
Epipolar Geometry

We consider two perspective images of a scene as taken from a stereo

pair of cameras (or equivalently, assume the scene is rigid and imaged

with a single camera from two different locations).
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Given a scene point~Xp which is imaged in the “left” camera at~p L,

where could the image of the same point be in the right camera? We

denote this point as~p R. The relationship between suchcorresponding

image pointsturns out to be both simple and useful.

Readings:See Sections 10.1 and 15.6 of Forsyth and Ponce.
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Epipolar Line

Two Perspective Cameras:Let ~d L and~d R be the 3D positions of the

nodal points of the left and right cameras. As discussed earlier in this

course, we model perspective projection by placing the image plane in

front of the nodal point. A scene point~Xp is then imaged in the left

camera at~p L, which is the point of intersection of the the image plane

with the line containing the scene point~Xp and the nodal point~d L (see

previous figure).

Epipolar Line: If we know the left image point~p L, then the corre-

sponding scene point~Xp is constrained to be on a ray through this

image point. The position of~Xp on this ray is unknown. However, the

image of this whole ray is a line in the right image, namely the epipolar

line e(~p L).

Epipolar Plane: An alternative geometric view is to consider the 3D

plane containing the image point~p L along with left and right nodal

points~d L and~d R. Then the scene point~Xp and the corresponding right

image point~p R must also be on this epipolar plane. The intersection

of this epipolar plane with the right image plane provides the epipolar

line e(~p L).
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Epipolar Constraint

Epipolar Constraint: Suppose~p L is the left image position for some

scene point~Xp. Then the corresponding point~p R in the right image

must lie on the epipolar linee(~p L).
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Notice the epipolar linee(~p L) depends on the position of the point in

the left image. For example, another image point~q L generally gives

rise to a different epipolar linee(~q L).

Epipole: All the epipolar lines in the right image pass through a single

point (possibly at infinity) called the right epipole. This point is given

by the intersection of the line containing the two nodal points~d L and
~d R with the right image plane (see figures above and on p.1). (Notice

that the line containing the two nodal points must be in all the epipolar

planes, and hence its image must be on all the epipolar lines.)
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Constraints on Correspondence

Clearly we can swap the labels “left” and “right” in the above analysis,

it does not matter which image we start with.

The previous analysis showed there is a mapping between points in one

image and epipolar lines in the other. Such a mapping would be compu-

tationally useful since it provides strong constraints on corresponding

points in two images of the same scene.

• For example, for each point in one image we could limit the search

for a corresponding point in the second image to just the epipolar

line (instead of naively searching the whole second image).

• Alternatively, given a set of hypothesized correspondences, we can

use the epipolar constraints to identify (some) outliers.

To achieve these applications we need to be able to estimate the map-

ping from points to epipolar lines, which is what we consider next. We

begin with the case of two calibrated cameras, and then consider the

uncalibrated case.
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Camera Coordinates and Image Formation

Here we apply the image formation model introduced earlier to the

stereo imaging setup. We introduce three coordinate frames:

• A world coordinate frame~Xw,

• The left and right camera coordinate frames,~XL
c and ~XR

c .

The origins of the left and right camera coordinate frames are at their

nodal points, and theirz-axes are aligned with the two optical axes.

Therefore, as discussed in the image formation notes, given a 3D point
~XL

c in the left camera’s coordinates, the left image of this point is at

~p L
c =

fL

XL
3,c

~XL
c =




pL
1,c

pL
2,c

fL


 . (1)

Here,fL is the distance between the image plane and the nodal point

for the left camera.

A similar expression holds for the location of the right image point.

However, before applying this expression, the 3D point~XL
c must be

transformed from the left to the right camera’s coordinates. We do this

via the world coordinate frame~Xw.
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External Calibration

The external calibration parameters for the left camera provide the 3D

rigid coordinate transformation from world coordinates to the left cam-

era’s coordinates (see the image formation notes)

~XL
c = ML

ex[
~XT

w, 1]T , (2)

with ML
ex a 3× 4 matrix of the form

ML
ex =

(
RL −RL~dL

w

)
. (3)

HereRL is a3 × 3 rotation matrix and~dL
w is the location of the nodal

point for the left camera in world coordinates.

Similarly, the3× 4 matrixMR
ex provides the external calibration of the

right camera.
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The Essential Matrix

Let ~p L
w and ~p R

w be the left and right image points (written in world

coordinates) for some given 3D point~Xw. Then the epipolar constraint

states that these two image points and the two nodal points~d L
w , ~d R

w are

all coplanar. This constraint can be written as

(~p L
w − ~d L

w )T
[
(~d L

w − ~d R
w )× (~p R

w − ~d R
w )
]

= 0, (4)

where ’×’ denotes the cross-product.

We rewrite this by replacing the cross-product by an equivalent matrix-

vector product,

~T × ~p = [~T ]×~p, where[~T ]× =




0 −T3 T2

T3 0 −T1

−T2 T1 0


 .

Also, we use (2) and (3) to write~p L
w − ~d L

w in terms of the left camera’s

coordinates as~p L
w − ~d L

w = (RL)T~p L
c . Using the analogous expression

for the right image point, we find that (4) can be rewritten as

(~p L
c )TE~p R

c = 0, (epipolar constraint) (5)

whereE is the3× 3 essential matrix(or E-matrix)

E = RL[~d L
w − ~d R

w ]×(RR)T . (6)
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Properties of the Essential Matrix

Clearly, any nonzero scalar multiple of the E-matrix provides an equiv-

alent epipolar constraint (5).

From (6) it follows that the E-matrix has rank2, with two equal non-

zero singular values and one singular value at0.

Given a point~p L
c in the left image, the epipolar constraint (5) states that

the corresponding point~p R
c in the right image must be on the line

~aT~p R
c = a1p

R
1,c + a2p

R
2,c + a3f

R = 0,

where~a = ET~p L
c .

The right epipole~e R
c is a null vector forE. It can be written as

~e R
c = αMR

ex[(
~d L
w )T , 1]T = αRR(~d L

w − ~d R
w ),

whereα is a nonzero constant. Notice, using (6),

~aT~e R
c = (~p L

c )TE~e R
c = α(~p L

c )TRL[~d L
w−~d R

w ]×(RR)TRR(~d L
w−~d R

w ) = 0,

so the epipole is on every epipolar line.

Given a point~p R
c in the right image, analogous expressions give the

epipolar line in the left image and the left epipole.
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Internal Calibration

We wish to rewrite the epipolar constraint (5) in terms of homogeneous

pixel coordinates~x L = (xL, yL, 1)T , where(xL, yL) are the coordi-

nates of an image point in terms of pixels.

The internal calibration matrixML
in provides the transformation from

camera coordinates to homogeneous pixel coordinates (see the image

formation notes),

~x L = ML
in~p

L
c . (7)

For example, a camera with rectangular pixels of size1/sx by 1/sy,

with nodal distancef , and piercing point(ox, oy) (i.e., the intersection

of the optical axis with the image plane provided in pixel coordinates)

has the internal calibration matrix

Min =




sx 0 ox/f

0 sy oy/f

0 0 1/f


 . (8)

We can use (7) to rewrite the epipolar constraint in terms of pixel coor-

dinates.
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The Fundamental Matrix

By using (7) we can rewrite the epipolar constraint (5) in terms of ho-

mogeneous pixel coordinates in the left and right images as

(~x L)TF~x R = 0. (9)

Here thefundamental matrix(or F-matrix) is given by

F = (ML
in)−TE(MR

in)−1, (10)

where the notationM−T denotes the transpose of the inverseM .

Similar to the E-matrix, the F-matrix has rank2, but the two nonzero

singular values need not be equal. The over-all scale of the F-matrix

does not effect the epipolar constraint (9). So there are7 remaining

degrees of freedom inF .

The right (left) null vector ofF gives the homogeneous pixel coordi-

nates for the right (left, resp.) epipole.

More explicitly, for example, the epipolar constraint (9) states that,

given a point~x L in the left image, the corresponding point~x R in the

right image must be on the epipolar line

~aT~x R = a1x
R + a2y

R + a3 = 0,

where~a = FT~x L.
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Estimating the Fundamental Matrix

Given corresponding image points{(~x L
k , ~x R

k )}K
k=1 we wish to estimate

the F-matrix.

Gold Standard Approach: Suppose the noise in the point positions

~x µ
k , for µ = L, R is independent and normally distributed with mean

zero and covarianceΣµ
k. (Note that there is no noise in the third com-

ponent of~x µ
k .) That is,

~x µ
k = ~m µ

k + ~n µ
k , (11)

where ~m µ
k is the true position of the point and~n µ

k is the mean zero

noise. Then the (maximum likelihood) problem is to findF ∈ <3×3

along with~m µ
k for k = 1, . . . , K andµ = L, R, such that the following

objective function is minimized:

O ≡
∑

µ∈{L,R}

K∑
k=1

(~x µ
k − ~m µ

k )T (Σµ
k)
†(~x µ

k − ~m µ
k ) (12)

where(Σµ
k)† denotes the pseudo-inverse. We minimize this objective

functionO subject to the epipolar constraints:

(~mL
k )TF ~mR

k = 0, k = 1, . . . , K, (13)

rank(F) = 2 (14)

ThusO is a quadratic objective function for the~mµ
k ’s, with nonlinear

constraints (13) and (14).
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Alternative Estimation Approaches

We would like to be able to avoid a nonlinear optimization problem.

The cost of this will be to obtain a noiser estimate of theF -matrix than

the one provided by the previous gold standard approach.

An initial simplification is to ignore the noise in~x L
k for the purpose of

estimating the epipolar linee(~mL
k ). That is, we say the corresponding

right image point~x R
k should be close toe(~xL

k ) instead ofe(~mL
k ). This

epipolar linee(~xL
k ) can be written as

(~n T , c)~x R = 0, (15)

where (
~n

c

)
=

1

||(I2
~0)FT~x L

k ||2
FT~x L

k . (16)

The normalization in (16) simply ensures~n is theunit normal to the

epipolar linee(~x L
k ). Therefore

d(~x R
k , e(~x L

k )) ≡ (~n T , c)~x R, (17)

is the perpendicular distance between~x R
k and the epipolar linee(~x L

k ).

We could try to minimize the sum of squares of these epipolar distances

d(~x R
k , e(~x L

k )) for k = 1, . . . , K. However, due to the normalization

factor in (16), the objective function is not quadratic in the unknownF .
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Algebraic Error

Consider the reweighted epipolar distance objective function

O(F ) ≡
K∑

k=1

w(~x L
k )d2(~x R

k , e(~x L
k ))

=
K∑

k=1

[
(~x L

k )TF~x R
k

]2
. (18)

Here the weightsw(~x L
k ) are chosen to provide a quadratic objective

functionO(F ). That is,

w(~x L
k ) = ||(I2

~0)FT~x L
k ||22. (19)

This objective function corresponds to thealgebraic errorin the noise-

less epipolar constraint (9).

In terms of maximum likelihood estimation, Equation (18) is appro-

priate when the variances of the error in algebraic constraints (9) are

roughly constant (and the means are zero). If the variances deviate

significantly from this, then we will get poor estimates forF .

Indeed, without any rescaling (which we discuss next), this approach

provides excessively noisy estimates ofF .
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Renormalized 8-Point Algorithm

Hartley (PAMI, 1997) introduced the following algorithm. Given cor-

responding points{(~x L
k , ~x R

k )}K
k=1 with K ≥ 8,

1. Recenter and rescale the image points usingMµ, µ = L, R, such

that

Mµ =




sµ 0 bµ
1

0 sµ bµ
2

0 0 1


 , (20)

with

1

K

K∑
k=1

Mµ~x µ
k = (0, 0, 1)T , (21)

1

K

K∑
k=1

[Mµ~x µ
k − (0, 0, 1)T ]2∗ = (σ2

1, σ
2
2, 0)T , (22)

whereσ2
1 + σ2

2 = 2. Here[...]2∗ denotes the square of each element.

Rescale the image points using~r µ
k = Mµ~x µ

k for k = 1, . . . , K and

µ = L, R.

2. Minimize the objective functionO(F̂ )

O(F̂ ) ≡
K∑

k=1

[
(~r L

k )T F̂~r R
k

]2
. (23)

Note this is a linear least squares problem for the elements ofF̂ .

(Continued on next page.)
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Renormalized 8-Point Algorithm (Cont.)

3. ProjectF̂ to the nearest rank 2 matrix (with the error measured in

the Frobenius norm):

(a) Form the SVD ofF̂ = UΣV T . In generalΣ = diag[σ2
1, σ

2
2, σ

2
3]

with σ2
i ≥ σ2

i+1 for i = 1, 2.

(b) Resetσ3 = 0.

(c) AssignF̂ to beUΣV T .

4. Undo the normalization of the image points,

F = (ML)T F̂MR (24)

This algorithm has been found to provide reasonable estimates for the

F -matrix given correspondence data with small amounts of noise (see

Hartley and Zisserman, Multiple View Geometry in Computer Vision,

Camb. Univ. Press., 2000).

It is not robust to outliers.

In order to deal with outliers, we apply the Random Sample Consensus

(RANSAC) algorithm to the estimation of theF -matrix.
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RANSAC Algorithm for the F-Matrix

Suppose we are given corresponding points{(~x L
k , ~x R

k )}K
k=1, which may

include outliers. Letε > 0 be an error tolerance, andT be the number

of trials to do.

LoopT times:

1. Randomly select 8 pairs(~x L
k , ~x R

k ).

2. Use the renormalized algorithm to solve forF using only the eight

selected pairs of points.

3. Compute perpendicular errorsd(~x R
k , e(~x L

k )) andd(~x L
k , e(~x R

k )), see

(16) and (17) for1 ≤ k ≤ K.

4. Identify inliers

In = {k : d(~x L
k , e(~x R

k )) < ε and d(~x R
k , e(~x L

k )) < ε, 1 ≤ k ≤ K}.

5. If the number of inliers|In| is the largest seen so far, remember the

current estimate ofF and the inlier setIn.

End loop.

6. Solve forF using all pairs withk ∈ In (i.e., all inliers). Re-solve for

the inlier setIn as done in steps 3 and 4 above.

Can iterate step 6 until the set of inliersIn does not change.
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RANSAC: How Many Trials?

Suppose our data set consists of a fractionp inliers, and1− p outliers.

How many trialsT should be done so that we can be reasonably confi-

dent that at least one sampled data set of sized = 8 was all inliers?

The probability of choosingd = 8 inliers from such a population is

roughlypd whenK >> d (it is exactlypd if we sample with replace-

ment). So the probability that a given trial of RANSAC fails to select

d inliers is 1 − pd. Therefore, the probability that RANSAC failed to

have any trial withd inliers is(1− pd)T . In other words, the probability

P0 that at least one of the RANSAC trials will be a success is

P0 = 1− (1− pd)T

Given an estimate for the fraction of inliersp in the data set, we could

then chooseT such thatP0 > 0.95, say. That is,

T > log(1− P0)/ log(1− pd).

For example, for 70% inliers andd = 8, we requireT > 50. Alter-

natively, if we only have 50% inliers, the same formula states thatT

should be chosen to be at least 766.
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Example

Given local image features, RANSAC was used to fit theF -matrix.

Here have choosen random colours to circle image features. The same

colour is then used for the corresponding point in the other image, and

also for the epipolar lines generated from these two points.

Note:

1. By construction, each point lies close to the epipolar line generated
by its corresponding point in the other image.

2. A visual sanity check can be obtained by sampling other points on
one epipolar line, and checking that they also appear somewhere
along the corresponding epipolar line. This must be the case since,
when the F-matrix is correct, both epipolar lines correspond to the
intersection of the scene with the epipolar plane. (Compare the
current fit with the result of a poor fit shown on p.19.)

3. The intersection of the epipolar lines corresponds to the epipole in
each image. The nodal point of the second camera is on the line (in
world coordinates) containing the nodal point of the first camera
and the epipole in the first image.
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Poorly Fitted F-Matrix

The same local image features were used as in the previous example,

and RANSAC was used to fit theF -matrix (but with only 10 trials).

The solution it found is displayed below:

Note:

1. The feature points are still near the corresponding epipolar lines.
Here 82% of the data points are within 4 pixels of the correspond-
ing epipolar line. In contrast, the solution on the previous page
achieved 94%.

2. However, the visual sanity check fails. This is most apparent for
(proposed) epipolar planes which intersect the scene over a large
range of depths. For example, consider the (proposed) epipolar
planes which cut across the tower at the top of the image and at
least one of the buildings in front.
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