
CSC373— Algorithm Design, Analysis, and Complexity — Spring 2018

Solutions for Tutorial Exercise 9: NP-completeness of K-D Matching

1. 3D Matching. We consider the following types of 3D matching problems.

partial3DM: Given three distinct sets X, Y , and Z, with |X| = |Y | = |Z| = n, a set of triples T ⊆
X × Y × Z, and an integer k, does there exist a subset of triples C ⊆ T of size |C| ≥ k such that
no two distinct elements Ci, Cj ∈ C have any element in common (i.e., if Ci = (Ci,1, Ci,2, Ci,3) and
Cj = (Cj,1, Cj,2, Cj,3) are distinct triples in C then, for each p = 1, 2, 3, we have Ci,p 6= Cj,p)?

perfect3DM: The input to this problem is similar to partial3DM except no integer k is provided. Instead,
the question is whether there exists a set of triples C ⊆ T such that |C| = n and no two distinct elements
Ci, Cj ∈ C have any of their three elements in common? (That is, the matching is perfect in the sense that
each element of X, Y , or Z is covered by exactly one triple in C.)

Note Wikipedia defines the “3D matching problem” to be the problem partial3DM above, while the Klein-
berg and Tardos text defines it to be perfect3DM. Moreover, in your answers below you can use the fact
that 3-SAT ≤p perfect3DM, which is proved in the Kleinberg and Tardos text.

(a) Show partial3DM is in NP.

(b) Show perfect3DM ≤p partial3DM.

(c) Given all the above results (including those quoted from Kleinberg and Tardos) can you conclude that
partial3DM is NP-complete? Explain.

Solution for Q1:

1a Soln. Note that partial3DM(s) is a decision problem, where the input s refers to X,Y, Z, T, and k.

We can define the size of the input to be |s| = n+ |T | (where |T | ≤ n3). Here, as is common, we are
taking liberties with the actual number of bits necessary to specify the length of the input, knowing
that we are only ever going to need to argue about runtimes (or sizes) being bounded by a polynomial
in |s|. Note that, if k > n, the answer is no, so we only need to worry about the case k ≤ n, which is
bounded by |s|.

Suppose partial3DM(X,Y, Z, T, k) is true. Then there must exist a subset C ⊆ T such that |C| = k
and distinct elements of C do not intersect. We can take the certificate t to specify this set of triples
C.

In more detail than necessary: We could represent any such solution as a list of, say, indices ij for
the elements of T that are included in C, for j = 1, 2, . . . , k. Each of these indices can be specified
in O(log(|T |) bits. So |t| ∈ O(k log(|T |) ⊂ O(|s|log(|s|). Therefore the length of the certificate, |t|, is
bounded by O(pC(|s|)), where pC(x) = x2.

Finally, we define the certifier, C(s, t), to be an algorithm that simply checks the condition that no
two elements in C intersect. This can be done in time O(k2) ⊂ O(|s|2), so the certifier is poly-time.

1b Soln. Note perfect3DM(X,Y, Z, T) = partial3DM(X,Y, Z, T, k) for k = n. That is, perfect3DM is a
special case of partial3DM.

1c Soln. Since 3-SAT is NP-complete, and 3-SAT ≤p perfect3DM ≤p partial3DM, it follows that
partial3DM is NP-hard. By (1a) it is also in NP, thereforepartial3DM is NP-complete.

2. Consider partial2DM, which is the same as the 3D version except there are only two sets, X and Y , and
T consists of a set of pairs T ⊆ X × Y .

(a) Is partial2DM in NP? Explain.

(b) Show partial2DM ≤p SetPack, where SetPack is the set packing problem considered in the previous
tutorial.

(c) Is partial2DM NP-complete? Explain.

1

https://en.wikipedia.org/wiki/3-dimensional_matching
https://en.wikipedia.org/wiki/Set_packing

Solution for Q2:

2a Soln. This is similar to (1a) above. Note that partial2DM is a decision problem. Define |s| = n+ |T |.
In the case partial2DM(X,Y, T, k) is true, we can define C ⊆ T to be an example solution with
|C| = k. This corresponds to a certificate, t, of polynomial size wrt |s|. Then the certifier C(s, t) need
only check the solution provided by t. This takes at most O(k2) time, where k ≤ n ≤ |s|. Therefore,
partial2DM has a poly-time certifier C(s, t) with a certificate length bounded by pC(|s|) = |s|2 (see
Q1a above). Therefore partial2DM is in NP.

2b Soln. Given any input (X,Y, T, k) for the problem partial2DM, define U ≡ X×Y . Then partial2DM(X,Y, T, k)
is a special case of SetPack(U, T, k), and partial2DM(X,Y, T, k) is true iff SetPack(U, T, k) is true. This
completes the reduction, which clearly can be done in poly-time.

2c Soln. Notice that partial2DM(X,Y, T, k) can be solved in poly-time by using an s-t flow (it can be
directly mapped to the bipartite matching problem). Therefore partial2DM(X,Y, T, k) ∈ P . So, if
partial2DM was in fact NP-complete, then P = NP . Currently, we believe P 6= NP , so all we can
say at this point is that it is unlikely that partial2DM is NP-complete.

3. Consider partial4DM, which is the same as the 3D version except there are now four sets, W , X, Y and
Z, while T consists of a set of 4-tuples T ⊆ W ×X × Y × Z.

(a) Is partial4DM in NP? Explain.

(b) Is partial4DM NP-complete? Explain.

Solution for Q3:

3a Soln. It is a decision problem and, in the cases where the decision is yes, a solution provides a suitable
short certificate that can be checked in polynomial time.

3b Soln. Consider the NP-complete problem partial3DM, and suppose we are given a suitable input
(X,Y, Z, T, k). Define W = X, and T ′ to be the set of 4-tuples

T ′ = {(w, x, y, z) | (x, x, y, z) ∈ T}.

Then it follows that partial4DM(W,X, Y, Z, T ′, k) is true iff partial3DM(X,Y, Z, T, k). Therefore we
have shown partial3DM(X,Y, Z, T, k) ≤p partial4DM(W,X, Y, Z, T, k), and it follows that
partial4DM(W,X, Y, Z, T, k) is NP-hard. Since it is also in NP (see (3a) above), it follows that
partial4DM(W,X, Y, Z, T, k) is NP-complete.

4. (Harder.) Show partial3DM ≤p SAT by using an encoding of the constraints for 3D matching in terms
of a CNF formula. Use the binary variables xi, where xi is true iff the ith triple in T is to be included in
the set C. (Note that we are asking simply for a reduction to SAT, not to 3-SAT.)

Soln Problem 4. Consider the problem partial3DM and any suitable input (X,Y, Z, T, k). Define the
binary variables xi, for i = 1, 2, . . . ,m where m = |T |, such that xi is true iff the ith triple in T is to be
included in the set C. WLOG we assume that k ≤ |T | = m.

We next encode the constraint that, for i 6= j, xi and xj cannot both be true if the two triples Ti and
Tj intersect (that is, for some p ∈ {1, 2, 3}, we have Ti,p = Tj,p). This is done by including the constraint
¬(xi ∧ xj), which is logically the same as the disjunctive clause (x̄i ∨ x̄j). The eventual SAT formula will
include such a clause for every pair of Ti and Tj which intersect. There are at most O(|T |2) disjunctive clauses,
and each such clause can be computed in constant time.

The conjunction of all the clauses computed so far will guarantee that the set of triples selected according
to xi being true correspond be a set C of triples which satisfy the pairwise non-intersection property of the 3D
matching problem. The remaining constraint we need to encode is that |C| ≥ k. That is, for i = 1, 2, . . . ,m,
at least k of the logical variables xi must be true.

One (unsuitable) attempt to constrain at least k of the xi to be true is as follows. Consider all disjunctive
combinations of m−k+1 distinct variables xi. If we assume at least k variables xi are true (over i = 1, . . . ,m)
then, given any selection of m − k + 1 such variables, at least one of the variables in the selection must be
true. This can be expressed as a simple disjunction over all the selected variables. Moreover, we can obtain a

2

necessary and sufficient condition for at least k variables to be true by taking the conjunction over all these
disjunctive clauses. However there will be

(

m
m−k+1

)

such disjunctive clauses or, equivalently,
(

m
k−1

)

such
clauses (see binomial coefficients).

While this approach does give a SAT formula that is satisfiable if and only if partial3DM(X,Y, Z, T, k)
should return true, this reduction algorithm does not necessarily run in poly-time. Indeed, the number of
clauses in the resulting SAT formula produced is not bounded by a polynomial in |s|. Specifically,

(

m
k−1

)

grows like Ω(2m/m1/2) for k−1 = m/2 (look up lower bounds for binomial coefficients and Stirling’s formula).
The number of clauses therefore can grow exponentially with m (and exponentially with |s|), so this is not a
poly-time reduction.

How can we more efficiently encode the condition that at least k of the binary variables must be true?
Consider a k ×m assignment matrix A, where the i, j element of A is a logical variable ai,j . The idea is that
the ith row of A effectively specifies which of the m logical variables is to be considered the ith logical variable,
say xj(i), that must be true (according to A). We require A to have exactly one variable in each row that is
true, and at most one variable in each column of A is true. We will show how to write SAT constraints for A
further below.

For the moment, assume we can build any such A. Then, for each j = 1, 2, . . . ,m, we consider the
implication (a1,j ∨ . . .∨ ak,j) =⇒ xj . Such an implication forces xj to be true whenever the jth column of A
has at least one ai,j which is true. Moreover, the constraints on A force k different columns to have one true
value, and therefore at least k different xj ’s will be forced to be true. Finally, although this is not critical, by
using the logical implication we will allow additional xj ’s to be true as well.

Note that (a1,j ∨ . . .∨ ak,j) =⇒ xj is equivalent to xj ∨ (¬(a1,j ∨ . . .∨ ak,j)), which in turn is equivalent
to the conjunction of the 2-clauses (xj ∨ āi,j) for all 1 ≤ i ≤ k. Thus there are m such implications, and each
of these implications can be written as the conjunction of k clauses of size 2, so there are O(mk) such clauses.

In order to write the constraints on A note that we can enforce at least one value in the ith row of A
to be true by including the single clause (ai,1 ∨ . . . ∨ ai,m). Next, to enforce the constraint that exactly one
variable in the ith row is true we only need to add the constraint that at most one variable in {ai,j}

m
j=1 is true.

This is equivalent to the condition that ¬(ai,p ∧ ai,q) is true or, equivalently, (āi,p ∨ āi,q) is true, for all p 6= q
with 1 ≤ p, q ≤ m. There are O(m2) such clauses for each of the k rows of A. Finally, the constraint that at
most one variable in each column of A is true generates O(k2) more clauses of the form (āp,j ∨ āq,j) for each
column j = 1, 2, . . . ,m.

Since k ≤ m, the total number of clauses is O(m3) ⊂ O(|s|3), and these can all be generated in poly-time
with respect to |s|.

Finally, we need to argue that the resulting SAT formula is satisfiable iff the original decision problem
partial3DM(X,Y, Z, T, k) is true. This argument relies on the three major properties of this reduction. First,
the binary variable xi is true iff the triple Ti ∈ C. Secondly, no pair of xi and xj can be true if Ti ∩ Tj 6= ∅.
Third, the clauses forming the construction and use of the matrix A are true iff at least k of the xi are true.
We omit the details of this argument.

3

