Image Projection

Goal: Introduce the basic concepts and mathematics for image pamecti

Motivation: The mathematics of image projection allow us to answer tw@ipes:

CDGiDPtjca||"usian5,c.crrn

e Given a 3D scene, how does it project to the image plane? (“Fofwaodel.)

e Given animage, what 3D scenes could projectto it? (“Inverse”@hpttision is all about guessing
the scene and the story behind it. The latter is a (largely ighdrely grail of computer vision.

Readings: Szeliski, Chapter 2.
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The Pinhole Camera

Image formation can be approximated with a simple pinhole camera,
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The image position for the 3D poi(kK, Y, Z) is given by the projective transformation

x / X
yl=717Y
f 7

The distance between the image plane and the projective paomctalled the “focal length,f. Note:
e for mathematical convenience we put the image plane in froriteohbdal point (since this avoids
the need to flip the image coords about the origin);

e image coordinate is taken to the right, ang downwards. This agrees with the standard raster
order and the convention of a right-handed coordinate fraxhe’, 7).

e the primary approximation here is that there is no optical blwgtodiion, or defocus (discussed
later).
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Coordinate Frames

Consider the three coordinate frames:

e World coordinate frame, X,,. These are 3D coordinates fixed in the world, say with respect to
one corner of the room.

e Camera coordinate frame X,. These are 3D coordinates fixed in the camera. The origin of the
camera coordinates is at the center of projection of the cameyaa(g@ in world coords). The
z-axis is taken to be the optical axis of the camera (with pointsimt of the camera in the positive
z direction).

e Image coordinate frame p. The image coordinates are written as a 3-vegios; (pi, po, 1),
with p; andp, the pixel coordinates of the image point. Here the origin is enttp-left corner of
the image (or, in Matlab, the top-left corner has pixel coords (1) first image coordinate
increases to the right, and increases downwards.

Next we express the transforms from world coordinates to camera catgdiand then to image coor-
dinates.
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Extrinsic Calibration Matrix

The extrinsic calibration parameters specify the transformation fnamd to camera coordinates,
which is a standard 3D coordinate transformation,

X, = M, /X" 1]". (1)
Here the extrinsic calibration matri¥..,. is a3 x 4 matrix of the form
Meﬂf — (R _RJw )7 (2)

with R is a3 x 3 rotation matrix andl,, is the location, in world coordinates, of the center of profacti
of the camera. The inverse of this mapping is simply

X, = R"X,. +d,. (3)

The perspective transformation can now be applied to the 3D pﬁirﬂ.e., in the camera’s coordi-

nates),
I
:EC:fX'C: To. |- (4)
X3,c “
/

Everything here is measured in meters (say), not pixels,faadhe camera’s focal length.
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Intrinsic Calibration Matrix

The intrinsic calibration matrix)/;,, transforms the 3D image positiafih (measured in meters, say)
to pixel coordinates,
ﬁ — ?Minfc; (5)

whereM;, is a3 x 3 matrix. The factor oft / f here is conventional.

For example, a camera with rectangular pixels of size by 1/s,, with focal lengthf, and piercing
point (o,, 0,) (i.e., the intersection of the optical axis with the image pl@novided in pixel coordi-
nates) has the intrinsic calibration matrix

fs. 0 o,
Mm = 0 fSy Oy . (6)
0o 0 1

Note that, for a 3D point. on the image plane, the third coordinate of the pixel coordinat¢ory is
ps = 1. As we see next, this redundancy is useful.

Equations (1), (4) and (5) define the transformation from the world coatés of a 3D pointX'w, to
the pixel coordinates of the image of that poigit,The transformation is nonlinear, due to the scaling
by X3, in equation (4).
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A Note on Units

So far we have written the focal lengthin meters. But note that only the terryis, and s, appear in
the intrinsic calibration matrix,

fs. 0 o,
M;, = 0 fs, oy |
0o 0 1

wheres, , are in the units of horizontal/vertical pixels per meter (apgare in pixels).

Instead of meters, it is common to meastina units of pixel width, that is, replacgs, by f. In which
case the intrinsic calibration matrix becomes

f 0 o,
My, = 0 fa Oy ) (7)
0 0 1

wherea = s,/s, is the (unitless) aspect ratio of a pixél € a < 1 if the pixels are rectangular and
flat,a = 1 if the pixels are square, and> 1 rectangular and tall).
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Homogeneous Coordinates

The projective transform becomes linear when written in the follgihomogeneous coordinates,
X=X,
pt = dp = d(p,ps, )"

Herec, d are arbitrary nonzero constants . The last coordinate of thesedesmaous vectors provide
the scale factors. It is therefore easy to convert back and forth batiie homogeneous forms and
the standard forms.

The mapping from world to pixel coordinates can then be writtemaBrtear transformation,
pt = My, M., X" (8)

Essentially, the division operation in perspective projecitsonow implicit in the homogeneous vector

—

p". The division is simply postponed uniil” is rescaled by its third coordinate to form the pixel
coordinate vectop.

Due to its linearity, equation (8) is useful in many areas of caiampanal vision.
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Example: Lines Project to Lines

As a first application of the perspective projection equati®), con-
sider a line in 3D written in homogeneous coordinates, say
X0

(V)-(0)

HereX 0 is an arbitrary 3D point on the line expressed in world coor-
dinates/ is a 3D vector tangent to the line, ards the free parameter
for points along the line. To avoid special cases, we asshatetiie
line does not pass through the center of projection, andatingeint di-
rectiont has a positive inner-product with the optical axis (moretos t
below). By equation (8), the image the point®f:(s) is

X"(s)

p"(0) + sp,

p"(s)

whereM = M,, M., is a3 x 4 matrix, 5"(0) = M((X°)”,1)7, and
= M(t",0)T. Notep) andp™(0) are both constant vectors, inde-
pendent ofs. Therefore the image of the 3D line, in pixel coordinates,

IS
S

—h
_'_ Oé(S)pt )

. Locpey 1
p(s) ) (s) = ae)” (0)

wherea(s) = p4(s). Using equations (1) and (7) we find

(9)

(10)

= pgh(()) + (s, for g = pt’f3 = €gMe$(fT, 0)7,

a(s)

whereé = (0,0,1). The condition that the inner-productoénd the
direction of the optical axis is positive is equivalentito- 0.
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Note that equation (9) shows thats) is in the plane spanned by two
constant 3D vectors. Itis also in the image plgnes= 1. Therefore it
is in the intersection of these two planes, which is a linenmitnage.
That is, lines in 3D are imaged as lines in 2D. (Although, iagpice,
some lenses introduce “radial distortion”, which we disclager.)

One caveat on egn (9) is that some of these points may be b#tand
principal plane (and therefore behind the camera). Usingons
(1) and (7) it follows thatX. ;(s), the Z-component of the point on
the line written in camera coordinates, is equal to the tbachponent
7" (s), which we denoted by (s) above. Thus the point is in front of
the principal plane if and only if(s) > 0 (and in front of the lens if
a(s) > ¢ for some constant > 0.)

Since > 0 we have from (10) that/«a(s) — 0 ands/a(s) — 1/8
ass — oo. Therefore, from (9), the image poingés) — (1/3)p;" as

s — oo. Note that this limit point is a constant image point depende
only on the tangent directiah

In fact, in homogeneous world coordinates, the 4D vettdr 0)” is
the point at infinity in the direction. The perspective projection of this
point is simplyp” = M(¢t*,0)”, which is homogeneously equivalent
to the limit of the image points we derived above. The nextgxa
explores this fact further.
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Example: Parallel Lines Project to Intersecting Lines
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Next consider a set of parallel lines in 3D, say

(V)0

Here all these lines have the same tangent directi@md hence are
parallel in 3D (both in the world and camera coordinates).

th(s)

To eliminate special cases, we again assume that none & lihes
passes through the center of projection, artas a positive inner-
product with the direction of the optical axis (i.8.,> 0, with 5 defined
as in equation (10)).

Then from the previous example we know thatsas oo, the perspec-
tive projections of the pointé?kh(s) all converge to the same image
point, namelyp” = M (t™,0)7.
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Thus the images of the parallel 3D Iiné§(s) all intersect at the
image pointp/". Moreover, it can be shown from equations (9) and
(10) that, under the natural condition that we only form tmage of
points on the 3D line which are in front of the principal plafe.,
X.3(s) = a(s) > 0), the projected points on the image line segments
convergemonotonically to ;. That is, in the image, the projected line
segments all appear to terminatest (For example, note the sides of
the road in the left figure above. Although, as the right figslmews,

we can always be surprised.)

In summary, the common termination point for the images oélbel
lines in 3D is the perspective projection of the 3D tangewmigection
t. It is referred to as theanishing point.
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Example: The Horizon Line

As another exercise in projective geometry, we considetipdalsets of parallel lines, all of which are coplanar in 3 show that the images of
each parallel set of lines intersect and terminate at a poitihe horizon line in the image.

Iﬂﬁi o
FER NSO O Y

‘rise

Consider multiple families of parallel lines in a plane, weernch fam-
ily of lines has the tangent directianin 3D. From the previous analy- Pl = M([ajty + bita) ", 0)" = a5 + b;py
sis, thej'" family must co-intersect at the image point (in homogeneous

Dividing through by the third coordinategﬁg, we find the point of in-
coordinates)

. - tersection of thg'" family of lines is at the image point
b, = M(t] ?0) .

J

o 1 o a 'p?,g . b'pg,s . . .

p; = (T) pjh = ( jh D1+ Jh D2 = a;p1 + ﬁjpz-
Since the tangent directions are all assumed to be coplarg,iany Pj3 Pj3 Pj3
two distinct directions provide a basis. That is, assumimefirst two From this equation it follows that, + 8; = 1. (Hint, look at the last
directions are linearly independent, we can write row in this vector valued equation.) Hence the image pgjnt an

affine combination of the two image poinis andp,. Therefore the
horizon must be the line in the image passing throgigand;,, which

for some constants; andb;. As a result, we have is what we wanted to show.
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Example: 3D Sets of Parallel Lines

Many man-made environments have a wealth of rectangulaissol Sketch the lines and the three vanishing points for the écted) sets
The surface normals for the planes in these structures sirécted to of lines. You can select visible edges in the image to addhéurines
just three orthogonal directions (ignoring signs). Thisamethat there  to these three sets. Also sketch the three horizon linesiéthree sets
are three horizon lines, one for each surface normal. of parallel planes. In both cases use a suitable notatiomdioishing

points and horizon lines that are far outside the image baynd
Itis also relatively common (with a good carpenter) to habdiBes on

these surfaces which have three mutually orthogonal tamtjesctions It turns out that the resulting information is suitable foth determin-
te, k = 1,2,3. An example of such lines is shown on the right, with ing the focal length of the camera (assuming square pixaksyecon-
each family in a different colour. (But | suspect one of thdsstched structing a scaled 3D model for the major planar surfacelseporch.
lines does not correspond to an edge in the scene with one dfithe See single-view metrology, say Szeliski, Sec. 6.3.3.

selected tangential directions, can you identify which®ne
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Optical Distortion

Image with barrel distortion. Barrel distortion of square grid. Pincushion distortion.
Images from Wikipedia.

Imagine printing an image on a thin rubber sheet. For many cantbrsgmage is a spatially distorted
version of a perfect perspective transformation of the scene (ep3left). This spatial distortion can
be corrected by warping (i.e., applying a variable stretching andlang to) the rubber sheet.

This correction can be done algorithmically by first estimatingaeametric warp from sample image
data (perhaps simply one image containing many straight lidgn a radial distortion suffices. The
overall process is called calibrating treglial distortion. (See Wikipedia, Distortion (Optics).)

This warp can then be applied to any subsequent image acquyitbdttcamera; effectively unwarping

it to provide a new image which is a close approximation to pegecspective projection.
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Lenses
Finally we discuss a more detailed model of lenses, namelihthéens model.

This model replaces the pinhole camera model, and is essfamtial

e relating the optical properties of a lens, such as its focal kertgtthe parametef (that we also
called “focal length”) in the pinhole camera model,

e characterizing the defocus of an image as a function of the déjaiin abject,

e understanding the critical optical blur which is performed befbeeiinage is sampled.
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Thin Lens: Cardinal Points

The thin lens model provides a more general model for a camera&thHan a simple pinhole camera.
It allows defocus to be modelled.

Nodal Distance(ND)
o > Image

.

N,P

f f

¢ A cylindrically symmetric lens can be geometrically modellgadiiree pairs otardinal pointson
the optical axis, namely thfecal, nodal, andprincipal points.

e Here we consider a thin lens, with the same material (such asragitleer side of the lens.

e For this case, the nodal and principal points all agree (denbigtiabove), and are often called
the center of projection.

e The plane perpendicular to the optical axis containing Plisat#heprincipal plane.

e Thefocal pointsF and F’ are a distance f away from N. Here f is calledftieal length of the lens.
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Thin Lens: Principal Rays

The cardinal points provide a geometric way to determine whererlawoint, O, will be focussed.

/ Image
O Plane
F1
F
N,P § ° o’
- _ -le - .

The point@ is focussed a®’ given by the intersection of (any two of the) thiaeencipal rays.
e Aray from O passing straight through the nodal point N of the lens.

e The two rays that are parallel to the optical axis on one sidesgbtimcipal plane, and pass through
the front or rear focal points (F and F’) on the opposite side of the.le

All rays from @ which pass through the lens are focusse@”a(behind the image plane shown above).

Thelens equation % = % + 5 follows from this construction, where areand 2’ be the distances @

and®’ to the principal plane.
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Thin Lens: Aperture and F-number

A lens aperture can be modelled using an occluder placed witkiprincipal plane.

Image g "

o) Aperture Plane

S
X

[
. |

From Wikipedia.

The aperture itself is the hole in this occluder. L&tenote theperture diameter.
The f-number (or f-stop) of a lens is given by the rafipD.

For the defocussed situation shown above, the point s@liseamaged to a small region in the image
plane (i.e., the projection of the aperture plus an additionaldglgion due to diffraction effects). The
size of this projected region is proportionalfig and therefore inversely proportional to the f-number.

As the f-number increases (i.€), decreases), the lens behaves more like a pinhole camera, d&thoug
due to diffraction the blur radius never decreases to zero.
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Thin Lens: Depth of Field

The depth of field is the distance between the nearest and fudhgsts in the scene that appear
acceptably in focus. That is, they are blurred by no more than d fireal diameter.

F-number: 5 (i.e., “f/5” on the lens) F-number: 32 (i.e., “f/32”)

Since the size of the blurred region is inversely proportionaléd#tmumber, a larger f-number provides
a larger depth of field. This is illustrated by the image paoadb(from Wikipedia, depth of field).
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Optical Blur, Sensor Elements, and Aliasing

Due to diffraction effects and the physical area of the light s®nslements (e.g., individual CCD
sensors), the incident light sensed by any camera has beeglly@ateraged over a small region in the
image plane. This (analogue) averaging plays a critical rolmage formation.

A perspective image of an infinite checkerboard is rendered byleol@rcamera model (above left).
Due to the point sampling, the checks in the distance appst@reed. This is called “aliasing”. Given
a more appropriate model for the analogue optical blur thisiatias eliminated (above right).
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Resampling and Aliasing

Downsampling an image refers to reducing the number of pixets, @ownsampling by 2 uses every
second pixel in every second row. (This is also called decimatiBefore downsampling, care must
be taken that aliasing isn’t introduced in the downsamplesbjen

Resampling Rule of Thumb.One can safely resample an imageiyin each directior andy, only
if the original image is smooth enough that, any point in thgiodl image can be approximated (say
using bilinear interpolation) given only the 4 nearest dovammgled neighbours.

Otherwise the image should first be blurred (next lecture), then siampled.
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Other Issues in Image Projection and Formation

Intrinsic Calibration refers to a procedure to estimate the intrinsic parameters to thezamaenely
the parameters of the intrinsic calibration mattik, (as, say, given in equation (7)), along with the
radial distortion parameters for the camera.

Extrinsic Calibration refers to estimating the extrinsic calibration mathik,,, with respect to some
predetermined world coordinate frame. (For both types of calibrasee the Camera Calibration
Toolbox for Matlab, by Jean-Yves Bouguet.)

Radiometry, Reflection and Colour. In order to synthesize an image we also require some under-
standing of the measurement of light (i.e., radiometry), and tefiee (i.e., the interaction of light
with surfaces). See the additional readings on the course hgmadpamore information. Here we
will largely ignore these topics since firstly, we have enougloor plate already, and secondly, these
topics overlap with other courses (i.e., CSC320 and CSC418).

Digital Image Formation. A good overview is in Szeliski, Sec. 2.3.

Image Noisearises from most of the steps of digital image formation. In thige®ue will restrict
ourselves to simple noise models. Noise will be a constanpammon from here on.
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Aside: Orthographic Projection

Scaled orthographic projection provides a linear approximatoperspective projection, which is
applicable for a small object far from the viewer and close toojbtecal axis.

(X,Y,0)

’(X,Y,Z) // v
RN

L/y/
Image Plane

Y

Given a 3D poin{ X, Y, Z), the corresponding image location under scaled orthographjegbian is

()==(7)

Heres is a constant scale factor; orthographic projection yges 1.

There are several other alternative approximations to perspegutection.
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