
CSC373— Algorithm Design, Analysis, and Complexity — Spring 2018

Solutions for Tutorial Exercise 10: Cliques and Intersection Graphs for Intervals

1. Clique. Given an undirected graph G = (V,E) a clique (pronounced “cleek” in Canadian, heh?) is a
subset of vertices K ⊆ V such that, for every pair of distinct vertices u, v ∈ K, the edge (u, v) is in E. See
Clique, Graph Theory, Wikipedia.

A second concept that will be useful is the notion of a complement graph Gc. We say Gc is the complement
(graph) of G = (V,E) iff Gc = (V,Ec), where Ec = {(u, v) | u, v ∈ V, u 6= v, and (u, v) /∈ E} (see
Complement Graph, Wikipedia). That is, the complement graph Gc is the graph over the same set of
vertices, but it contains all (and only) the edges that are not in E.

Finally, a clique K ⊂ V of G = (V,E) is said to be a maximal clique iff there is no superset W such that
K ⊂W ⊆ V and W is a clique of G.

Consider the decision problem:

Clique: Given an undirected graph and an integer k, does there exist a clique K of G with |K| ≥ k?

Clearly, Clique is in NP. We wish to show that Clique is NP-complete. To do this, it is convenient to first
note that the independent set problem IndepSet(G, k) is very closely related to the Clique problem for the
complement graph, i.e., Clique(Gc, k). Use this strategy to show:

IndepSet ≡p Clique. (1)

Solution for Q1: Suppose G = (V,E) and its complement Gc = (V,Ec). Suppose G has an independent
set S of size |S| = k. By definition of independent set, for every u, v ∈ S, with u 6= v, it must be the case
that G does not include the edge (u, v). That is, e = (u, v) /∈ E. Therefore e = (u, v) ∈ Ec, i.e., e is an
edge in the complement graph Gc. But this holds for every u, v ∈ S, so S is a clique in Gc.

Similarly, it follows that if S is a clique in Gc then S is an independent set in G.

Therefore, we have shown IndepSet(G, k) is true iff Clique(Gc, k) is true. Since the complement graph can
be constructed in poly-time from G, and vice versa, the desired result follows.

2. Consider the interval scheduling problem we started this course with (which is also revisited in Assignment
3, Question 1). That is, suppose we are given a set of jobs J(k) which start at time sk and end at time fk,
where sk < fk are non-negative integers for k = 1, 2, . . . ,K. We assume all the finish times are distinct.
We wish to schedule a maximum-size subset of these jobs such that no two scheduled jobs overlap in time
(i.e., the open time intervals (sj , fj) and (sk, fk) do not intersect for any pair of jobs J(j) and J(k) that
are scheduled).

Consider the intersection graph for this problem, say G = (V,E), where the vertices, say vn, are in one to
one correspondence with the jobs, J(n), and there is an edge (vn, vm) ∈ E iff n 6= m and jobs J(n) and
J(m) intersect (i.e., (sn, fn) ∩ (sm, fm) 6= ∅). In A3Q1 we show:

IntervalSched({J(n)}Nn=1
) ≤p searchIndepSet(G).

Specifically, we show that finding a solution to the interval scheduling problem is equivalent to finding a
maximum-sized independent set for G. Something must be very special about these graphs G to allow for
the poly-time greedy solution. We reconsider this issue, this time with the concept of cliques in hand.

(a) Choose any example of jobs {J(k)}Kk=1
for the interval scheduling problem. Draw the corresponding

intersection graph G = (V,E). Find the set of all maximal cliques of G. (To find one maximal clique,
you can pick any vertex v and set T = {v}. Pick any other vertex u such that there are edges from
u to all the vertices in T . Add such a u to T , and repeat. When there is no such u, T is a maximal
clique. To get the set of all maximal cliques, you need to do this using all possible ways of picking
vertices to add to T .)
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Solution Q2a. For example, consider the following jobs:

Intersection graph:

The sets of numbers in each of the vertices in the graph below indicate the original job numbers that
are in each maximal clique.

(b) Updated since handout. LetM = {M1,M2, . . . ,Mm} be the set of the maximal cliques found in
part (a). Let K be the union of the maximal cliques M and all (non-empty) intersections Mi ∩Mj

for Mi 6= Mj . These will also be cliques, although not maximal.

Draw the clique graph H = (K, EK) where each vertex of H is a clique in K. Set the edges to be
(Ki,Kj) ∈ EK iffKi is a maximal subset ofKj in K\Kj (or vice versa, since the edges are undirected).
Then we have the following claim:

Claim 1: The graph H is a forest.

Is this claim true for your example?

Solution Q2b. The clique graph for the above graph is a tree:

Here the maximal cliques Mj are the leaves, and their intersections form the intermediate vertices.
Note the vertex labelled (9) is a subclique many of the leaves, but it is only a maximal subset of the
vertices labelled (7, 9) and (8, 9). Therefore, by the above definition, there are only the two edges
((9), (7, 9)), and ((9), (8, 9)) with the vertex (9) as an endpoint.

(c) Suppose G = (V,E) is a graph such that the clique graph of G, say H = (K, T ), is a forest. Devise a
polynomial-time greedy algorithm to find a maximum-sized independent set for G. Do you see why
it is correct? (You do not need to prove it.)
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Solution Q2c.

# Suppose H = (K, F ) is the clique graph of G = (V,E). We assume H is a forest.
# Each vertex Kj ∈ K is associated with sj ⊆ V , the set of vertices in the clique Kj .
S ← ∅ # The currently selected vertices in V for the independent set of G.
Mj ← ∅ for each Kj ∈ K. # Mj ⊆ sj are “masked” vertices for clique Kj , which cannot be added to S.
while K not empty:

# Loop Invariant: S and any neighbours of S are contained in the set C ≡
⋃

{j|Kj∈K} Mj ⊆ V of

# masked vertices (More needs to be said about S and a maximum-sized independent set.)
Let Kj be a leaf of H.
If Kj has a neighbour in H:

Let Kn be the neighbour of Kj # Unique because Kj is a leaf.
P ← ( sj \ Mj ) \ sn # We’re free to pick any of these vertices from clique Kj .
if P 6= ∅:

Pick one v ∈ P
S ← S ∪ {v}
Mn ←Mn ∪ (sj ∩ sn) # All vertices sj in Kj should be masked in Kn.

else:
Mn ←Mn ∪ (Mj ∩ sn) # Vertices masked in Kj should be masked in Kn too.

else:
# The case in which Kj does not have a neighbour in H:
P ← ( sj \ Mj ) # We’re free to pick any of these unmasked vertices.
if P 6= ∅:

Pick one v ∈ P
S ← S ∪ {v}

Update H = (K, F ) by removing Kj from K, along with any edge (Kj ,Kn) from F .
end while
return S

At least it works for the above graph. For example, if we work from left to right in the maximal clique
graph shown above, then we find S = {1, 2, 3, 4, 5, 6, 10}, which is an independent set of the correct size. Also,
the result does not seem to depend on the order in which we select the leaves in this example.

Note this algorithm always generates an independent set S because it carefully keeps track of all vertices
chosen for S, and also all their neighbours, in terms of the masked sets Mk. (See the loop invariant.) Therefore
it never selects such a vertex to add to S.

Note that the set P can be empty during the execution of the above algorithm. For example, suppose
G = (V,E) is a path with four vertices with the cliques {1, 2}, {2, 3}, and {3, 4}. If we process the first and
last of these cliques first (they are both leaves) then, when we get to the last clique, Kj = {2, 3}, we find
P = ∅.

However, I am not yet convinced that this algorithm is correct. That is, for any input graph G = (V,E)
for which H = (K, F ) is a forest, and for any order for which we select leaves, is the returned set S an
independent set of maximum-size? In order to convince myself of that, I could try adding a stronger loop
invariant to this code. In particular, consider a loop invariant that ties the choices made in forming S at each
stage to some maximal-size independent set for the original graph. That is, we still need to consider an “is
promising” style proof.

In addition, Claim 1 above may or may not be correct. It deserves some thought, although only after the
final exams are over.
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