
Image Features (Part III)

Goal: We introduce and motivate several types of image features. Theseare each designed for specific

vision tasks.

We consider features to support the following tasks:

I. Matching image patches between images with significantly different viewpoints,

II. Extracting image landmarks; a) their(x, y) position,

III. Extracting image landmarks; b) their scale, and c) their orientation.⇐ Today

Readings: Szeliski, Section 4.1 and 4.2.
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Part III: Scale and Orientation of Image Landmarks

Recall animage landmark is meant to help orient a vision system with respect to the imagecontent.

As such, a landmark should be repeatably identifiable as a roughly corresponding image patch across

a range of different views of the same object. Here the image patchspecification must include image

location, scale and orientation.

In the previous lecture we discussed one method for determining landmarklocations, as spatially local

maxima of the Harris operator. These are distinct and (somewhat) repeatably identifiable locations in

an image.

The scaleof an image landmark is its (rough) diameter in the image. It is denoted byσ, which is

measured in pixels.

Theorientation of an landmark specifies its rotation within the image plane.

We begin by considering image scale.
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Matching Image Patches at Different Scales

We begin the story about extracting image scale at the end, namely by thinking about how we could

match two image patches corresponding to successfully extracted landmarks.

Consider the two landmarks indicated by the red and blue boxes below. Each landmark specifies an

image patch location, orientation (i.e., these boxes are upright in the image) and scale (i.e., the size of

the box).

How can these image patches be compared? One (inefficient) approach would be to resample both

image patches to a single size (above right). Then these resized image patches could be compared

using a technique that is tolerant of some misalignment, suchas HoG. We would prefer to avoid this

image resizing.
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Image Scale and Pixel Resolution

We consider how image features can be directly compared across different scales.
Sigma = 64 Sigma = 16 Sigma = 4 Sigma = 2 Sigma = 1

The red circles above denote the same (i.e., definitely corresponding) image patch for different pixel

resolutions. Note the resolution is extremely coarse forσ equal to1 or 2 pixels.

Using the clipped Gaussian kernel,g(~x, σ), we compute the blurred imager(~x, σ) along with its first

and second derivatives in~x, and sample the result at the center pixel~x0 (marked with the red asterisk

above). This formsr(~x0, σ), which is a function ofσ.

Boundary effects are avoided by doing all the filtering in a much larger image.

The filter responsesr(~x0, σ) for σ ∈ [1, 64] are shown on the next slide.
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Image Derivatives at Different Resolutions

Below we show a log-log plot of the absolute values ofr(~x, σ) along with its first and second derivatives

(all sampled at~x = ~x0) versus the scale parameterσ.
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This plot exhibits clear linear relationships between the log-absolute responses andlog(σ).

As we show next, the slope of these lines depend on the order of the derivative ofr that is being plotted

(i.e., a derivative of orderp = 0, 1, or 2 produces a line with slope−p).
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The Intuition of Scale-Normalized Derivatives

Suppose the region of interest is a disk of radiusσ centered on the current pixel.

Note the derivativerx(~x0, σ) = [∂r/∂x](~x0, σ), equals the rate of increase in the graylevelr, per pixel

step inx. It follows that these derivatives are inversely proportional to the number of pixels across the

region of interest.

A scale-invariant choice for the spatial coordinates is to scalethem by the radius of the region of

interest, i.e.,(u, v) = (x/σ, y/σ).

Then∂r/∂u = (dx/du)(∂r/∂x) = σrx, which provides the rate of increase in the graylevelr, per step

of sizeσ. Similarly,∂r/∂v = σry.

The second derivativesruu, ruv andrvv are equal toσ2rxx, σ2rxy andσ2ryy, respectively.

This scaling of the first and second derviatives byσ andσ2, respectively, providesscale-normalized

derivatives.

More generally, we scale-normalize apth order image derivative (expressed in terms ofx andy) by

multiplying it by σp.
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Scale-Normalized Image Derivatives

For σ ≥ 4 (pixels) thesescale-normalized derivativesare nearly invariant of the pixel resolution.

Discretization effects cause the results to deviate from the ideal for smallσ (cf., p.4).
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In practice, we typically downsample images and only useσ in the range of about 2 to 4 pixels. We

include much larger values ofσ here to illustrate the point thatscale-normalized derivative filters are

insensitive to pixel resolution, except at coarse spatial resolutions.

Even forσ ∈ [2, 4], the first-order (un-normalized) image derivatives vary by a factor of 2, and this

factor increases to4 for second-order derivatives.
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Scale-Normalized Image Scale

The only parameter that we have not scale-normalized isσ itself (which is still measured in pixels).

What could it mean to scale-normalize the scale parameter itself?

Consider changingσ by 5 pixels, i.e.,σ → σ + 5:

• If the originalσ was5, then this increment doublesσ to 10.

• If the originalσ was100, then this increment increasesσ by 5%.

This motivates choosing a “scale-invariant scale parameter” such that the patch radiusσ is increased

by aconstant percentagefor any unit step in this parameter.

This can be arranged by definingσ = 2s, wheres is the new (scale-normalized) scale parameter.

Note that a unit step froms to s + 1 corresponds to doublingσ, no matter what magnitudeσ has in

pixels. This is exactly as desired.
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Estimating Canonical Image Scales

Given an image point~x0, we wish to use the Gaussian blurred responser(~x0, σ(s)) to estimate the

canonical scale(s) for patches centered at~x0.

For the following demonstration we have chosen the red and blue points shown above, in the center

two sunflowers, as two possible choices for~x0.

For each~x0, we consider the blurred responser(~x0, σ(s)) as a function of the scale parameters.
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Estimating Canonical Image Scales

The Gaussian blurred responsesr(~x0, σ(s)) at the red and the blue points are shown below left:
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The derivative of the blurred responser(~x0, σ(s)) with respect tos is shown on the right above. Strong

positive maxima (or negative minima) in this derivative indicate significant scales for patches centered

at~x0. (The derivative responses above could also be interpolated to find the peaks more accurately.)

The scales that have been identified are shown with the verticallines above, and correspond to radii

σ(s) = 19 and23 pixels for the red and blue circles shown on p.9. (Note a bias in theestimated sizes.)
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Scale-Normalized Laplacian of Gaussian

We argued above that strong peaks/pits in the derivativedr/ds(~x0, σ(s)) can be used for scale selection.

Moreover, on the following page we show

dr

ds
(~x, σ(s)) = log(2) σ2 [(4g) ∗ I ] (~x, σ), (1)

whereσ(s) = 2s and

• 4 = ∂2

∂x2 + ∂2

∂y2 denotes the Laplacian differential operator,

• 4g(~x, σ) is called the Laplacian of a Gaussian (LoG),

• σ24 denotes the scale-normalized Laplacian (see pp.6,7),

• σ2 4 g(~x, σ) is the normalized LoG (nrmLoG), which can be used for scale selection (see eqn (1).

In view of equation (1), it is equivalent to look for strong peaks/pits in the image convolved with the

scale-normalized LoG filter,σ2 4 g(~x, σ).
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LoG, DoG, and the Gaussian Derivative Filter in Scale

For the imageI(~x), defineσ(s) = 2s andr(~x, σ) = (g ∗ I)(~x), where

g(~x, σ) is the 2D Gaussian kernel

g(~x, σ) =
1

2πσ2
e−(x2+y2)/2σ2

. (2)

(For fine resolutions, the normalization by1/(2πσ2) in equation (2)

approximates the discrete sum we used previously to normalize the

clipped Gaussian kernel.) It then follows that:

dr

ds
(~x0, σ(s)) =

[

∂g

∂s
∗ I

]

(~x0) =
dσ

ds
(s)

[

∂g

∂σ
∗ I

]

(~x0)

= log(2)σ(s)

[

∂g

∂σ
∗ I

]

(~x0). (3)

By (2), the (normalized) derivative of the Gaussian filterσ∂g/∂σ is

given by

σ
∂g

∂σ
(~x, σ) =

[

(x2 + y2)

σ2
− 2

]

g(~x, σ)

= σ2

[

∂2g

∂x2
+

∂2g

∂y2

]

≡ σ2 4 g(~x, σ). (4)

Here4 = ∂2

∂x2 + ∂2

∂y2 denotes the Laplacian differential operator. To-

gether equations (3) and (4) imply (1) as desired.

A difference of Gaussian kernel (in 2D) is defined to be

DoG(~x, σ, ρ) =
1

2πσ2
e−(x2+y2)/(2σ2) −

1

2πρ2σ2
e−(x2+y2)/(2ρ2σ2)

whereρ > 1. Forρ close to 1, it follows that

−1

(ρ − 1)
DoG(~x, σ, ρ) =

g(~x, σ) − g(~x, ρσ)

σ − ρσ
σ

≈ σ

[

∂g

∂σ
(~x, σ)

]

= σ2 4 g(~x, σ).

Thus a DoG filter can be used to approximate the normalized LoG.

A DoG approximation is convenient because it can be implemented

using two separable (i.e., Gaussian) filter kernels.

CSC420: Image Features Notes: 12



Local Maxima of Normalized LoG

Suppose we successively increaseσ by a factor ofρ (e.g.,ρ = 21/k, wherek equals the number of

samples desired per octave in scale).
Normalized LoG

σ

ρσ

σ/ρ

s

y

x

image adapted from Lowe, CVPR ’03

The strong positive local maxima, and negative local minima,(i.e. peaks and pits) can be found in the

normalized LoG response images. These are extrema in both the spatial coordinatesx, y and the scale

coordinates.
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Scale Selection in Practice

A monochrome brightness imageI(~x) was formed for the sunflower image on p.3 (repeated again on

the next slide).

The normalizedLoG filter was applied toI(~x) at scalesσ ranging from2 to 64 pixels, withσ increasing

by a factor ofρ = 21/4 each step.

Local maxima were identified in these scale-space (i.e.,x, y, andσ(s)) response images. We kept

the local maxima larger than a fixed thresholdT , i.e., withσ2[4g ∗ I ](~x) ≥ T > 0. These maxima

correspond to relatively dark regions in the image (as compared to their surrounding regions).

Relatively bright regions could also have been found by finding local minima such thatσ2[4g∗I ](~x) ≤

−T < 0. We omit these regions to avoid clutter in the displayed responses.

SeenrmLoG Sunflowers movie.
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Sunflower Image

We include the sunflower image below to allow for comparison with the subsequent results.

Image isField of Sunflowers Kentucky.jpg from picasaweb.google.com.
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Scale Selection in Practice

All the local maxima (in~x andσ(s)) for whichσ2[4g ∗ I ](~x) ≥ T are shown in the image below.

The circles are centered at each strong local maxima,(xk, yk), with radii equal toσ(sk). Note that

relatively dark regions are successfully identified in both position and scale. Non-circular regions can

also be seen to lead to one or more responses.
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Scale Selection in Practice

The following three slides are from Darya Frolova and Denis Simakov,of the Weizmann Institute.
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Scale Invariant Detectors
• Harris-Laplacian1

Find local maximum of:
– Harris corner detector 

in space (image 
coordinates)

– Laplacian in scale

1 K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001
2 D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. Accepted to IJCV 2004
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• SIFT (Lowe)2

Find local maximum of:
– Difference of Gaussians in 

space and scale
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Scale Invariant Detectors

K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001

• Experimental evaluation of detectors 
w.r.t. scale change

Repeatability rate:
# correspondences

# possible correspondences



Scale Invariant Detection: 
Summary

• Given: two images of the same scene with a 
large scale difference between them

• Goal: find the same interest points 
independently in each image

• Solution: search for maxima of suitable 
functions in scale and in space (over the 
image)

Possible methods include: 
1. Harris-Laplacian [Mikolajczyk, Schmid]: maximize Laplacian over 

scale, Harris’ measure of corner response over the image

2. SIFT [Lowe]: maximize Difference of Gaussians over scale and space



Canonical Orientation(s) of an Image Patch

Given a scale-invariant image patch, as detected by one of the previous approaches, we consider how

to obtain a canonical image orientation for this patch.

Image from D. Lowe, CVPR 2003 tutorial.

The direction and magnitude of image gradients within a scaledneighbourhood of the center of the

detected patch are used to form a gradient orientation histogram.

The significant peak(s) of this histogram are used to define the canonical orientation(s) of the patch.
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Summary: Image Landmarks

The detection of the image position, scale and orientation ofimage landmarks is doneindependently

across each image. An abstract representation of the image patch(such as a HoG model) is stored for

each landmark.

Image from D. Lowe, CVPR 2003 tutorial.

The same landmark can be identified in multiple images by comparing the image patch descriptors.

We use such features later in the course to:

• infer the 3D geometry of the scene from multiple viewpoints;

• do view-based object recognition;

• begin object category recognition (e.g., cows or bicycles).
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