
CSC373— Algorithm Design, Analysis, and Complexity — Spring 2018

Assignment 2: Dynamic Programming Due: 9am, Thurs, Feb 15, 2018

Submit answers to the course MarkUs page, https://markus.teach.cs.toronto.edu/csc373-2018-01.
Your solutions must be in one PDF file named A2.pdf. Your solutions can be neatly hand-written and
scanned. You do not need to repeat the questions themselves, and you can make use of any material in the
class’s lecture notes or tutorials simply by citing them.

You are encouraged to work in groups of size at most five. If you do work in a group then you must, of course,
submit this work to MarkUs as a group.

1. [6pts] Sub-Palindromes. A subsequence is palindromic if it is the same whether read from left to right
or right to left. For instance, the sequence

(A,C,G, T,G, T,A, T,G,C)

has many palindromic subsequences. Examples of palindromic subsequences of this sequence include
(C,G, T,A, T,G,C), (A, T,G, T,A), (A) and (T, T), which have lengths 7, 5, 1, and 2, respectively.

Develop an algorithm that takes an input sequence x = (x1, x2, . . . , xn), for some n ≥ 1, and returns the
length of the longest palindromic subsequence. Your algorithm should run in O(n2) time and require O(n2)
space. You can refer to algorithms and notation used in the lecture notes without repeating them in your
answer. (Hint: Here that is particularly helpful.)

2. [10pts] Parsing Words. We wish to parse a sequence of letters, say y = (y1, y2, . . . , yn), into a sequence
of words. Here all the white space and punctuation have been removed from y, and we assume it consists
of only the lower-case letters ’a’ through ’z’. For example, y = ′meetateight′, and this could be parsed as
the sequence of three words s = (s1, s2, s3) = (′meet′,′ at′,′ eight′).

In order to help with this task, suppose we function dict(x) which returns an integer representing the
overall quality of the string x as an English word. Here you can assume the quality of correct English
words are high, and incorrect (or uncommon) strings such as ’etat’ have low (or even negative) quality. We
define the quality of the empty string to be arbitrarily low, for example, dict(′′) = −∞.

Moreover, we know a constant L > 0 such that for any string x of length bigger than L, dict(x) = −∞.
That is, we know any word with quality larger than −∞ must have length less than or equal to L.

We define a parse of an input string y as a sequence S = (s1, s2, . . . , sK) of non-empty substrings of y, with
each sk = y(i(k) . . . j(k)) with i(k) ≤ j(k). (Here the notation y(i . . . j) refers to the substring of y starting
at the ith character, yi, and ending at the jth character, yj .) Moreover, for S to be a parse we require
that the concatenation of the substrings in S equals the original string, i.e., y = concat(s1, s2, . . . , sK) ≡
concat(S). It follows that

1 = i(1) ≤ j(1) < j(1) + 1 = i(2) ≤ j(2) . . . < j(K − 1) + 1 = i(K) ≤ j(K) = n.

For the example y = ′meetateight′, a possible parse is S = (s1, s2, s3) = (′meet′, ′at′, ′eight′) (that is, s1
= ′meet′, and so on).

The total quality of a parse S = (s1, s2, . . . , sK) is defined to be

Q(s) =
K
∑

k=1

dict(sj) (1)

The problem is then, given a string of letters y, find a parse S of y with the maximum total quality.

1

https://markus.teach.cs.toronto.edu/csc373-2018-01

(a) Clearly describe a dynamic programming approach for solving this problem. You can assume that the
given string y has length at least one. You do not need to provide a correctness proof, but explain
why you believe your algorithm is correct.

(b) What is the order of the runtime of your algorithm in terms of the length n of the input string y?
Here assume the that each call to the dictionary, dict(x), runs in O(1) time. Briefly explain your
result (you do not need to do a detailed runtime analysis).

(c) Optional (not marked). Implement your algorithm in Python using a library to define the function
dict(s). For example, you could use package wordfreq 1.6.1 and define

dict(s) =

−1 if s is empty,
math.floor((1.0e+ 6) ∗ zipf frequency(s,′ en′)) if 0 < |s| ≤ L,
−∞ if |s| > L,

For test strings you could take any English text, preprocess it to lower-case, removing all non-letters
except blanks, and leave only one blank between words. Call this the “ground truth” string g. Form
the test string x by removing blanks from g. Run your program on x and compare this with g. A greedy
algorithm can then be used to output only the mismatched substrings of x with the corresponding
parts of g which are considered the “correct” parse.

A similar problem is common in human speech understanding (that is, from audio) since people often
blend words together during natural speech.

3. [10pts] Optimal Parse Trees. Let y be a string of n characters, say y = (y1, y2, . . . , yn) We reuse
the notation y(i . . . j) above, which denotes the substring (yi, yi+1, . . . , yj) which has length j − i + 1.
Suppose we are also given a sorted list d = [d0, d1, d2, . . . , dK] of string break points, with 1 = d0 <
d1 < d2 < . . . < dK = n + 1. For example, these breakpoints could specify the endpoints of the words
sk = y(dk−1 . . . (dk − 1)), for k = 1, 2 . . . ,K, that were found in the previous problem.

Here we are interested in the problem of computing an optimal parse tree for these words sk. In general,
this tree may assign words to phrases, phrases to sentence parts, and so on. For the purposes of this
assignment we will simplify the form of the parse tree, but keep the essential elements required to illustrate
a dynamic programming approach for computing an optimal parse tree.

We consider binary parse trees with each node v storing a data item, v.data = (i, j), along with references
to the left and right children, namely v.left and v.right. These references to children may be null, i.e.,
v.left = null, representing that there is no such child. The data in each node v of the parse tree, say
v.data = (i, j), is a pair of integers i and j, with 0 ≤ i < j ≤ K. These integers refer to the two string
breakpoints di and dj which together define the substring y(di . . . (dj − 1)).

Given the input string y and the sorted list of set of breakpoints d = [d0, d1, d2, . . . , dK], as described above,
the binary tree T is said to be a feasible parse tree of y if and only if T is a binary tree (with nodes of
the form v described above) which satisfies the following conditions:

• Root node extends over y. The root node r of T must have r.data = (0,K). That is, the substring
associated with r is y(d0 . . . (dK − 1)) = y(1 . . . n) = y.

• Leaf nodes are words. Every leaf node v of T (i.e., with v.left = v.right = null) must have data
of the form v.data = (k − 1, k) with k = 1, 2, . . . ,K. That is, leaf nodes are associated with single
words sk = y(dk−1 . . . (dk − 1)), as described above.

• The children of non-leaf nodes correspond to left and right substrings. For every non-leaf
node v in the tree T , then both v.left and v.right are non-null. Moreover, for some integers i, k, j, with
0 ≤ i < k < j ≤ K, v.data = (i, j), v.left.data = (i, k), and v.right.data = (k, j). That is, the node v
is associated with the substring y(di . . . (dj − 1)), and the left and right children are associated with
the left and right parts of this string split at the intermediate breakpoint dk. In particular, the left and
right children are associated with the left and right substrings y(di . . . (dk − 1)) and y(dk . . . (dj − 1)),
respectively.

2

https://pypi.python.org/pypi/wordfreq/1.6.1

For a concrete example, suppose we are given a string y of length 50, and the sorted list of breakpoints
d = [d0, d1, d2, d3] = [1, 10, 30, 51]. Then two feasible parse trees are shown for this problem in the figure
below. The two integers in each tree node represent the data (i, j) for that node. These trees satisfy the
conditions listed above, and are therefore feasible. Moreover, you can verify that these are the only two
feasible parse trees for this problem (but don’t hand that argument in).

1,2

1,3

2,3

0,3

0,1

0,1

2,3

1,2

0,3

0,2

We associate a cost with every feasible parse tree T , say cost(T). The problem we wish to solve is then,
given the input string y and the list of breakpoints d, find a minimal cost, feasible, parse tree.

Here we choose a simple form for this cost function. For any feasible parse tree T , define cost(T) to be
the sum of costs for all the nodes v in T , and define the cost of any node v to simply be dj − di, where
v.data = (i, j). With this definition, the cost of any feasible parse tree T is simply the sum of the lengths
of all the substrings represented by nodes in T . For example, for the parse trees above, the cost of the root
node is d3 − d0 = 51 − 1 = 50, which equals the length of the input string y. The cost of the whole tree
Tl on the left of this figure is (working from the root downwards) cost(Tl) = 50 + 9 + 41 + 20 + 21 = 141.
Similarly, the cost of the tree on the right above is cost(Tr) = 50 + 29 + 21 + 9 + 20 = 129. Therefore, in
this example, the right tree is the minimal cost tree.

9 58 129

20 82

21

j=0 1 2 3

i=0

1

2

3

Define C(i, j) to be the minimum cost for any subtree rooted at a vertex v which has the data v.data = (i, j).
(The cost of any subtree is just the sum of the costs of every node in the subtree, as defined above.) Here
i and j must satisfy 0 ≤ i < j ≤ K. We can store these costs C(i, j) in an (K + 1) × (K + 1) matrix,
where we only need to consider the entries in this matrix for the column index j larger than the row index
i. That is, we only need to consider the upper-right triangular portion of this cost matrix (see the above
figure, which shows the cost table C for the previous example).

(a) Given a string y and a sorted list of break points d = [d0, . . . , dK], describe in detail a dynamic
programming approach for computing this minimum-cost table C. Clearly explain why your approach
is correct. (You do not need to provide a detailed proof of correctness.)

(b) What is the order of the runtime of your algorithm for computing this cost table C? Explain. (You
need not provide a detailed proof of this runtime.)

(c) Explain in detail how a minimal cost, feasible, parse tree T can be computed for this problem given the
cost table, C, computed in part (a). (You do not need to provide a detailed proof of the algorithm’s
correctness.)

4. [10pts] Equal Thirds. Given a list of n > 0 strictly positive integers, X = (x1, x2, . . . , xn), we want
to determine if it is possible to partition I(n) = {1, 2, . . . , n} into three mutually disjoint subsets, say
Si ⊂ I(n) for i = 1, 2, 3, such that: a) Si ∩ Sj = ∅ for i 6= j; b) I(n) = ∪3

i=1Si; and

∑

k∈S1

xk =
∑

k∈S2

xk =
∑

k∈S3

xk =

∑

k∈I(n)

xk

 /3. (2)

3

Moreover, if such a partitioning is possible, we wish to find suitable subsets Si for i = 1, 2, 3.

For example, given X = (1, 2, 3, 4, 4, 5, 8) we find that the answer is yes it is possible. Specifically, a suitable
partition of I(|X|) is S1 = {1, 7}, S2 = {5, 6}, and S3 = {2, 3, 4}. Moreover, in this case, the corresponding
sublists Xi = (xk | k ∈ Si) are X1 = (1, 8), X2 = (4, 5) and X3 = (2, 3, 4). Note that these sublists Xi all
sum to 9, which is one third of the sum over all X. Therefore equation (2) is satisfied.

Alternatively, if we were given X = (2, 2, 3, 5), then
∑

i xi = 12, but there is no way to partition this into
three sublists which all sum to 12/3 = 4. In this case the answer is no, it is not possible to find such a
solution.

(a) Clearly describe a dynamic programming algorithm for returning “yes” or “no”’, corresponding to

whether or not such a partitioning is possible. Your algorithm must run in time O(n [
∑n

i=1 xi]
2
).

Explain why you believe the algorithm and your runtime estimate are correct, but you do not need
to provide detailed proofs.

(b) Assuming your algorithm runs in time Ω(n [
∑n

i=1 xi]
2
), is this considered to be a polynomial time

algorithm? Briefly explain.

(c) In situations where part (a) returns “yes”, that is, when a solution exists, clearly explain how to
compute suitable partition sets, namely Si, i = 1, 2, 3. (You should build on your solution in part
(a).)

4

