positive singular values,sj > 0, thejth columns of

U andV are also unique up to a sign change of both columns.

2. For any repeated and positive singular values, saysi = si+1 = . . . = sj > 0 are all the singular

values equal tosi, the corresponding columns ofU andV are unique up to any rotation/reflection

applied tobothsets of columns (i.e.,U∗,i:j → U∗,i:jW andV∗,i:j → V∗,i:jW for some orthogonal

matrixW ).

3. More care must be taken with one or more singular values at zero.Supposesj > 0 andsj+1 =

. . . = sk = 0. Here the(j + 1)st through thekth columns ofU are less constrained, and can be

any set of(k − j) orthonormal vectors in the(n − j)-dimensional left null space ofM . Moreover

these columns ofU can be chosen independently of the last(k − j) columns ofV (which form a

orthonormal basis for the right null space ofM ).

Summary: These “symmetries” in the SVD are identical to those of the eigenvectors of a symmetric

matrix,exceptfor the third point above, which states there is additional freedom in the singular vectors

for singular values equal to0.
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SVD, Least Squares, and Pseudo-Inverse

Applications of the SVD include solving least squares problems:

~x = arg min
~x

||A~x −~b||2, (1)

whereA is n × k and|| · || is the standard vector 2-norm (Euclidian length).

Let A = USV T denote the SVD of A. Then the range ofA is contained in (or equal to) the subspace

spanned by the orthogonal columns ofU . We cannot reduce any error inA~x −~b that is perpendicular

to the range ofA. Thus, it is equivalent to minimize

~x = arg min
~x

||UTA~x − UT~b||2 = arg min
~x

||UT (USV T )~x − UT~b||2

= arg min
~x

||(SV T )~x − UT~b||2. (2)

From (2) it follows that an optimal solution is~x = (V RUT )~b whereR is the pseudo-inverse ofS (as

given on p.3). Note that for large matrices,~x = V (R(UT~b)) is much more efficient to compute.

Note the solution matrix used above, namelyV RUT , equals the pseudo-inverseA†.
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SVD and the Matrix Square Root

SupposeK is a symmetricn × n matrix. Moreover, assume thatK is non-negative definite, which

means for every vector~x ∈ R
n we have~x TK~x ≥ 0.

We then compute the matrix square root ofK, namelyK1/2, as follows:

1. Compute[U, S, V] = svd(K).

2. SinceK is symmetric and non-negative definite, it follows without lossof generality that we can

setU = V .

3. ThusK = V SV T , thus the columns ofV are eigenvectors ofK with thejth eigenvalue beingsj.

4. DefineS1/2 = diag([s1/2
1 , s

1/2
2 , . . . , s

1/2
k ]), and note that the singular values are non-negative.

5. ThereforeJ = V S1/2V T is a symmetricn×n matrix, such thatK = JJ . SoJ is a suitable matrix

square root,K1/2.

6. Moreover, it also follows thatJ is non-negative definite and, as such,J is similar to thepositive

square rootof a positive real number.
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Covariance Matrices

Consider a multivariate normal distribution forn-dimensional vectors,~x ∼ N(~m, K), where:

• N(~m, K) denotes the normal distribution;

• ~m ∈ R
n is the mean;

• K ∈ R
n×n is the covariance matrix. As such,K is symmetric (i.e.,KT = K) and positive definite

(i.e.,~u TK~u > 0 for all ~u ∈ R
n\{~0}).

• The probability density function forN(~m, K) is,

~x ∼ N(~m, K) ≡
1

(2π|K|))n/2
e−

1

2
(~x−~m)T K−1(~x−~m).

Here|K| = det(K) denotes the determinant ofK.
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Sampling from a Multivariate Normal Distribution

To sample from the Normal distributionN(~m, K) we do the following:

1. Generate an × 1 vector~u where each elementuj is independently sampled fromN(0, 1) (i.e., the

1D Normal distribution with mean0 and covariance1).

2. Compute the matrix square root ofK, namelyK1/2, as defined on p.6.

3. Then~d = K1/2~u generates a fair sample fromN(0, K).

4. Set~x = ~m + ~d, we claim this is a fair sample fromN(~m, K).

To check that the covariance of~d is actuallyK, first note that the mean of~d = ~0. Then, by definition,

the covariance of~d is:

C ≡ E(~d~d T ) = E(K1/2~u~u TKT/2) = K1/2E(~u~u T )K1/2 = K1/2InK
1/2 = K,

confirming that~d has the covarianceK, as desired.
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Sample Covariance and Principal Directions

Given a set of sample vectors{~xj}
k
j=1, with each~xj ∈ R

n, the sample mean and covariance are defined

to be:

~ms =
1

k

k∑

j=1

~xj, andCs =
1

(k − 1)

k∑

j=1

(~xj − ~ms)(~xj − ~ms)
T , (3)

A 2D example is shown to the right. The blue points denote the

samples~xk. The ellipses denote curves of constant standard devi-

ation, when measured in terms of the sample covarianceCs. That

is, the curve~m + ~d(θ) satisfies~d(θ)TC−1
s

~d(θ) = ρ, for ρ = 1, 2, or 3

(corresponding to the yellow, green and red ellipses, respectively).
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The black lines above indicate theprincipal directions from the sample mean, i.e., the major

and minor axes of the ellipses. These are the directions of eigenvectors ofCs. The length of thejth

line segment, from the sample mean to the red ellipse, is equal toρs
1/2
j , whereρ = 3 andsj is thejth

singular value ofCs.
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Minimum Residual Variance Bases

Given a set of sample vectors{~xj}
k
j=1, with each~xj ∈ R

n, form the matrixX ∈ R
n×k. As before, the

sample mean is1k
∑k

j=1 ~xk = ~ms.

Optimal Basis Selection Problem: Select ap-dimensional basis{~bj}
p
j=1 that minimizes the following:

SSDp = min
B∈Rn×p

k∑

j=1

min
~aj

||~xj − (~ms + B~aj)||
2. (4)

HereB = (~b1, . . . ,~bp) is then × p matrix formed from the selected basis. The right-most minima

above indicates that (for a given basisB), we choose the coefficients~aj which minimize the least

squares error,E2
j = ||~xj − (~ms + B~aj)||

2. The basis selection problem is then to chooseB to minimize

the sum of these least-squares errors
∑k

j=1 E2
j (aka, the sum of squared differences (SSD)).

An optimal choice of thep-dimensional basis,B, makesSSDp =
∑k

j=1 E2
j as small as possible, and

SSDp is called theminimum residual variancefor any basis of dimensionp.
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Example: Minimum Residual Variance Basis

Consider choosing an optimal 1D basis for the previous 2D example:
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The cyan lines above indicate two choices for the basis direction~b. The mauve lines connect selected

samples~xj with their best approximation~ms +~baj. The squared length of these mauve lines are the

least squares errorsE2
j = minaj

||~xj − (~ms +~baj)||
2. The residual SSD equals

∑k
j=1 E2

j , and is given

in the title of each plot.

In the right plot above we have set~b to be the first principal direction. That is,~b is the first column of

U whereCs = USV T . The figure illustrates that this choice minimizes the residualvariance.
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Principal Component Analysis: PCA

The following Theorem provides the general result.

Theorem: (Minimum residual variance.)For 0 ≤ p ≤ n, the basisB formed from the firstp principal

components of the sample covariance matrixCs (i.e., the firstp columns of the matrixU of an SVD of

Cs = USV T ) minimizes the residual variance

SSD(B) =

k∑

j=1

min
~aj

||~xj − (~ms + B~aj)||
2, (5)

over all possible choices of (p dimensional) basesB. Moreover, the optimal valueSSDp is given by

SSDp =

n∑

j=p+1

sj, (6)

wheresj is thejth singular value of the sample covarianceCs.

NoteSSD0 =
∑n

j=1 sj is the total variance in the original data set. AndSSDp monotonically decreases

to 0 asp increases ton. A useful statistic is the fraction of the total variance that canbe explained by a

p-dimensional basis,Qp = (SSD0 − SSDp)/SSD0.
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PCA Applied to Eyes

Subset of 1196 eye images (25 × 20 pixels, rewritten as 500-dimensional sample vectors~xj):
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The fraction of the total variance,Qp, captured by an optimalp dimensional subspace is plotted above.

The basis is formed from the firstp principal components of the 500-dimensional data set. NoteQp

approaches 75% for a 20-dimensional basis.
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Eigen-Eye Subspace Model

The mean iamge and some principal components for the eye dataset are shown below:

Basis Images 10, 15, 20, 25, 30, 35

Mean Eye Basis Images 1 through 6

The first few principal directions (representing the dominant directions of variation in the data set)

are shown on the top row. These appear to correspond to large scaleshading effects and the variation

around the eyebrow.

The higher order principal directions appear to capture variations at a smaller spatial scale.
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Eye Reconstructions

Given the sample covarianceCs of the data, and the SVDCs = USV T , letUp denote the firstp columns

of U . Then, according to the theorem on p.12, this choice of basis minimizes the residual variance.

Eye Image Reconstruction
(K = 5)

Reconstruction
(K = 20)

Reconstruction
(K = 50)

Reconstructions for p = 5, 20, 50:Original Image

Eye Image Reconstruction
(K = 5)

Reconstruction
(K = 20)

Reconstruction
(K = 50)

Given a new eye image~x (centered and scaled), we can represent this image in the basisUp, by solving

the least squares problem~a0 = arg min~a ||~x − (~ms + Up ~a)||2.

The reconstructed image~r(~a0) = ~ms+Up~a0 is shown for two cases above. Note that the reconstruction

is reasonable for a 20-dimensional basis, and improves as the dimension (i.e.,p) increases.
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