Sampling Signals

Overview:

e We use the Fourier transform to understand the discrete sampling

and re-sampling of signals.
e One key question is when does sampling or re-sampling provide an

adequate representation of the original signal?

Terminology:

e sampling — creating a discrete signal from a continuous process.
e downsampling (decimation) — subsampling a discrete signal

e upsampling — introducing zeros between samples to create a longer
signal

e aliasing —when sampling or downsampling, two signals have same
sampled representation but differ between sample locations.

Matlab Tutorials: samplingTutorial.m, upSample.m
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Sampling Signals
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Up-Sampling

Consider up-sampling a signgh| of length V:

¢ Increase number of sampldsby a factor ofn,.

e Step 1.Placen, — 1 zeros after every sample &jn], to form fj[n]

of lengthn/N, namely
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for n modn, =0,

1
otherwise. (1)
Raw Upsampled Signal
15 ‘ : ‘
1k
+«° 0
1t
% 5 10 15 20 25 30

Page: 3



Up-Sampling (Cont.)
e Step 2.Interpolate signaf:
f=S=xfy, forsome smoothing kernél[n]|. (2)

Here, in order forf|n] to interpolatefy[n|, we require that[0] = 1
andS[jns| = 0 for nonzero integers.

Sinc Filtered Upsampled Signal (b)
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e Many smoothing kernels can be used (see upSample.m).
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Frequency Analysis of Up-Sampling

Step 1.Fourier transform of the raw up-sampled sigrigh|:

Nng—1 . N—1 o
F(foln)) k] = Z foln]e™rm = Zfo[jns]ezw,ims
i
= ][j]eiwijns
j=0

Herew; = 2k, so the last line above becomes

Nng Nng
<k< :

F(l = Y2 115 = 7w, tor — e < < M g3)

SinceF(I) is N-periodic, equation (3) implies th&( f,) consists of
ns copies ofF(I) concatenated together.

Amplitude Spectrum of I[n] Amplitude Spectrum of Raw Upsampled Signal
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Fourier Analysis of Up-Sampling Step 2

Recall Step 2 is to fornf[n] = S = f, for some interpolation filtef.

However, notice from the inverse Fourier transform that (foeven)
| N/2—1
S A 22—7Tkj
10 = ~ > 1keF
k=—N/2

. Nj2-1 o
= 5 Y AlkeER = flin,). )

Nng
k=—N/2

Here we used(jns) = I(j) in the last line. Notice the left term in the

last line above is:, times the inverse Fourier transform Bfk] fo|k]
where B is the box function,Bjk] = 1 for —N/2 < k < N/2 and
Blk] = 0 otherwise. We can therefore evaluate this inverse Fourier
transform at every pixet, and not just at the interpolation valugs,,

to construct a possible interpolating functigim|

fn] = neFH(B(k) folk))- (5)

) . . . . Sinc Filtered Upsampled Signal (b)
Amp. Spec. (Upsampled Sig.(r), Sinc Filter(g), Filtered Sig.(b) 15 ‘ ‘ ‘ ‘ ‘
12— ‘ ‘ ‘ ‘ ‘ )
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Down-Sampling

Consider down-sampling a signgh| of length /V:

e Reduce number of sampl@sby a factor ofn,, wheren, is a divi-
sor of V.

e Define the comb function:
(N/ns)—1

C(n; nS) — Z 5n,mns

e Step 1.Introduce zeros id|[n| at unwanted samples.
goln| = Cn;ngln]. (6)
e Step 2.Downsample signaj,:

glm| = golmny], for0 <m < N/ns. (7)
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Frequency Domain Analysis of Down-Sampling

Proposition 1. The Fourier transform of the comb function is another
comb function:

N
F(Cln;ngl) = n—C’[/c; N/ng. (8)
= ! ET:? ng=4
- o mw

Recall the frequency and wave numbek are related by = %k So

arN _ 2
Nns  ng’

the spacing in the plot aboveds =

Proposition 2. Pointwise product and convolution of Fourier trans-
forms. Supposég|n] andg|n| are two signals of lengthv (extended to
be N-periodic). Then

F(flnlgln]) =

> flilalk — 4. 9)

where f andg denote the Fourier transforms pfandg, respectively.

The proofs of these two propositions are straight forward applications
of the definition of the Fourier transform given in the preceeding notes,
and are left as exercises.
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Fourier Analysis of Down-Sampling Step 1

Recall Step 1 is to formy[n| = C[n; n,|I[n|. By Prop. 1 and 2 above,
we have

Flgo) = F(Cln;nslI[n])

N 1 -
= n—sﬁc[';N/ns]*][']
L
= — >, CUN/k -]
¥ j=—N/2+1
1 Ns—TQ A N
= — > dk—r—], (10)
T T
r=—ro+1

where, due to the periodicity d?f[k], we can use any integey (eg.
ro = ng/2 for evenny).

I(w) ) 2n
A AANA, v
‘ | SR 0 o

-1t 0 m W

Thereforeg[k] consists of the sum of replica$k — rN/n,] of the
Fourier transform of the original signal spaced by wavenumbai/n
or, equivalently, by frequenay, = i—”

Note the Fourier transforgy has perio@r, so the contribution sketched
above forw > 7 can be shifte@r to the left.
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Fourier Analysis of Down-Sampling Step 2

In Step 2 we simply drop the samples frgpir| which were set to zero
by the comb functior®'[n; ny]. That is

glm] = golmny], for0 <m < N/ng.
In terms of the Fourier transform, it is easy to show

F(9)k] = glk] = golk], for — N/(2n,) <k < N/(2n,).  (11)

Rewriting this in terms of the frequeney, ; = %k (notegm] is

a signal of lengthV/n,), and the corresponding frequengy = %Tk
= w; ;N Of the longer signagy[n|, we have

g[ws,k] — gO[wk] — g()[ws,k/ns]y for — < Ws.k <. (12)
f(w) A Ng = 4
original signal
e LS S S

downsampled signal

upsampled and
filtered signal
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Nyquist Sampling Theorem

Sampling Theorem: Let f[n| be a band-limited signal such that

A

flw] = 0 forall |w| > wy

for somewy. Then f[n] is uniquely determined by its samplesn| =
flmn] when

m ] )\0
ws/2=— >wy  orequivalently n, < 5}

S

where)\, = 27 /wy. In words, the distance between samples must be
smaller than half a wavelength of the highest frequency in the signal.

In terms of the previous figure, note that the maximum frequency
must be smaller than one-half of the spacing,between the replicas
introduced by the sampling. This ensures the replimasot overlap.

When the replicas do not overlap, we can up-sample the signal
and interpolate it to recover the sigrfah|, as discussed above.

Otherwise, when the replicas overlap, the Fourier transfgimncon-
tains contributions from more than one replicafof]. Due to these
aliased contributions, we cannot then recover the original sifjnal
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Sampling Continuous Signals

A similar theorem holds for sampling signaisr) for = € [0, L). We
can represent as the Fourier series

k=—o0
wherew, = Q%k and=, . denotes equals almost everywhere. Suppose
f(z) is band-limited so that for some, > 0

flk] = 0 forall |wg| > wy.

Then f(x) is uniquely determined by its samplé&sn| = f(m 7) when
T < 20 (13)
2
where), = 27 /wy. In words, the distance between samples must be

smaller than half the wavelength of the highest frequency in the signal.

The link with the preceeding analysis is that samplfiig) with a sam-

ple spacing of- causes replicas in the Fourier transform to appear with
spacingw = 27 /7. As before, the condition that these replicas do not
overlap iswy < ws/2, which is equivalent to condition (13).
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Aliasing

Aliasing occurs when replicas overlap:

—r 0w  4m w

Consider a perspective image of an infinite checkerboard. The signal is
dominated by high frequencies in the image near the horizon. Properly
designed cameras blur the signal before sampling, using

¢ the point spread function due to diffraction,

e imperfect focus,

e averaging the signal over each CCD element.
These operations attenuate high frequency components in the signal.

Without this (physical) preprocessing, the sampled image can be severel
aliased (corrupted):
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Dimensionality

A guiding principal throughout signal transforms, sampling, and alias-
ing is the underlying dimension of the signal, that is, the number of
linearly independent degress of freedom (dof). This helps clarify many
issues that might otherwise appear mysterious.

e Real-valued signals withv samples havéV dof. We need a basis
of dimension/N to represent them uniquely.

e Why did the DFT of a signal of lengtlv use N sinusoids? Be-
causeN sinusoids are linearly independent, providing a minimal
spanning set for signals of length. We need no more than.

e But wait: Fourier coefficients are complex-valued, and therefore
have2 N dofs. This matches the dof needed for complex signals of
length NV but not real-valued signals. For real signals the Fourier
spectra are symmetric, so we keep half of the coefficients.

e When we down-sample a signal by a factor of two we are moving
to a basis with\V/2 dimensions. The Nyquist theorem says that
the original signal should lie in aiv/2 dimensional space before
you down-sample. Otherwise information is corrupted (i.e. signal
structure in multiple dimensions of the originstD space appear
the same in thev/2-D space).

e The Nyquist theorem is not primarily about highest frequencies
and bandwidth. The issue is really one of having a model for the
signal; that is, how many non-zero frequency components are in
the signal (i.e., the dofs), and which frequencies are they.
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