
CSC373— Algorithm Design and Analysis, Fall 2010

Cell Phone Tower Placement Problem

Example for Greedy Algorithm Design and Correctness Proof

Placing Cell Phone Towers. Suppose there is a long straight country road, with n houses sparsely scattered
along the road. Positions along the road are specified by distance in kilometers from one end, say in terms of
distance d ∈ [0, D]. The position of the kth house along the road is given by d = hk. Here you can assume the
hk’s are integers.

Assume a cell tower has a range of R km with R > 0 a fixed constant. That is, if the jth tower is placed at
kilometer tj along the road, then any house k with |hk − tj | ≤ R would have service from that tower.

Tower Placement Problem. Given the house locations, {hk}
n
k=1, and the range R > 0, the problem is to

place the minimum number of cell phone towers along the road, say at distances {tj}
J
j=1, so that each of

the n houses can get service from at least one of the towers. That is, the tower placements must satisfy

max
k

[

min
j

|hk − tj |

]

≤ R,

and we wish to minimize J .

Suppose the indices k are provided in the order the houses first requested service from the cell phone company.

1. Online Greedy. Consider the greedy algorithm which treats the customers in the order they arrive (i.e.,
in increasing k). A new cell phone tower is built at tj+1 = hk if and only hk is beyond the range of all of

the previously built towers {tr}
j
r=1. Prove that this algorithm is not optimal.

2. Correct Greedy. Describe a greedy algorithm that generates an optimal solution for the general problem
stated above. Note the towers can be built at any distance d along the road, and not just beside houses
(as was done in part (a)).

Illustrate how your algorithm works on a simple example (say, requiring three cell phone towers).

3. Runtime order. Give a big-Oh estimate of the runtime of your algorithm. Briefly explain how you arrived
at this estimate.

4. Proof. Prove your algorithm is correct.

Sample Solution: Placing Cell Phone Towers.

1. Online Greedy. Prove that the online algorithm is not optimal. Let R = 2, and the house locations be
(h1, h2) = (0, 3). Then the online greedy algorithm sets t1 = h1 = 0. But then h2 = 3 is out of range R,
so a second tower gets allocated with t2 = h2.

This is not optimal, since a single tower built at any t ∈ [1, 2] (e.g., t = 1.5) would have both houses within
the range R. This completes the proof.

2. Correct Greedy.

Given R and {hk}
n
k=1.

1

Sort the house locations in increasing order, removing any duplicates.
Reset the indices k (and possibly n) to reflect this sorted order.
So h1 < h2 < . . . < hn.

if n == 0
return { }

t1 = h1 + R % First tower is as far down the road as possible.
p = 1 % Index of latest tower.
for k = 2 to n

if abs(hk − tp) > R % House hk doesn’t have service.
p = p + 1
tp = hk + R % Build next tower as far down the road as possible.

end
end
return {t1, . . . , tp}

Example: hk = k for k = 1, . . . , 7 and R = 1.

Output: (t1, t2, t3) = (2, 5, 8).

Optional: Proof of minimality for this example. This is not explicitly asked for in the assignment
handout, but I will include it anyway. The above solution is a minimal solution, since we claim there can be
no solution that requires two towers. We prove this claim by contradiction. Notice if there was a solution
with two towers, one of these towers would have to cover at least four out of the seven houses. And any
four houses are at least a distance 3 apart. But the range of a tower is only 2 (i.e. ±R), so one tower
cannot cover 4 houses.

3. Runtime order. Θ(n log n) for the sorting. The loop itself runs in time Θ(n). (Optional: If the distances
are small integers, and you know the range D, you could use radix sort to do the sort in Θ(n) time, thereby
reducing the overall time to Θ(n).)

4. Proof. First, let us deal with the trivial case n = 0, i.e., no houses. In this case both the greedy algorithm
and the optimal solution allocate no towers, and so the greedy algorithm is optimal in this case.

Secondly, if there are duplicate house locations in the input, i.e, hj = hk for j 6= k, then we can simply
remove all but one of every duplicated house location. This is true since whether or not any set of towers
is a solution only depends on the set of house locations, not on the number of houses at any location. We
omit a formal proof of this.

For the remainder of the proof we assume n ≥ 1 and h1 < h2 < . . . < hn, that is, there is at least one
house, there are no duplicate house locations, and the locations are sorted.

Let O be any optimal solution. Suppose O has q towers at distances d1 < d2 < . . . < dq. (Note, two towers
cannot be at the same location in an optimal solution, otherwise we could remove one of the duplicate
towers and not lose any coverage. This would contradict O being optimal. Hence the implicit assumption
above that all tower positions are distinct.)

Let {t1, t2, . . . , tp} be the output from the algorithm. We will show the algorithm stays ahead (or, at least,
stays neck and neck) with the optimal solution O in the following sense.

Defn. Property A(s): q ≥ s and ds ≤ ts.

That is, property A(s) ensures that the optimal solution has at least s towers and the tower location ds in

2

the optimal solution is not further down the road than the corresponding tower, ts, allocated by the greedy
algorithm.

Claim: A(j) is true for all j ∈ {1, 2, . . . , p}.

Before proving the claim, we will show that it implies that the algorithm returns an optimal solution.

From the claim it follows that A(p) is true, so q ≥ p. But it is easy to verify from the algorithm that it
returns a set of towers {t1, . . . , tp} such that every house has service. (Every house is given service, if it
doesn’t already have it and, once given, service is never removed.) Thus the set of towers returned is a
solution to the problem of providing service to every house. Therefore any optimal solution must have no
more towers than this solution. So q ≤ p. Thus we have shown p = q, that is, the solution the algorithm
returns is optimal.

Proof of Claim:

Case A(1): Note that the algorithm allocates the first tower at t1 = h1 + R. We will prove A(1) is true
by contradiction.

Suppose A(1) is false. Then either q = 0 or d1 > t1. Since we are assuming n ≥ 1 and O is a solution,
then house h1 must get coverage from some tower. Therefore the number of towers in the optimal solution,
q, must satisfy q ≥ 1. As a consequence the second clause of A(1) must fail, that is, d1 > t1. Given
the sorted order of the towers in O it must also be the case that dk ≥ d1 > t1 for all k = 1, . . . , p. So
mink(dk − h1) > t1 − h1 = R. That means h1 does not have any service given the tower placement in O.
This contradicts O being a solution, thereby proving A(1) must be true.

Remaining Cases, 1 < s ≤ p: We now use contradiction on the whole claim. Suppose the claim is not
true. Then let s be the smallest index for which A(s) is false. From the previous case we know s > 1.
Therefore it must be the case that A(s − 1) is true but A(s) is false.

Since A(s − 1) is true we have q ≥ s − 1 and ds−1 ≤ ts−1. Let k(s − 1) denote the loop index k at the
point in the algorithm that the tower ts−1 was allocated. We know that ts−1 was allocated to cover some
previously uncovered house at location hk(s−1). Then, from the algorithm, we have ts−1 = hk(s−1) + R.

Since s − 1 < p the algorithm continues looping through k after allocating ts−1 and eventually allocates a
new tower at ts. Let k(s) denote the k at which the tower at ts is allocated. Then, from the algorithm,
we have ts = hk(s) + R and also k(s) > k(s − 1). Moreover, the trigger for allocating the tower on loop
k = k(s) must have applied, that is, |hk(s) − ts−1| > R.

We next show how to combine the above facts to argue that

hk(s) > ts−1 + R (1)

That is, hk(s) must be further down the road than the tower at ts−1 can reach. To see this, it is convenient
to first summarize the information provided in the previous two paragraphs as

|hk(s) − ts−1| > R,

hk(s−1) = ts−1 − R,

hk(s) > hk(s−1),

where the last inequality follows from k(s) > k(s − 1) and the sorted order of the house locations. The
only way for these three conditions on hk(s) to be satisified is for (1) to be true.

Moreover, from A(s−1), we also know the greedy solution is ahead at step s−1, so ds−1 ≤ ts−1. Therefore,
from (1) we have the following inequality for the case j = s − 1,

hk(s) > dj + R, for j = 1, . . . , s − 1. (2)

3

The remaining cases in (2) follow from the sorted order of the dj ’s. Notice (2) states that the house at
hk(s) does not get service from any of the towers up to the (s − 1)st.

Since O is a solution, this house at hk(s) must be within range of some tower, so there must be at least one
more tower in O. That is, q > s − 1. Now using the assumption that A(s) is false, along with q > s − 1,
we find that ds > ts, i.e., the greedy solution has just fallen behind at tower ts. But, using the placement
of the tower ts, we have ts = hk(s) + R. Finally, using the sorted order for the dk’s, and ds > ts, we have

dj > ts = hk(s) + R, for j = s, . . . , q. (3)

Therefore we see by (2) and (3) that the house at hk(s) must be outside the service of all the towers in O.
This contradicts O being a solution, and thereby proves the claim.

4

