Image Features (Part Ill)

Goal: We introduce and motivate several types of image features. Hnesach designed for specific
vision tasks.

We consider features to support the following tasks:
|. Matching image patches between images with significantfgreént viewpoints,
ll. Extracting image landmarks; a) théit, y) position,

lll. Extracting image landmarks; b) their scale, and c) their dagon. <= Today

Readings: Szeliski, Section 4.1 and 4.2.
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Part lll: Scale and Orientation of Image Landmarks

Recall anmage landmark is meant to help orient a vision system with respect to the incagéent.

As such, a landmark should be repeatably identifiable as a rpeghlesponding image patch across
a range of different views of the same object. Here the image pgtetification must include image
location, scale and orientation.

In the previous lecture we discussed one method for determimmalgriarklocations, as spatially local
maxima of the Harris operator. These are distinct and (somewlpatably identifiable locations in

an image.

The scaleof an image landmark is its (rough) diameter in the image. It isotkehbyo, which is
measured in pixels.

Theorientation of an landmark specifies its rotation within the image plane.

We begin by considering image scale.
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Matching Image Patches at Different Scales

We begin the story about extracting image scale at the end, lpdonéehinking about how we could
match two image patches corresponding to successfully exdreatdmarks.

Consider the two landmarks indicated by the red and blue bosdesvb Each landmark specifies an
Image patch location, orientation (i.e., these boxes are ugnghe image) and scale (i.e., the size of

the box).
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How can these image patches be compared? One (inefficient)aabpwoould be to resample both
Image patches to a single size (above right). Then these resimgkipatches could be compared
using a technique that is tolerant of some misalignment, agsddoG. We would prefer to avoid this

image resizing.
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Image Scale and Pixel Resolution

We consider how image features can be directly compared acrésdifscales.

Sigma = 64 Sigma = 16 Sigma =4 Sigma =2 Sigma=1

f ol
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The red circles above denote the same (i.e., definitely corresgpncage patch for different pixel

resolutions. Note the resolution is extremely coarserfequal tol or 2 pixels.

Using the clipped Gaussian kernel;r, o), we compute the blurred imagér, o) along with its first
and second derivatives ify and sample the result at the center pi¥g(marked with the red asterisk
above). This forms (), o), which is a function ob.

Boundary effects are avoided by doing all the filtering in a muatpdaimage.

The filter responses 7y, o) for o € [1,64] are shown on the next slide,
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Image Derivatives at Different Resolutions

Below we show a log-log plot of the absolute values(af, o) along with its first and second derivatives
(all sampled aff = x;) versus the scale parameter

Filter Responses over Scale
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This plot exhibits clear linear relationships between tlipdbsolute responses alg(o).

As we show next, the slope of these lines depend on the ordee digrivative of- that is being plotted
(i.e., a derivative of ordep = 0, 1, or 2 produces a line with slopep).
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The Intuition of Scale-Normalized Derivatives
Suppose the region of interest is a disk of raditentered on the current pixel.

Note the derivative . (7, 0) = [0r/0x|(¥y, o), equals the rate of increase in the graylevgler pixel
step inx. It follows that these derivatives are inversely proportional ®ortbmber of pixels across the
region of interest.

A scale-invariant choice for the spatial coordinates is to sttaden by the radius of the region of
interest, i.e.(u,v) = (z/0,y/0).

Thenor/0u = (dx/du)(0r/0z) = or,, which provides the rate of increase in the grayleygler step
of sizes. Similarly, 0r/0v = or,,.

The second derivatives,,, r,, andr,, are equal ter*r,,, o°r,, ando?r,,, respectively.

This scaling of the first and second derviativescognd o2, respectively, providescale-normalized
derivatives

More generally, we scale-normalizep# order image derivative (expressed in termscafndy) by
multiplying it by o?.
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Scale-Normalized Image Derivatives

For o > 4 (pixels) thesescale-normalized derivativesre nearly invariant of the pixel resolution.
Discretization effects cause the results to deviate from the fdeamall o (cf., p.4).

Scale—-Normalized Filter Responses
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In practice, we typically downsample images and only @ise the range of about 2 to 4 pixels. We
include much larger values of here to illustrate the point thatale-normalized derivative filters are
insensitive to pixel resolutigrexcept at coarse spatial resolutions.

Even foro € |2,4], the first-order (un-normalized) image derivatives vary by a factar, and this
factor increases t¢ for second-order derivatives.
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Scale-Normalized Image Scale
The only parameter that we have not scale-normalizedtiself (which is still measured in pixels).
What could it mean to scale-normalize the scale parameteff?itsel

Consider changing by 5 pixels, i.e.gc — o + 5:
e If the originalo wasb, then this increment doublesto 10.
e If the originalo was100, then this increment increasedy 5%.

This motivates choosing a “scale-invariant scale parameteti that the patch radiusis increased
by aconstant percentag®r any unit step in this parameter.

This can be arranged by definiag= 2°, wheres is the new (scale-normalized) scale parameter.

Note that a unit step from to s + 1 corresponds to doubling, no matter what magnitude has in
pixels. This is exactly as desired.
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Estimating Canonical Image Scales

Given an image point,, we wish to use the Gaussian blurred resporisg, o(s)) to estimate the
canonical scale(s) for patches centered,at
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For the following demonstration we have chosen the red and irgsopshown above, in the center
two sunflowers, as two possible choices fgr

For eachr)), we consider the blurred responsé),, o(s)) as a function of the scale parameter
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Estimating Canonical Image Scales

The Gaussian blurred responses,, o(s)) at the red and the blue points are shown below left:

Gaussian Blur over Scale Derivative of Blur wrt s=log(o)
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The derivative of the blurred respongg, o(s)) with respect tas is shown on the right above. Strong
positive maxima (or negative minima) in this derivative irat& significant scales for patches centered
atz,. (The derivative responses above could also be interpolateadithfe peaks more accurately.)

The scales that have been identified are shown with the velitiesl above, and correspond to radii
o(s) = 19 and23 pixels for the red and blue circles shown on p.9. (Note a bias ieshmated sizes.)
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Scale-Normalized Laplacian of Gaussian

We argued above that strong peaks/pits in the derivdiiyés(z, o(s)) can be used for scale selection.
Moreover, on the following page we show

dr

E(f, o(s)) = log(2)o? [(Ag) * 1] (Z,0), (1)

whereos(s) = 2° and
o N\ = g—; + g—; denotes the Laplacian differential operator,
e Ng(7, o) is called the Laplacian of a Gaussian (LoG),

e 02/\ denotes the scale-normalized Laplacian (see pp.6,7),

o 02 A g(Z, o) is the normalized LoG (nrmLoG), which can be used for scale sele¢siee eqn (1).

In view of equation (1), it is equivalent to look for strong peaks/m the image convolved with the
scale-normalized LoG filteg* A ¢(Z, o).
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LoG, DoG, and the Gaussian Derivative Filter in Scale

For the imagé€/ (), defines(s) = 2° andr(Z,0) = (g = I)(Z), where

g(Z,0) is the 2D Gaussian kernel
(Z,0) = 12?200 (2)
gz, o) = 27r026 .

(For fine resolutions, the normalization hy(27¢?) in equation (2)
approximates the discrete sum we used previously to naedte
clipped Gaussian kernel.) It then follows that:

(o) = [ 51 o) = 00) | 52 41 @)

— log(2)o(s) [g_g * I] (o). (3)

By (2), the (normalized) derivative of the Gaussian filtétg/0c is
given by

g _ (@ +y?) B
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Here A = 25 + £ denotes the Laplacian differential operator. To-
gether equations (3) and (4) imply (1) as desired.

o? A g(%,0). 4)

A difference of Gaussian kernel (in 2D) is defined to be

1
21 plo?
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e~ @ +y*)/(2p0?)
2mo?

DoG(Z,0,p) =

wherep > 1. Forp close to 1, it follows that
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Thus a DoG filter can be used to approximate the normalized LoG

A DoG approximation is convenient because it can be impleetkn
using two separable (i.e., Gaussian) filter kernels.
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Local Maxima of Normalized LoG

Suppose we successively increasby a factor ofp (e.g.,p = 2'/%, wherek equals the number of

samples desired per octave in scale).
Normalized LoG

y image adapted from Lowe, CVPR '03

The strong positive local maxima, and negative local minifne, peaks and pits) can be found in the
normalized LoG response images. These are extrema in both tine spardinates:, y and the scale
coordinates.
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Scale Selection in Practice

A monochrome brightness imagdér) was formed for the sunflower image on p.3 (repeated again on
the next slide).

The normalized oG filter was applied td (%) at scales ranging fron® to 64 pixels, witho increasing
by a factor ofp = 2!/* each step.

Local maxima were identified in these scale-space (i.ey, ando(s)) response images. We kept
the local maxima larger than a fixed thresh@ldi.e., with c*[Ag * I](Z) > T > 0. These maxima
correspond to relatively dark regions in the image (as compareeitostirrounding regions).

Relatively bright regions could also have been found by findiiegllminima such that?[A g I](7) <
—T < 0. We omit these regions to avoid clutter in the displayed resgsn

Seenr nLoG Sunf | ower s movie.
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Sunflower Image

We include the sunflower image below to allow for comparisoimthe subsequent results.

Image isFi el d_of _Sunf | ower s _Kent ucky. j pg from picasaweb.google.com.
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Scale Selection in Practice

All the local maxima (in? ando (s)) for which o[/ g * I](Z) > T are shown in the image below.

The circles are centered at each strong local maxima.y), with radii equal too(s;). Note that
relatively dark regions are successfully identified in both pmsiand scale. Non-circular regions can

also be seen to lead to one or more responses.
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Scale Selection in Practice

The following three slides are from Darya Frolova and Denis Simaifahe Weizmann Institute.
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Scale Invariant Detectors

» Harris-Laplacian’ scale —
Find local maximum of:

— Harris corner detector

in space (image > P

coordinates)

< Laplacian —

\ 4

— Laplacian in scale < Harris — *
« SIFT (Lowe)? scale D A
Find local maximum of: /rj
— Difference of Gaussians in 8
space and scale ) S )

< DoG — x

I'K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points”. ICCV 2001
2D.Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. Accepted to IJCV 2004



Scale Invariant Detectors

* Experimental evaluation of detectors
w.r.t. scale chang~

Repeatability rate:

# correspondences
# possible correspondences
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K.Mikolajczyk, C.Schmid. “Indexing Based on Scale Invariant Interest Points™. ICCV 2001



Scale Invariant Detection:
Summary

* Given: two images of the same scene with a
large scale difference between them

» Goal: find the same interest points
iIndependently in each image

» Solution: search for maxima of suitable
functions in scale and in space (over the
Image)

Possible methods include:

1. Harris-Laplacian [Mikolajczyk, Schmid]: maximize Laplacian over
scale, Harris’ measure of corner response over the image

2. SIFT [Lowe]: maximize Difference of Gaussians over scale and space




Canonical Orientation(s) of an Image Patch

Given a scale-invariant image patch, as detected by one ofré&veops approaches, we consider how
to obtain a canonical image orientation for this patch.

0 27

angle histogram

Image gradients

Image from D. Lowe, CVPR 2003 tutorial.

The direction and magnitude of image gradients within a scaéghbourhood of the center of the
detected patch are used to form a gradient orientation histogram.

The significant peak(s) of this histogram are used to define thenieal orientation(s) of the patch.
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Summary: Image Landmarks

The detection of the image position, scale and orientatiamafe landmarks is donadependently
across each image. An abstract representation of the image(patthas a HoG model) is stored for
each landmark.

Image from D. Lowe, CVPR 2003 tutorial.

The same landmark can be identified in multiple images by comgpahe image patch descriptors.
We use such features later in the course to:

e infer the 3D geometry of the scene from multiple viewpoints;
e do view-based object recognition;

e begin object category recognition (e.g., cows or bicycles).
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