
CSC 373H Midterm #1 (Morning) Spring 2018

Question 1. Minimum Spanning Trees [12 marks]

Let G = (V,E,w) be a undirected, connected, weighted graph and assume all weights are distinct (i.e.,
w(e) 6= w(f) for any pair of edges e, f ∈ E with e 6= f). Suppose C0 is a given simple cycle in G, and
e0 = (u0, v0) is an edge on C0.

Given the above assumptions, for each of the questions below circle the most specific correct answer (i.e.,
if something “always” happens or “never” happens, then “sometimes” will be marked wrong).

Part (a) [2 marks]

Suppose e0 and C0 are as above and e0 is the maximum weight edge on C0, then e0 is

always sometimes never

in an MST of G.

Part (b) [2 marks]

Suppose e0 and C0 are as above and the weight w(e0) is neither the minimum nor the maximum of the
weights of the edges on C0, then e0 is

always sometimes never

in an MST of G.

Part (c) [2 marks]

Suppose e0 and C0 are as above and e0 is the minimum weight edge on C0, then e0 is

always sometimes never

in an MST of G.

Part (d) [2 marks]

Suppose e1 ∈ E is the maximum weight edge over all of E. Then this e1 (which may be different than
the e0 above) is

always sometimes never

in an MST of G.

Part (e) [2 marks]

Suppose e0 and C0 are as above then it is

always sometimes never

true that |E| ≥ |V |.

Part (f) [2 marks]

Consider an edge a = (a1, a2) ∈ E such that there is no path P = (p1, p2, . . . , pn) in G such that p1 = a1,
pn = a2, and all the edges on P satisfy w((pi, pi+1)) < w(a) for 1 ≤ i ≤ n− 1. Then a is

always sometimes never

in an MST of G.

Total pages = 3 Page 1 cont’d. . .



CSC 373H Midterm #1 (Morning) Spring 2018

Question 2. Divide and Conquer: Count Duplicates [18 marks]

Given an unsorted list of integers, L, we want to return both a sublist D which contains every integer in
L but without any duplicates, and a list N of the same length as D for which N(k) equals the number of
times the element D(k) appears in L. For example, given L = (5, 3, 4, 3, 4, 3, 3), one possible output would
be D = (3, 5, 4) and N = (4, 1, 2) (i.e., D can be given in any order, but the entries in N must correspond
to D’s).

Part (a) [15 marks]

Finish the pseudo-code function countDup below for computing D and N . To get any marks at all
your algorithm must make essential use of the output from the recursive calls of countDup, and must have
a runtime of O(|L| log |L|). Be precise, some marks will be taken off for incorrect details such as off-by-one
errors. Include comments to assist the marker.

// For a list L of length n, the solution D and N is given by
[D, N] = countDup(L, 1, n)

[D, N] = countDup(L, a, b)
// Input: Array L(1..n) of integers, and indicies 1 ≤ a ≤ b ≤ n.

// Output: The lists D, N described above for the sublist L(k), k = a, . . ., b.
// Include any other important properties of the output lists D and N.
//
//
//
if a == b

D = L(a); N = (1)
return D, N

else
m = floor((b + a - 1) / 2)
[D1, N1] = countDup(L, a, m)
[D2, N2] = countDup(L, m+1, b)

Total pages = 3 Page 2 cont’d. . .



CSC 373H Midterm #1 (Morning) Spring 2018

Part (b) [3 marks]

Analyze your algorithm’s running time.
(For your reference, the Master Theorem states that any function that satisfies a recurrence of the form
T (n) = a T (n/b) + Θ(nd) has solution T (n) = Θ(nd) if a < bd, T (n) = Θ(nd log n) if a = bd, and
T (n) = Θ(nlogb a) if a > bd.)

Total pages = 3 Page 3 Questions Only


