
CSC373— Algorithm Design, Analysis, and Complexity — Spring 2018

Solutions for Tutorial Exercise 6: Catch Up and Network Flow

1. Reading Week. Catch up on your studying for the course and bring your unresolved questions to the
next tutorial, which is on Mon., Feb 26.

2. Teaching Assignments. You are chair of the Department of Computer Science, and are given the
following information. There is a set of profs P = {pn}

N
n=1, a set of courses C = {ck}

K
k=1, and the number

of course sections S = {sk}
K
k=1 being offered next term. Here sk is a positive integer equal to the number

of different sections of course ck that need to be taught next term. In addition, for each prof pn, you are
given the set of courses that he/she likes to teach, say Tn ⊂ C, along with her teaching load Ln. This
teaching load Ln is the number of courses that prof pn is assigned to teach next term (here Ln ≥ 0 is

an integer). Finally, suppose the sum of teaching loads, L =
∑N

n=1 Ln, is equal to the number of course

sections that need to be taught, S =
∑K

k=1 sk.

The prof-to-course assignment problem is then to assign each prof pn to exactly Ln course sections, with the
courses themselves chosen from Tn, and ensure that each section of each course gets assigned a professor.

(a) Represent the prof-to-course assignment problem as a s − t network flow problem. Describe exactly
the relationship between flows in your graph and prof-to-course assignments. That is, on one hand,
given any flow (or perhaps a restricted family of flows) explain what assignment it represents. And,
on the other hand, given an assignment explain how this assignment can be represented as a valid
flow in your graph.

(b) One question we might ask is whether an assignment is even possible? Can the professors cover all the
sections of all the courses? Describe in detail how you can answer that question using your network
flow. (You can use algorithms described in the course notes or text without writing them out again.)

(c) In situations where a prof-to-course assignment is possible, explain how your network flow provides
a suitable assignment. In particular, explain why this assignment must satisfy the constraints of the
prof-to-course assignment problem.

(d) In situations where it is not possible to cover all the courses, how can you clearly convince the faculty
that no such assignment is possible? Your argument must be worded in terms of the sets of courses
professors like to teach, their teaching loads, and the sections that need to be taught, and not in
terms for your network flow problem. It must be verifiable from these given quantities using only
simple arithmetic.

Soln 2a: Draw a bipartite graph, with vertices for professors {pn}
N
n=1 on the left, and courses {ck}

k
k=1 on the

right.

• There is a directed edge from pn to each ck in Tn with capacity ∞ (or some integer > S).

• Add a source node s, with no incoming edges, and the only outgoing edges are those to each pn ∈ P . The
(s, pn) edge has capacity equal to that professor’s teaching load Ln.

• Add a sink node t, with no outgoing edges, and the only incoming edges are from each ck ∈ C. The (ck, t)
edge has capacity equal to the number of sections sk that need to be taught.

We assume that one prof will teach one section. No course sharing. So the flow needs to be integer valued.
Given an integer-valued, feasible flow f(e) ≥ 0, then f((pn, ck)) represents the number of sections of course
ck that prof pn is assigned to teach. Also f((s, pn)) is the total number of sections pn is assigned (using flow
conservation at vertex pn), and this is bounded above by the capacity Ln of the edge. Finally, f((ck, t)) is the
total number of sections of course ck that have an assigned professor (using flow conservation at vertex ck),
and this is bounded above by the total number of sections to be taught sk, which is the capacity of the edge.
The reverse is similar. Given an integer valued assignment of professors to courses they like to teach, the
number of sections of each course, and so on, define a function f(e) as described in the previous paragraph.

1



This is a feasible flow, i.e. 0 ≤ f(e) ≤ c(e) for each edge e, and flow conservation holds at each vertex
v ∈ V \{s, t}
Soln 2b-2c: Compute the max flow f(e). Since all the capacities are integer valued, we can take this flow to
be integer valued. Then we claim v(f) = S iff an assignment is possible. We explain this next.
First, note the computed max flow is necessarily feasible. Consider the value of the flow v(f), which is defined
as the sum of the flow on edges leaving s. We are interested in the flow into t. In the notation used in the
lecture notes, the flow into t is the flow across the s− t cut (V \{t}, {t}), which is the net flow Nf (V \{t}). By
the Net Flow Lemma, Nf (V \{t}) = v(f). Therefore, v(f) = S iff the flow into t is S.
But since f(e) ≤ c(e), and

∑
e=(ck,t)

c(e) = S, we know v(f) = S iff every edge into t is saturated. Therefore

v(f) = S iff every course ck has been assigned c((ck, t)) = sk professors.
Secondly, in the case v(f) = S, this assignment must satisfy all the constraints given. In particular the
constraints of flow conservation at vertices other than s, t, and that the assignments must be non-negative
and integer valued are all satisified. The only remaining constraint is that no prof is teaching more than her
assigned load, and this is ensured by the capacity c(e) = Ln on the edge e = (s, pn).
Soln 2d: Use the max flow to compute a min cut (A,B) using the residual graph, as described in the lecture
notes. In the case an assignment is not possible, we saw from (b-c) above that it must be the case that
v(f) < S. By the min-flow, max-cut theorem, cap(A,B) = v(f), and therefore cap(A,B) < S. This cut
therefore provides a suitable certificate that there is no flow with v(f) = S, and no suitable assignment is
possible.
We next translate this to a simple message for the chair to give to the department.
Let A be the set of vertices reachable from s in the residual graph Gf for a maximum flow f . Then

A = {s, PA, CA}, B = {t, PB , CB} (1)

where the set of profs P is the disjoint union of PA and PB and the set of courses C is the disjoint union of
CA and CB .
The courses in CB are unreachable from s in Gf . Note CB cannot be empty, otherwise the cut (A,B) includes
all course-to-t edges (and the capacity cap(A,B) ≥ S, a contradiction).
Chair’s Simple Claim: The sum of the course loads for all the profs who like to teach any of the courses
in CB is less than the total number of sections required for these courses in CB . Clearly we cannot make a
feasible assignment in this case. C’mon man!
Proof: Since there are only s to prof, prof to course and course to t edges:

cap(A,B) = cap({s, PA, CA}, {PB , CB , t})

= cap({s}, PB) + cap(PA, CB) + cap(CA, {t})

< L = S.

Note that, by the definition of capacity, any edges from PB to CA do not contribute to the cut capacity
cap(A,B).
With the construction of the graph the prof-to-course edges (where they exist) have huge capacities, (≥ S).
So none of them can be cut in the minimum cut (A,B). That is cap(PA, CB) = 0. This means that no prof
in PA likes to teach any course in CB . In other words, all the profs who like to teach any courses in CB are
in PB .
Since the (c, t) edge for any course c has the capacity sc, it follows that

cap(CA, {t}) =
∑

c∈CA

sc = S −
∑

c∈CB

sc.

So we have:
S > cap(A,B) = cap({s}, PB) + S −

∑

c∈CB

sc

Or equivalently: ∑

c∈CB

sc > cap({s}, PB) =
∑

p∈PB

Lp,

which proves the chair’s claim.

2


