CSC 373H Midterm #1 Solutions Spring 2018

Question 1. Minimum Spanning Trees [12 MARKS]

Let G = (V, E,w) be a undirected, connected, weighted graph and assume all weights are distinct (i.e.,
w(e) # w(f) for any pair of edges e, f € F with e # f). Suppose Cp is a given simple cycle in G, and
eo = (up,v0) is an edge on Cp.

Given the above assumptions, for each of the questions below circle the most specific correct answer (i.e.,
if something “always” happens or “never” happens, then “sometimes” will be marked wrong).

Part (a) [2 MARKS]
Suppose ey and Cjy are as above and e(is the maximum weight edge on Cj, then eq is

Soln: never
in an MST of G.

Part (b) [2 MARKS]

Suppose ¢y and Cj are as above and the weight w(eg) is neither the minimum nor the maximum of the
weights of the edges on (Y, then ey is

Soln: sometimes

in an MST of G.

Part (c) [2 MARKS]

Suppose ey and Cjy are as above and eg is the minimum weight edge on Cy, then eq is
Soln: sometimes
in an MST of G.

Part (d) [2 MARKS]

Suppose e; € E is the maximum weight edge over all of E. Then this e; (which may be different than
the ey above) is

Soln: Sometimes.

in an MST of G.

Part (e) [2 MARKS]

Suppose ey and Cjy are as above then it is
Soln: Always
true that |E| > |V].

Part (f) [2 MARKS]

Consider an edge a = (a1, az) € F such that there is no path P = (p1,p2,...,pn) in G such that p; = ay,
pn = a2, and all the edges on P satisfy w((pi, pi+1)) < w(a) for 1 <i<mn —1. Then a is

Soln: Always

in an MST of G.

Total pages = 5 Page 1 OVER...

CSC 373H Midterm #1 Solutions Spring 2018

Question 1. Minimum Spanning Trees [12 MARKS]

Let G = (V, E,w) be a undirected, connected, weighted graph and assume all weights are distinct (i.e.,
w(e) # w(f) for any pair of edges e, f € F with e # f). Suppose Sy C V and Dy = cutset(Sp). Suppose
eg € E is an edge in Dy.

Given the above assumptions, for each of the questions below circle the most specific correct answer (i.e.,
if something “always” happens or “never” happens, then “sometimes” will be marked wrong).

Part (a) [2 MARKS]

Suppose eg and Dy are as above, with |Dg| > 1, and eq is the minimum weight edge in the cutset Dy, then
€0 is

Soln: always

in an MST of G.

Part (b) [2 MARKS]

Suppose ep and Dy are as above, with |Dg| > 2, and the weight w(eg) is neither the mininimum nor the
maximum of the weights of the edges in the cutset Dy, then e is

Soln: sometimes

in an MST of G.

Part (c) [2 MARKS]

Suppose ey and Dy are as above, with |Dg| > 1, and e is the maximum weight edge in the cutset Dy, then
eg is

Soln: sometimes

in an MST of G.

Part (d) [2 MARKS]

Suppose eg and Dy are as above, with |Dg| = 1, then eq is
Soln: always
in an MST of G.

Part (e) [2 MARKS]

Suppose eg and Dy are as above, with |Dg| > 1, then G
Soln: sometimes
has a simple cycle C with two or more edges in Dy.

Part (f) [2 MARKS]
Define D(v) to be the cutset formed from S(v), where S(v) = {v} for each v € V, and define

B = {e | e is the minimum weight edge in D(v) for some v € V'}
then the graph (V, B) is

Soln: always
acyclic.

Total pages = 5 Page 2 OVER...

CSC 373H Midterm #1 Solutions Spring 2018

Question 2. Divide and Conquer: Count Duplicates [18 MARKS]

Given an unsorted list of integers, L, we want to return both a sublist D which contains every integer in
L but without any duplicates, and a list NV of the same length as D for which N (k) equals the number of
times the element D(k) appears in L. For example, given L = (5, 3,4, 3,4, 3,3), one possible output would
be D = (3,5,4) and N = (4,1,2) (i.e., D can be given in any order, but the entries in N must correspond
to D’s).

Part (a) [15 MARKS]

Finish the pseudo-code function countDup below for computing D and N. To get any marks at all
your algorithm must make essential use of the output from the recursive calls of countDup, and must have
a runtime of O(|L|log|L|). Be precise, some marks will be taken off for incorrect details such as off-by-one
errors. Include comments to assist the marker.

// For a list L of length n, the solution D and N is given by
[D, N] = countDup(L, 1, n)

[D, N] = countDup(L, a, b)
// Input: Array L(1..n) of integers, and indicies 1 < a < b < n.
// Output: The lists D, N described above for the sublist L(k), k = a, ..., b.
// Include any other important properties of the output lists D and N.

//
//
//

ifa==>b
D =L(a); N= (1)
return D, N

else

m = floor((b +a-1) /2)
[D1, N1] = countDup(L, a, m)
[D2, N2] = countDup(L, m+1, b)

Sketch of Soln: Add the following comment: The output list D is in sorted (increasing) order upon
return and D(k) occurs N (k) times in the sublist from a to b.

The pseudo-code here is similar to that of merge sort. Since both sublists D1 and D2 are sorted, we can
perform a standard merge to compute the new D. The only difference from merge sort is when there is a
common item in the two half lists. That is, when there are k1 and k2 such that D1(k1) == D2(k2). In this
case, only one of these items is appended to D, and the number N of these items is set to N1(k1)+ N2(k2).
We omit the details, although these details were marked on your exam.

Part (b) [3 MARKS]

Analyze your algorithm’s running time.

Initially, the list length is n. Soln: Note that the two recursive calls have lists of length floor(n/2) and
ceil(n/2). (The details here can be skipped.) Moreover, the merge step requires O(1) computation for
each element added to D, and at most n elements are added to D. Therefore, the runtime of the rest of
this function is O(n). Therefore we have

T(n) = 2T(n/2) + O(n).

The Master Thm applies with a=2, b=2, and d = 1, so this algorithm runs in time O(nlog(n)).

Total pages = 5 Page 3 OVER...

CSC 373H Midterm #1 Solutions Spring 2018

Question 2. Divide and Conquer: More Than a Third [18 MARKS]

We are given a list of n > 0 objects, say X = (x1,292,...,2,). The only operation we can do on these
objects is equality testing (therefore we can not sort it). We must find all objects which occur in X strictly
more than n/3 times. (We define |X| to be this n.)

Part (a) [3 MARKS]

Define M to be the maximum number of different objects (e.g., z; and x; with x; # z;) that can each
appear in X strictly more often than | X|/3 times. (Note the minimum number of such frequent objects
is zero.) Give the value of M and prove (carefully) that it is correct.

Soln: Suppose M objects appear strictly more than |X|/3 times. Then just these objects must together
appear strictly more that M|X|/3 times. But the list is length |X| so we must have | X| > M|X]|/3, so
M < 3. That is, the maximum number is M = 2.

Part (b) [12 MARKS]

Finish the pseudo-code of the function freqThird below for computing a list, D, of items which occur
strictly more than |X|/3 times in X. Your algorithm:

e Must (to get any marks) make essential use of the two recursive calls in the code below;

e Can return additional values beside D (but see the next point);

e All returned values must be either constants or lists that all have O(1) length (such as, D, which we
showed in (a) is a list of length at most |M|);
Should have a runtime that is as small as possible (part marks are offered here).
Should include enough comments to assist the marker.

// Return the list D of items appearing in X strictly more often than |X|/3 times:
D = freqThird(X, 1, n)

D, | = freqThird(X, a, b)
// Input: Array X(1..n) of objects, and indicies 1 < a <b < n.
// Output: The list D described above for the sublist X(k), k = a, ..., b.
// Describe any additional output here:

//

if b > a
m = floor((b +a-1)/2)
[DL, | = freqThird(X, a, m)
[DR, | = freqThird(X, m+1, b)

// Note to student: Remember to complete the else clause below.

Soln: You actually do not need to return anything else (but it might be simpler to recognize the solution
this way).

The key idea is that you can afford to simply count the number of items equal to each item in DL or DR
in the sub-list from a to b. This will take O(b — a + 1) for at most 4 items.

For efficiency, you do return counts C'L and C'R in the two recursive calls above. You then do not need
to recount items that are in both lists DL and DR (the number of items in the combined list is just
CL(k1) + CR(k2) where DL(k1) == DR(k2)). Otherwise, if an item only appears in DL, then you need
to count how often it appears in the right sublist (from m + 1 to b). And similarly for items that only
appear in DR. We omit the details. These counts take at most 4 times ceil(n/2) time, i.e., O(n).

The base case is for b == a, and to return D = (X (a)), and C = (1).

It is ok in the body of this function to use a mapping data structure for the sub-lists DL and D (like a
dictionary in python), or to use a set data structure. But it is not ok to use a mapping data structure (or

Total pages = 5 Page 4 OVER...

CSC 373H Midterm #1 Solutions Spring 2018

hash table) for the whole list of items from a to b (or from 1 to n). The reason is that this does not make
essential use of the two recursive calls since we could simply solve this problem with hashing in O(n) time.
Part (c) [3 MARKS]

Analyze your algorithm’s running time.

Soln: As explained above, there are two recursive calls on sub-lists of length floor(n/2) and ceil(n/2),
and the necessary counting takes at most O(n) time.

Therefore, in the Master Thm, a = b = 2 and d = 1, so the runtime is O(nlog(n)).

Total pages = 5 Page 5 END OF SOLUTIONS

