
Image Projection

Goal: Introduce the basic concepts and mathematics for image projection.

Motivation: The mathematics of image projection allow us to answer two questions:

• Given a 3D scene, how does it project to the image plane? (“Forward” model.)

• Given an image, what 3D scenes could project to it? (“Inverse” model.) Vision is all about guessing

the scene and the story behind it. The latter is a (largely ignored) holy grail of computer vision.

Readings: Szeliski, Chapter 2.
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The Pinhole Camera

Image formation can be approximated with a simple pinhole camera,
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The image position for the 3D point(X, Y, Z) is given by the projective transformation
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The distance between the image plane and the projective pointP is called the “focal length,”f . Note:
• for mathematical convenience we put the image plane in front of the nodal point (since this avoids

the need to flip the image coords about the origin);

• image coordinatex is taken to the right, andy downwards. This agrees with the standard raster
order and the convention of a right-handed coordinate frame(X, Y, Z).

• the primary approximation here is that there is no optical blur, distortion, or defocus (discussed
later).
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Coordinate Frames

Consider the three coordinate frames:

• World coordinate frame, ~Xw. These are 3D coordinates fixed in the world, say with respect to

one corner of the room.

• Camera coordinate frame, ~Xc. These are 3D coordinates fixed in the camera. The origin of the

camera coordinates is at the center of projection of the camera (say at ~dw in world coords). The

z-axis is taken to be the optical axis of the camera (with points infront of the camera in the positive

z direction).

• Image coordinate frame, ~p. The image coordinates are written as a 3-vector,~p = (p1, p2, 1)T ,

with p1 andp2 the pixel coordinates of the image point. Here the origin is in the top-left corner of

the image (or, in Matlab, the top-left corner has pixel coords (1,1)).The first image coordinatep1

increases to the right, andp2 increases downwards.

Next we express the transforms from world coordinates to camera coordinates and then to image coor-

dinates.
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Extrinsic Calibration Matrix

The extrinsic calibration parameters specify the transformation fromworld to camera coordinates,

which is a standard 3D coordinate transformation,

~Xc = Mex[ ~X
T
w , 1]T . (1)

Here the extrinsic calibration matrixMex is a3 × 4 matrix of the form

Mex =
(

R −R~dw

)

, (2)

with R is a3×3 rotation matrix and~dw is the location, in world coordinates, of the center of projection

of the camera. The inverse of this mapping is simply

~Xw = RT ~Xc + ~dw. (3)

The perspective transformation can now be applied to the 3D point~Xc (i.e., in the camera’s coordi-

nates),

~xc =
f

X3,c

~Xc =
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. (4)

Everything here is measured in meters (say), not pixels, andf is the camera’s focal length.
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Intrinsic Calibration Matrix

The intrinsic calibration matrix,Min, transforms the 3D image position~xc (measured in meters, say)

to pixel coordinates,

~p =
1

f
Min~xc, (5)

whereMin is a3 × 3 matrix. The factor of1/f here is conventional.

For example, a camera with rectangular pixels of size1/sx by 1/sy, with focal lengthf , and piercing

point (ox, oy) (i.e., the intersection of the optical axis with the image plane provided in pixel coordi-

nates) has the intrinsic calibration matrix

Min =









fsx 0 ox

0 fsy oy

0 0 1









. (6)

Note that, for a 3D point~xc on the image plane, the third coordinate of the pixel coordinatevector~p is

p3 = 1. As we see next, this redundancy is useful.

Equations (1), (4) and (5) define the transformation from the world coordinates of a 3D point,~Xw, to

the pixel coordinates of the image of that point,~p. The transformation is nonlinear, due to the scaling

by X3,c in equation (4).
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A Note on Units

So far we have written the focal lengthf in meters. But note that only the termsfsx andfsy appear in

the intrinsic calibration matrix,

Min =


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


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







,

wheresx,y are in the units of horizontal/vertical pixels per meter (andox,y are in pixels).

Instead of meters, it is common to measuref in units of pixel width, that is, replacefsx by f . In which

case the intrinsic calibration matrix becomes

Min =


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0 0 1
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, (7)

wherea = sy/sx is the (unitless) aspect ratio of a pixel (0 < a < 1 if the pixels are rectangular and

flat, a = 1 if the pixels are square, anda > 1 rectangular and tall).
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Homogeneous Coordinates

The projective transform becomes linear when written in the following homogeneous coordinates,

~X h
w = c( ~X T

w , 1)T ,

~p h = d~p = d (p1, p2, 1)T .

Herec, d are arbitrary nonzero constants . The last coordinate of these homogeneous vectors provide

the scale factors. It is therefore easy to convert back and forth between the homogeneous forms and

the standard forms.

The mapping from world to pixel coordinates can then be written as thelinear transformation,

~p h = MinMex
~X h

w . (8)

Essentially, the division operation in perspective projection is now implicit in the homogeneous vector

~p h. The division is simply postponed until~p h is rescaled by its third coordinate to form the pixel

coordinate vector~p.

Due to its linearity, equation (8) is useful in many areas of computational vision.
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Example: Lines Project to Lines

As a first application of the perspective projection equation (8), con-

sider a line in 3D written in homogeneous coordinates, say

~X h(s) =

(

~X 0

1

)

+ s

(

~t

0

)

.

Here ~X 0 is an arbitrary 3D point on the line expressed in world coor-

dinates,~t is a 3D vector tangent to the line, ands is the free parameter

for points along the line. To avoid special cases, we assume that the

line does not pass through the center of projection, and the tangent di-

rection~t has a positive inner-product with the optical axis (more on this

below). By equation (8), the image the point of~X h(s) is

~p h(s) = M ~X h(s) = ~p h(0) + s~p h
t ,

whereM = MinMex is a3 × 4 matrix, ~p h(0) = M(( ~X0)T , 1)T , and

~p h
t = M(~t T , 0)T . Note~p h

t and~p h(0) are both constant vectors, inde-

pendent ofs. Therefore the image of the 3D line, in pixel coordinates,

is

~p(s) ≡
1

ph
3
(s)

~p h(s) =
1

α(s)
~p h(0) +

s

α(s)
~p h

t , (9)

whereα(s) = ph
3
(s). Using equations (1) and (7) we find

α(s) = p h
3
(0) + βs, for β = p h

t,3 = ~e T
3

Mex(~t
T , 0)T , (10)

where~e T
3

= (0, 0, 1). The condition that the inner-product of~t and the

direction of the optical axis is positive is equivalent toβ > 0.

Note that equation (9) shows that~p(s) is in the plane spanned by two

constant 3D vectors. It is also in the image plane,p3 = 1. Therefore it

is in the intersection of these two planes, which is a line in the image.

That is, lines in 3D are imaged as lines in 2D. (Although, in practice,

some lenses introduce “radial distortion”, which we discuss later.)

One caveat on eqn (9) is that some of these points may be behindthe

principal plane (and therefore behind the camera). Using equations

(1) and (7) it follows thatXc,3(s), the Z-component of the point on

the line written in camera coordinates, is equal to the thirdcomponent

~p h(s), which we denoted byα(s) above. Thus the point is in front of

the principal plane if and only ifα(s) > 0 (and in front of the lens if

α(s) > c for some constantc > 0.)

Sinceβ > 0 we have from (10) that1/α(s) → 0 ands/α(s) → 1/β

ass → ∞. Therefore, from (9), the image points~p(s) → (1/β)~p h
t as

s → ∞. Note that this limit point is a constant image point dependent

only on the tangent direction~t.

In fact, in homogeneous world coordinates, the 4D vector(~t T , 0)T is

the point at infinity in the direction~t. The perspective projection of this

point is simply~p h
t = M(~t T , 0)T , which is homogeneously equivalent

to the limit of the image points we derived above. The next example

explores this fact further.
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Example: Parallel Lines Project to Intersecting Lines

Next consider a set of parallel lines in 3D, say

~X h
k (s) =

(

~X 0

k

1

)

+ s

(

~t

0

)

.

Here all these lines have the same tangent direction~t, and hence are

parallel in 3D (both in the world and camera coordinates).

To eliminate special cases, we again assume that none of these lines

passes through the center of projection, and~t has a positive inner-

product with the direction of the optical axis (i.e.,β > 0, with β defined

as in equation (10)).

Then from the previous example we know that, ass → ∞, the perspec-

tive projections of the points~X h
k (s) all converge to the same image

point, namely~p h
t = M(~t T , 0)T .

Thus the images of the parallel 3D lines~X h
k (s) all intersect at the

image point~p h
t . Moreover, it can be shown from equations (9) and

(10) that, under the natural condition that we only form the image of

points on the 3D line which are in front of the principal plane(i.e.,

Xc,3(s) = α(s) > 0), the projected points on the image line segments

convergemonotonically to ~p h
t . That is, in the image, the projected line

segments all appear to terminate at~p h
t . (For example, note the sides of

the road in the left figure above. Although, as the right figureshows,

we can always be surprised.)

In summary, the common termination point for the images of parallel

lines in 3D is the perspective projection of the 3D tangential direction
~t. It is referred to as thevanishing point.
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Example: The Horizon Line

As another exercise in projective geometry, we consider multiple sets of parallel lines, all of which are coplanar in 3D.We show that the images of

each parallel set of lines intersect and terminate at a pointon the horizon line in the image.

Consider multiple families of parallel lines in a plane, where each fam-

ily of lines has the tangent direction~tj in 3D. From the previous analy-

sis, thejth family must co-intersect at the image point (in homogeneous

coordinates)

~p h
j = M(~t T

j , 0)T .

Since the tangent directions are all assumed to be coplanar in 3D, any

two distinct directions provide a basis. That is, assuming the first two

directions are linearly independent, we can write

~tj = aj
~t1 + bj

~t2,

for some constantsaj andbj. As a result, we have

~p h
j = M([aj

~t1 + bj
~t2]

T , 0)T = aj~p
h
1

+ bj~p
h
2

Dividing through by the third coordinate,ph
j,3, we find the point of in-

tersection of thejth family of lines is at the image point

~pj =

(

1

ph
j,3

)

~p h
j =

(

ajp
h
1,3

ph
j,3

)

~p1 +

(

bjp
h
2,3

ph
j,3

)

~p2 = αj~p1 + βj~p2.

From this equation it follows thatαj + βj = 1. (Hint, look at the last

row in this vector valued equation.) Hence the image point~pj is an

affine combination of the two image points~p1 and~p2. Therefore the

horizon must be the line in the image passing through~p1 and~p2, which

is what we wanted to show.
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Example: 3D Sets of Parallel Lines

Many man-made environments have a wealth of rectangular solids.

The surface normals for the planes in these structures are restricted to

just three orthogonal directions (ignoring signs). This means that there

are three horizon lines, one for each surface normal.

It is also relatively common (with a good carpenter) to have 3D lines on

these surfaces which have three mutually orthogonal tangent directions
~tk, k = 1, 2, 3. An example of such lines is shown on the right, with

each family in a different colour. (But I suspect one of these sketched

lines does not correspond to an edge in the scene with one of the three

selected tangential directions, can you identify which one?)

Sketch the lines and the three vanishing points for the (corrected) sets

of lines. You can select visible edges in the image to add further lines

to these three sets. Also sketch the three horizon lines for the three sets

of parallel planes. In both cases use a suitable notation forvanishing

points and horizon lines that are far outside the image boundary.

It turns out that the resulting information is suitable for both determin-

ing the focal length of the camera (assuming square pixels) and recon-

structing a scaled 3D model for the major planar surfaces of the porch.

See single-view metrology, say Szeliski, Sec. 6.3.3.
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Optical Distortion

Image with barrel distortion. Barrel distortion of square grid. Pincushion distortion.
Images from Wikipedia.

Imagine printing an image on a thin rubber sheet. For many cameras, this image is a spatially distorted

version of a perfect perspective transformation of the scene (e.g., top-left). This spatial distortion can

be corrected by warping (i.e., applying a variable stretching and shrinking to) the rubber sheet.

This correction can be done algorithmically by first estimating aparametric warp from sample image

data (perhaps simply one image containing many straight lines).Often a radial distortion suffices. The

overall process is called calibrating theradial distortion. (See Wikipedia, Distortion (Optics).)

This warp can then be applied to any subsequent image acquired by that camera; effectively unwarping

it to provide a new image which is a close approximation to perfectperspective projection.
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Lenses

Finally we discuss a more detailed model of lenses, namely thethin lens model.

This model replaces the pinhole camera model, and is essentialfor:

• relating the optical properties of a lens, such as its focal length, to the parameterf (that we also

called “focal length”) in the pinhole camera model,

• characterizing the defocus of an image as a function of the depth of an object,

• understanding the critical optical blur which is performed before the image is sampled.
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Thin Lens: Cardinal Points

The thin lens model provides a more general model for a camera’s lens than a simple pinhole camera.

It allows defocus to be modelled.

f

F

F’

Nodal Distance(ND)

N,P

Image

f

Plane

• A cylindrically symmetric lens can be geometrically modelled by three pairs ofcardinal points on
the optical axis, namely thefocal, nodal, andprincipal points.

• Here we consider a thin lens, with the same material (such as air) on either side of the lens.

• For this case, the nodal and principal points all agree (denoted, N,P above), and are often called
thecenter of projection.

• The plane perpendicular to the optical axis containing P is called theprincipal plane.

• Thefocal points F and F’ are a distance f away from N. Here f is called thefocal length of the lens.
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Thin Lens: Principal Rays

The cardinal points provide a geometric way to determine where a world point, ~O, will be focussed.

O

f

F
O’

F’

z z’

N,P

f

Image
Plane

The point ~O is focussed at~O′ given by the intersection of (any two of the) threeprincipal rays:

• A ray from ~O passing straight through the nodal point N of the lens.

• The two rays that are parallel to the optical axis on one side of the principal plane, and pass through

the front or rear focal points (F and F’) on the opposite side of the lens.

All rays from ~O which pass through the lens are focussed at~O′ (behind the image plane shown above).

The lens equation 1
f = 1

z + 1
z′ follows from this construction, where arez andz′ be the distances of~O

and ~O′ to the principal plane.
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Thin Lens: Aperture and F-number

A lens aperture can be modelled using an occluder placed withinthe principal plane.

O

f

F
O’

F’

Aperture

P,N

f

Image
Plane

From Wikipedia.

The aperture itself is the hole in this occluder. LetD denote theaperture diameter.

Thef -number (or f-stop) of a lens is given by the ratiof/D.

For the defocussed situation shown above, the point sourceO is imaged to a small region in the image

plane (i.e., the projection of the aperture plus an additional blur region due to diffraction effects). The

size of this projected region is proportional toD, and therefore inversely proportional to the f-number.

As the f-number increases (i.e.,D decreases), the lens behaves more like a pinhole camera, although,

due to diffraction the blur radius never decreases to zero.
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Thin Lens: Depth of Field

The depth of field is the distance between the nearest and furthest objects in the scene that appear

acceptably in focus. That is, they are blurred by no more than a small fixed diameter.

F-number: 5 (i.e., “f/5” on the lens) F-number: 32 (i.e., “f/32”)

Since the size of the blurred region is inversely proportional to the f-number, a larger f-number provides

a larger depth of field. This is illustrated by the image pair above (from Wikipedia, depth of field).
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Optical Blur, Sensor Elements, and Aliasing

Due to diffraction effects and the physical area of the light sensing elements (e.g., individual CCD

sensors), the incident light sensed by any camera has been spatially averaged over a small region in the

image plane. This (analogue) averaging plays a critical role in image formation.

A perspective image of an infinite checkerboard is rendered by a pinhole camera model (above left).

Due to the point sampling, the checks in the distance appear distorted. This is called “aliasing”. Given

a more appropriate model for the analogue optical blur this aliasing is eliminated (above right).
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Resampling and Aliasing

Downsampling an image refers to reducing the number of pixels. E.g., downsampling by 2 uses every

second pixel in every second row. (This is also called decimation.) Before downsampling, care must

be taken that aliasing isn’t introduced in the downsampled image.

Resampling Rule of Thumb.One can safely resample an image byK, in each directionx andy, only

if the original image is smooth enough that, any point in the original image can be approximated (say

using bilinear interpolation) given only the 4 nearest downnsampled neighbours.

Otherwise the image should first be blurred (next lecture), then downsampled.
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Other Issues in Image Projection and Formation

Intrinsic Calibration refers to a procedure to estimate the intrinsic parameters to the camera, namely

the parameters of the intrinsic calibration matrixMin (as, say, given in equation (7)), along with the

radial distortion parameters for the camera.

Extrinsic Calibration refers to estimating the extrinsic calibration matrixMext, with respect to some

predetermined world coordinate frame. (For both types of calibration, see the Camera Calibration

Toolbox for Matlab, by Jean-Yves Bouguet.)

Radiometry, Reflection and Colour. In order to synthesize an image we also require some under-

standing of the measurement of light (i.e., radiometry), and reflectance (i.e., the interaction of light

with surfaces). See the additional readings on the course homepage for more information. Here we

will largely ignore these topics since firstly, we have enough on our plate already, and secondly, these

topics overlap with other courses (i.e., CSC320 and CSC418).

Digital Image Formation. A good overview is in Szeliski, Sec. 2.3.

Image Noisearises from most of the steps of digital image formation. In this course we will restrict

ourselves to simple noise models. Noise will be a constant companion from here on.
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Aside: Orthographic Projection

Scaled orthographic projection provides a linear approximationto perspective projection, which is

applicable for a small object far from the viewer and close to theoptical axis.

(X,Y,Z)

Z
x

Image Plane

X

y

Y

(X,Y,0)

Given a 3D point(X, Y, Z), the corresponding image location under scaled orthographic projection is
(

x

y

)

= s0

(

X

Y

)

Heres0 is a constant scale factor; orthographic projection usess0 = 1.

There are several other alternative approximations to perspective projection.
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