Question 1.	Minimum	Spanning Trees	[12 marks]
-------------	---------	----------------	-------------

Let G = (V, E, w) be a undirected, connected, weighted graph and assume all weights are distinct (i.e., $w(e) \neq w(f)$ for any pair of edges $e, f \in E$ with $e \neq f$). Suppose C_0 is a given simple cycle in G, and $e_0 = (u_0, v_0)$ is an edge on C_0 .

Given the above assumptions, for each of the questions below circle the most specific correct answer (i.e., if something "always" happens or "never" happens, then "sometimes" will be marked wrong).

Part (a) [2 MARKS]

Suppose e_0 and C_0 are as above and e_0 is the maximum weight edge on C_0 , then e_0 is

always	sometimes	never

in an MST of G.

Part (b) [2 MARKS]

Suppose e_0 and C_0 are as above and the weight $w(e_0)$ is neither the minimum nor the maximum of the weights of the edges on C_0 , then e_0 is

		always	sometimes	never
in an MST	of G .			
Part (c)	[2 marks]			
Suppose e_0	and C_0 are	as above and e_0 is the :	minimum weight edge on C_0	, then e_0 is
		always	sometimes	never
in an MST	of G .			
Part (d)	[2 marks]			
Suppose e_1 the e_0 abov	$\in E$ is the ve) is	maximum weight edge	over all of E . Then this e	$_1$ (which may be different than
		always	sometimes	never
in an MST	of G .			
Part (e)	[2 marks]			
Suppose e_0	and C_0 are	as above then it is		
		always	sometimes	never
true that $ I $	$ E \ge V .$			
Part (f)	[2 marks]			
Consider an $p_n = a_2$, and	n edge $a = ($ ad all the edge	$(a_1, a_2) \in E$ such that the ges on P satisfy $w((p_i, p_i))$	here is no path $P = (p_1, p_2, p_{i+1})) < w(a)$ for $1 \le i \le n$.	(\dots, p_n) in G such that $p_1 = a_1$, - 1. Then a is
		always	sometimes	never

in an MST of G.

Total pages = 3

Question 2. Divide and Conquer: Count Duplicates [18 MARKS]

Given an unsorted list of integers, L, we want to return both a sublist D which contains every integer in L but without any duplicates, and a list N of the same length as D for which N(k) equals the number of times the element D(k) appears in L. For example, given L = (5, 3, 4, 3, 4, 3, 3), one possible output would be D = (3, 5, 4) and N = (4, 1, 2) (i.e., D can be given in any order, but the entries in N must correspond to D's).

Part (a) [15 MARKS]

Finish the pseudo-code function countDup below for computing D and N. To get any marks at all your algorithm must make essential use of the output from the recursive calls of countDup, and must have a runtime of $O(|L| \log |L|)$. Be precise, some marks will be taken off for incorrect details such as off-by-one errors. Include comments to assist the marker.

// For a list L of length n, the solution D and N is given by [D, N] = countDup(L, 1, n)

```
[D, N] = countDup(L, a, b)
```

```
// Input: Array L(1..n) of integers, and indicies 1 \le a \le b \le n.
// Output: The lists D, N described above for the sublist L(k), k = a, ..., b.
// Include any other important properties of the output lists D and N.
//
//
//
//
if a == b
D = L(a); N = (1)
return D, N
else
m = floor((b + a - 1) / 2)
[D1, N1] = countDup(L, a, m)
[D2, N2] = countDup(L, m+1, b)
```

Part (b) [3 MARKS]

Analyze your algorithm's running time.

(For your reference, the Master Theorem states that any function that satisfies a recurrence of the form $T(n) = a T(n/b) + \Theta(n^d)$ has solution $T(n) = \Theta(n^d)$ if $a < b^d$, $T(n) = \Theta(n^d \log n)$ if $a = b^d$, and $T(n) = \Theta(n^{\log_b a})$ if $a > b^d$.)