Duality in Linear Programming

I
Learning Goals.
* Introduce the Dual Linear Program.
* Widget Example and Graphical Solution.
= Basic Theory:

* Mutual Bound Theorem.

+ Duality Theorem.

Readings: Read text section 11.6, and sections 1 and 2 of Tom
Ferguson's notes (see course homepage).

Standard Form for Linear Programs: Review

Consider a real-valued, unknown, n-vector x = (X, X5, ... , X,)T.

A linear programming problem in standard form (A, b, c) has the three

components: Constants:

A an m x n matrix,
b anm x 1 vector,
Objective Function: We wish to choose x to maximize: cannx1vector.

Ty =
€ X =CiXp+ CXp + ... CpXpy Linear function of x

with x subject to the following constraints:

Problem Constraints: For an m x n matrix A, and an m x 1 vector b:
Axs<b

Linear inequality constraints on x l

Non-negativity Constraints:
x20

Notation: For two K-vectors x and y,
X ¢y iff x, <y, foreachk=1,2, .., K
Other inequalities (2, etc.) defined similarly.

Widget Factory Example: Revisited

Widget problem in Standard Form, constants (A, b, c).

Unknowns:
X = (X1, X,)T number (in thousands) of the two widget types.

Objective function (profit):
€T X = ¢iXq + CoXp = Xq + 2X,, S0 €T =(cyq, C,) = (1, 2).

Problem Constraints: A x < b
ry + T2

=4 11 4
—x1 + x2 <1, S0 A = -1 1 . b= 1
3z + 10z2 < 15. -3 10 15

Non-negativity Constraints:
x20

M

Widget Factory Example: Upper Bounds

Maximize profit: cT x, where cT = (cq, ¢;) = (1, 2).

Subject to: Ax <band x > 0.

Notice, for any feasible x and any y = (yy, y,, y3)" 2 O: Could choose
yTA2candy20.
1 1
v Az =|y" (_l : ) x < y'h =4 ( ) .
-3 10 1

Eg..y=(2,0,0)7 gives yT A=(2,2)2cT. Therefore: 4 Upper bound!

c™x<yTAx<y™b = 2b; = 8, i.e{max profit c™x ¢ 8.
In general, for any feasible x and any y such that

20andyT A cT, [Feasiley J—

we have the inequality:
minimize y'b
e T

T s




Duality in Linear Programming

Defn. Consider the linear programming problem (in standard form):
maximize cT x
subject to Ax <band x>0,

The dual of this LP problem is the LP minimization problem:
minimize yT b @)
subject toyTA >cTandy 2 0.

These two LP problems are said to be duals of each other.

M

Mutual Bound Theorem: If x is a feasible solution of LP (1) andy is a
feasible solution of LP (2), then cT x ¢ yTAx ¢ yTb.
Pf: See previous slide.

Gap?

el [ Jo

i j ‘ z (profit)
cTx for feasible x yTb for feasible y

Duality Theorem of Linear Programming

LP Duality Theorem: Consider the linear programming problem:

maximize cT x )
subject to A x < b and x> 0.

The feasible set F for (1) is hot empty and cT x is bounded above for

x € F iff the corresponding dual LP (2) (above) has a non-empty feasible
set G={y | yTA2cTand y > 0} and y'b is bounded below for y € G.
Moreover, in this case, max { ¢™x | xe F}=min{y™b |ye 6}.

Note: For integer linear programming (i.e., x;, y; € Z) there can be a gap.

No Gap!

- z (profit)

Vertices of Dual Linear Program

Consider the Dual LP problem:
minimize yT b )
subject to yTA >cTandy 2 0.

We can rewrite the feasibility conditions (2) of the dual as

m x (n + m) matrix '\

y'D=y"(A 1) >d"=(c" 07). ®3)

The dual LP is an LP, and vertices can be defined the same way as we did
before.

Let t={f, T2, .., t,,} be a selection of m columns of (3), 1< t; < m+n.
Define E(t) to be the m x m matrix formed from the t-columns of D, and
eT(1) the (1 x m)-vector formed from the same columns of dT.

A point v e[R" is a vertex of the feasible set (3) iff there exists an t
such that E(t) is nonsingular, vT = eT(+)[E(1)]?, and v satisfies (3).

Vertices of LP and Dual LP

Define the m+n dimensional binary valued indicator vector &(s) where §; = 1
if j €s,and §; = 0 otherwise. Define 3(*) similarly.

&s8) = (a1,09,-..; G CRia niinls

&(t) = (Bry.ve sl Iy Bra1sBnyareeosl Brisprm )

Vertex of LP: If the jth coefficient of 3(s) is one (i.e., [3(s)]; = 1) then
the j™ row below is an equality for vertex x:

e (4)e = (8),

Vertex of Dual LP: If the ith coefficient of 8(t) is one (i.e., [3(1)] = 1)
then the ith column below is an equality for vertex y:

gTDEyT(A I) “ZfiTE((:J"' UT),




Complementary Slackness

Complementary Slackness: Given feasible solutions x and y of the LP and
the dual LP, respectively. Then x and y are optimal iff
T

Z Ajjx; < by implies y; =0,

j=1
and

m

z yiAi; > ¢; implies x; =0.

i=1
Pf: Follows from cTx = yTAx = y'b as a necessary and sufficient condition
for the optimality of the feasible solutions x and y.

Suggests choosing of the sets s and t (defining the vertex x of the LP
and the vertex y of the dual LP) such that the bit vectors satisfy:

[6(s))i = mnot [6()]isn,
[d(t)]; = not [5(s)]j4m-

Proposing Vertices for the Dual LP

Spatially, complementary slackness suggests:

{’1‘(‘?) = (0'190'21-“\0}711 lro'l’m+l-.‘--10'1‘?1+r.1)|

O‘(t) — (3I PR .-'3?:-. _S‘H.{ ln."j'n P2y e .371 }m} .
Where B, = bitFlip(q;) fori=1,2, .., m.
And p; = bitFlip(a;.,) for j=1,2, .., n.

Since sum(3(s)) = n, length(3(")) = n+m, it follows sum(3(t)) = m.

Given a vertex x of the LP, defined by s, we can use the rule above to
try to construct t and the corresponding vertex of the dual LP. We can
use the pair to check for optimality. See the following example.

Graphing the Widget Factory Example: Cont.

Example: x = (X1, X,)T. Linear Program specified by (A, b, c).

Objective Function: c™x,
c=(1,2)"

Problem Constraints: -
Ax <b Xz Half-plane:
£ b Xy + X, ¢ 4
(1 1
—3 10 34

(4

Half-plane:
-3x; + 10x, ¢ 15

Optimal Solution:
xT=(25,27)/13

Non-negativity:
x20.

Optimal Vertex:
s={1,3}

X1

Widget Factory Example: Optimal Dual Solution

E.G. (Cont.): This vertex of the LP was obtained using s = {1, 3}. Generate
corresponding column selection t (possibly a feasible vertex for dual LP):

8(s) = (1,0,1, 0,0)

8(t) = (1,1, 0,1,0)
Sot={1,2,4}and we select columns 1, 2, and 4 from (3) below.

y" (A1) = ("oh). ®3)
1 1" 1
-~ 1 1 U A= ( | | ) R — ( 1 ) .
'l -1 1 1) = (120). 3 10 15
-3 10 0 &= a2

Soln: yT = (16, 0, 1)/13.
Check: c"x=(1,2)(25,27)"/13 =79/13 =y™ = (16, 0, 1)/13(4, 1, 15)T

Conclude: y is a feasible vertex of the dual LP, and x, y are optimal.




