
Colour

The visible spectrum of light corresponds wavelengths roughly from

400 to 700 nm.

The image above is not colour calibrated. But it offers a rough idea of

the correspondence between colours and wavelengths.

Reference: Matlab colourTutorial.m in utvisToolbox.
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Colour Image Formation

The(R;G;B)-response of a pixel in an eye or camera is the combined

result of four components:

� The illuminant spectral density,I(�),

� the reflectance function of surfaces,r(�),

� the geometry of the scene (eg. the surface orientation),

� the spectral sensitivities,S�(�), of the photo-receptors in the ob-

server’s eye or camera.

We briefly discuss each of these terms below.
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Spectral Power Distribution of Light

We describe light in terms of the power present at each wavelength in

the visible spectrum, sayI(�).

HereI(�) is called the spectral power distribution (SPD). It is measured

in units of Watts (i.e. power) per unit wavelength (i.e.�), per unit

cross-sectional area.

The figure below shows typical SPDs for daylight.

These have been normalized to 100 at the wavelength 550nm.

Notice the variation in the proportion of blue (short wavelength) and

red (long wavelength) light at different times of day.
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Surface Reflectance

Two types of reflectance:

Light
Source

L

Diffuse

Specular

� Specular Reflectance: Reflectance from the surface, in the “mir-

ror reflection” direction. For non-metals the spectral distribution

of this reflected light is roughly proportional to the SPD of the in-

cident light.

� Diffuse Reflectance: Light is absorbed and re-emitted from the

body, scattering in all directions. The spectral distribution of the

reflected light depends on the pigmentation of the object.
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Surface Reflectance (Cont.)

For incoming light travelling in the direction~L and hitting a surface

patch, consider the light diffusely reflected to a viewer in the direction
~V .

px
N

V
N

dA

LdA
VdA

-L

The SPD for the reflected lightIr(�) can be modelled as

Ir(�) = r(�)max(� ~N � ~L; 0)I(�)

� I(�) is the SPD for the incoming light, arriving in direction~L,

� Ir(�) is the SPD for the reflected light (for simplicity we are ig-

noring an additional dependence on the solid angle of the scattered

light),

� ~N is the surface normal,

� r(�) is the reflectance distribution for the surface,

� � ~N � ~L causes shading as the surface tilts away from the incoming

light (if � ~N � ~L is negative then the surface faces away from the

light, i.e. it is in shadow).
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Munsell Chips

The Munsell set is a large collection of calibrated colour chips (as in

paint ’chips’), the reflectancesr(�) are systematically chosen to span a

wide range of possibilities.
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Various Munsell Reflectances

Munsell chips are named for their perceived colour, the colour is spec-

ified by three parameters:

� Hue: Specifies the colour name (i.e. R, Y, G, B, P,: : :).

� Lightness: Indicates the brightness of the chip.

� Saturation: How rich, or different from white.
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Spectral Sensitivities

The pixel response is a function of the energy absorbed by a pixel. The

absorbed energy is

e� = CT

Z 1

0

S�(�)Ir(�)d� for � = R;G;B:

HereIr(�; ~xI ; ~nI) is the SPD for the incident light arriving from the

scene. AlsoS�(�) is the spectral sensitivity of the�th colour sensor,

andCT is a constant (eg. 1/(shutter speed)).
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Colour images are formed (typically) using three spectral sensitivities,

say� = R;G;B for the ‘red’, ‘green’ and ‘blue’ channel. The normal-

ized spectral sensitivities in the human retina are plotted above.
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Absorbed Energy to Pixel Response
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Gamma Correction. Finally, the absorbed energye� is converted to a

quantized pixel response, sayr�, through a nonlinear function called a

gamma correction,

r� = min(� [e�]
1

 ; 255); for � = R;G;B:

The value of can vary, values between 2 and 3 are common. This

responser� is (typically) cropped to [0,255] and quantized to 8 bits.

Conversely, when an image is displayed, due to nonlinearities in the

display process the brightnessb� of a pixel in a particular colour chan-

nel is related to the pixel responser� through (roughly) the inverse

relationship

b� = [r�=�]
 ; for � = R;G;B:
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The End Result is a Colour Image

colourTutorial.m answers the following questions (and more!):

� What are the typical values forI(�) (daylight,sunny day,sunrise/sunset)

and r(�) (Munsell/paint chips)? Together these generate typical

SPDs of reflected lightIr(�) � r(�)� I(�).

� What are the spectral sensitivities for an average human? Three

types of sensors: long(R), medium(G), and short(B) wavelengths.

� What are metamers?

� What are CIE XYZ and xy-colour coordinates?

� Why are only 3 colour channels used?
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Metamers

Colour Matching Principle. If two light SPDsI1(�) andI2(�) cause

the same energy absorptions

e� = CT

Z 1

0

S�(�)Ij(�)d�; for � = R;G;B; (1)

then they are perceptually indistinguishable. Notee� does not depend

on j.

Colour Metamers. Two such light sources are said to be metamers.

This is closely related to our previous discussion of sampling continous

signals:

� The SPDIr(�) of the received light is the continuous signal,

� The broad sensor spectral sensitivitiesS�(�) provide the preblur

before sampling,

� The different sensors provide (only!) three discrete samples,

� Metamers are different continuous signalsI1(�) andI2(�) aliased

to the same absorbed energies~e = (eR; eG; eB)
T (see p.17 for an

example).
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CIE X,Y,Z Colour Matching Functions

The International Commission on Illumination (CIE) has carefully cal-

ibrated 2 and 3D colour spaces to specify perceptually identical chro-

matic stimuli.

The CIE colour matching functionsX(�), Y (�), andZ(�) are three

linear combinations of average human sensor sensitivitiesS�(�), � =

R;G;B.

The(X;Y; Z)coordinates for a given SPDI(�) are just the integrals of

these colour matching functions withI(�), i.e. X =
R1
0
X(�)I(�)d�

and similarly forY andZ.

Two lights I1(�) and I2(�) with the same(X;Y; Z) coordinates will

produce the same energy absorptions in the three colour sensors, and

will therefore be metamers.
320: Colour Page: 11



CIE xy-Colour Coordinates

Dividing the X and Y coords by the sum of the X,Y, and Z coords,

normalizes the colour coordinates by the total brightness.

x = X=(X + Y + Z);

y = Y=(X + Y + Z):

CIE x,y Colour Space

Points along the curved boundary correspond to monochromatic stimuli

(as on page 1 of these notes). The plotted points are various Munsell

chips illuminated by a standard daylight. A white chip would appear

at the center of the star pattern (near(x; y) = (0:3; 0:3)). Only hue and

saturation are represented in this space.
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Approximate CIE Coordinates

We can approximate the integrals using discrete sums

X �

Z 1

0

X(�)Ir(�)d� � ~X T ~Ir��;

Y �

Z 1

0

Y (�)Ir(�)d� � ~Y T ~Ir��;

Z �

Z 1

0

Z(�)Ir(�)d� � ~Z T ~Ir��;

where~Ir; ~X, ~Y , ~Z are the corresponding functionsIr(�); X(�); Y (�),

Z(�) evaluated at the discrete values�1, �2, : : : ; �N , and�� = �k+1 �

�k. For example,~Ir � (Ir(�1); Ir(�2); : : : ; Ir(�N))
T .

Then the CIE X,Y,Z coordinates of the reflected lightIr(�) are (approx-

imately) given by

~c �

0
BB@
X

Y

Z

1
CCA = A~Ir; whereA = ��

0
BB@

~X T

~Y T

~Z T

1
CCA 2 R3�N : (2)

With this approximation, two lights~I1 and~I2 are metamers iff

~c = A~I1 = A~I2;

which we can easily check.
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Colour Gamut

Consider a CRT or LCD display with three colour channels. For sim-

plicity we will assume that the light generated by each pixel depends

linearly on the coefficients~p = (pR; pG; pB)
T for each of the colour

channels. Then the displayed SPD is

Id(�) =
X

�2fR;G;Bg

D�(�)p�: (3)

HereD�(�) is the SPD for the�th colour channel of the display, and

p�(~x) 2 [0; 1] is the�th channel of the colour image(IR(~x); IG(~x); IB(~x))

normalized to be between0 and1 (i.e. p�(~x) = I�(~x)=255).

Equation (3) maps the unit cube in~p-space to SPD functions. This set

of SPDs is called thecolour gamut for the display. It represents the

range of SPDs that the display can generate.

In terms of matrix-vector notation, we can write equation (3) as

~Id = D~p; for D =
�
~DR; ~DG; ~DB;

�
2 RN�3: (4)

where, as above, each of these vectors corresponds to the functions

Id(�),DR(�),DG(�),DB(�), sampled at�1, �2, : : : ; �N .
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Example Display SPDs

For example, the colour gun SPDs for one display (a Hitachi model

849) are shown below:
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Colour Gamut in x; y-coordinates

When the colour gamut is plotted in CIEx; y-coordinates, the result is

a triangle.

CIE x,y Colour Space

This triangle specifies the range of perceptually distinct lights that the

Hitachi display can generate. Lights having(x; y) coordinates outside

this triangle cannot be displayed (eg. any monochromatic light).
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Colour Matching

Suppose we wish to display a particular “colour”. As far as human

perception is concerned, we can specify the desired display colour by

its (X;Y; Z)-coordinates~c. Given~c, we need to choose coefficients~p

for the three colour guns such that the display SPD~Id = D~p satisfies

~c = A~Id = AD~p; that is~p = (AD)�1~c: (5)

HereA andD are3�N andN � 3 matrices, respectively, soAD is a

3� 3 matrix. The resulting coefficients of~p may need to be cropped to

the interval[0; 1].
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The display SPD~Id = D~p (red curve, above) is a linear combination of

the previous Hitachi guns, and is a metamer for the SPD produced by a

Munsell chip illuminated with a standard daylight (green curve).
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Why did Nature Choose Only 3 Colour Channels?

Consider the “natural” stimuli

Im(�) = L(�)Rm(�) (6)

whereL(�) is a natural daylight SPD andRm(�) is the reflectance func-

tion for themth Munsell chip. This provides a large set of sample stim-

uli, namelyfIm(�)gMm=1 for M = 1269.

What is theeffective dimensionof this set of natural stimuli?

For example, suppose we can write each~Im (i.e. Im(�) sampled at

� = �1, �2, : : :, �N ) as a mean vector~I0 plus a linear combination of

K orthonormal basis vectors~Uk, plus a small error~em. That is,

~Im = ~I0 +

KX
k=1

~Ukak;m + ~em:

If we were willing to ignore the small errors~em, then we could say that

the data setfIm(�)gMm=1 effectively had dimension (at most)K.

Thesingular value decomposition (SVD)of a matrix can be used to

compute the effective dimensionK along with an appropriate set of

basis directionsf~UkgKk=1.
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Singular Value Decomposition

Let E be the matrix formed from the difference of each stimuli from

the mean~I0 = 1

M

PM
m=1

~Im, that is

E � (~I1 � ~I0; ~I2 � ~I0; : : : ; ~IM � ~I0) 2 R
N�M : (7)

In colourTutorial.m we sample the visible spectrum of wavelengths

370nm to 730nm with a spacing of 1nm, so the number of samples

isN = 361. Also, the number of Munsell chips isM = 1269.

The SVD is a matrix factorization of the form

E = U�V T (8)

whereU is aN �N orthogonal matrix,� is aN �M matrix which is

zero except along the main diagonal, with�n;n = �n for n = 1; : : : ;min(N;M),

andV is aM �M orthogonal matrix. Here thesingular values�n are

non-negative and are sorted in decreasing order (i.e.�1 � �2 � : : : �

�N � 0).

Matlab provides a built-in SVD function. The SVD is a well-behaved

(numerically stable) matrix factorization with many applications.
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Low-Dimensional Approximations

Consider theK-dimensional approximation of the signals formed using

only the firstK basis directions inU . That is,

~Im = ~I0 +
KX
k=1

~Ukak;m + ~em; (9)

where~Uk is thekth column of the matrixU in the SVD (8) ofE.

Since the columns ofU are orthonormal, it follows that the appropriate

choice for the coefficientak;m is simply

ak;m = ~U T
k (~Im � ~I0): (10)

This choice minimizes the Euclidean norm of the error,jj~emjj. It can

be shown that sum of the squared errors is then

SSE �

MX
m=1

jj~emjj
2 =

NX
k=K+1

�2k: (11)

Moreover, an important property of the SVD is that this isminimum

possible sum of squared errors for any choice ofK basis vectors~Uk.

Thus the SVD gives us the best possibleK-dimensional representation

for the data set, for each choice ofK.

This is called aprincipal coordinate analysis (PCA)of the data set.

The vectors~Uk are the PCA basis functions.
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Fraction of Variance Plot

The total variance of the data set is

V �
MX
m=1

jj~Im � ~I0jj
2 =

NX
n=1

�2n: (12)

The right hand side here is a special case of (11) using a zero dimen-

sional approximation (i.e.K = 0), with the error~em = ~Im � ~I0. We

can normalize the sum of squared errors by the total variance,

QK �
1

V

NX
k=K+1

�2k; (13)

and plot the proportion of variance accounted for, namely1�QK .
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Conclusion.Over 98% of the variance in the Munsell reflectance data

set is explained by a 3-dimensional basis!
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PCA Basis Vectors

The first six basis vectors~Uk for the matrixE are plotted below:
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� The first principal componentU1(�) represents overall brightness.

� The second and third principal componentsU2(�), U3(�) represent

(roughly) yellow-blue and green-purple variations, respectively.

� Higher order principal components represent more rapid variations

of the SPD in�.

� This is very roughly similar to the sines and cosines of Fourier

basis functions.

� We saw the first 3 basis vectors account for more than 98% of the

signal. These can be adequately sampled using the human spectral

sensitivities (see p.7).

� The remaining 2% of the variance will be aliased.
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The Munsell Chips in PCA Coordinates

Recall the SPD for themth Munsell chip illuminated by a standard

daylight is expanded in terms of the PCA basis as follows,

~Im = ~I0 +
KX
k=1

~Ukak;m + ~em:

Scatter plots of the coefficientsak;m are shown below:

−5 0 5

−5

0

5

Munsell data projected onto components 1 and 2

Coeff. of 1st comp.

C
oe

ff 
fo

r 
co

m
p.

 #
 2

−5 0 5

−5

0

5

Munsell data projected onto components 1 and 3

Coeff. of 1st comp.

C
oe

ff 
fo

r 
co

m
p.

 #
 3

−5 0 5

−4

−2

0

2

4

6

Munsell data projected onto components 1 and 4

Coeff. of 1st comp.

C
oe

ff 
fo

r 
co

m
p.

 #
 4

−5 0 5
−6

−4

−2

0

2

4

Munsell data projected onto components 1 and 6

Coeff. of 1st comp.

C
oe

ff 
fo

r 
co

m
p.

 #
 6

320: Colour Page: 23



PCA Coordinates (Cont.)

� The green and blue curves in the previous plots indicate one and

two standard deviations of the sample distribution.

� Note the standard deviation in direction~Uk(�) rapidly decreases as

k increases. It is relatively small even fork = 4, illustrating that

the data set is effectively three dimensional.

� Most species of animals have three or fewer colour channels. Honey

bees are an exception, with 4 channels. They have an additional

low-wavelength sensor, in the near ultra-violet range.

� Similar PCA results are obtained with other choices for the set of

SPD signals (eg. different natural daylights, different natural ma-

terials, and considering the log of the SPDs).

� However, artificial light sources can have much more spikey spec-

tral power distributions (see p.15), and produce significant responses

in higher order PCA coefficients.

� As we saw before in the Fourier sampling theorem, a key ingredient

in the representation and reconstruction of signals from a discrete

set of samples is the (effective) dimension of the space of signals

we are considering. The effective dimension must be less than or

equal to the number of samples.
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Alternative Formulation of PCA

An equivalent formulation of principal component analysis (PCA) is to

consider the sample covariance matrix:

C =
1

M

MX
m=1

(~Im � ~I0)(~Im � ~I0)
T ; (14)

where~I0 = 1

M

PM
m=1

~Im is the sample mean.

From theN �N covariance matrixC we can compute the variance in

any direction~u as follows (herejj~ujj = 1):

~u TC~u =
1

M

MX
m=1

j~u T (~Im � ~I0)j
2: (15)

The principal component directions of the data set are defined to be

the eigenvectors of the covariance matrixC. SinceC is a symmetric

matrix, there exists an orthogonalN �N matrixU such that

C = U�U T ; (16)

with� a diagonalN�N matrix. The columns ofU are the eigenvectors

for C. They are the principal axes of the ellipsoids defined by

(~I � ~I0)
TC�1(~I � ~I0) = �; (17)

that is, surfaces of points~I which are exactly� (a constant) standard

deviations from the mean~I0 (see p.23).
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Alternative PCA Formulation (Cont.)

To relate this approach to the SVD ofE, note that

C =
1

M

MX
m=1

(~Im � ~I0)(~Im � ~I0)
T =

1

M
EET ;

whereE is given by equation (7). By the SVD decomposition ofE (i.e.

equation (8)) we find

C =
1

M
U�V TV �TUT =

1

M
U��TUT :

Here we have used the fact thatV is an orthogonal matrix, soV TV =

Id. Finally, since the only nonzero elements in� appear along the

main diagonal,��T is a square diagonal matrix. Comparing this with

equation (16) we can identify

� =
1

M
��T : (18)

Thus the matrixU provided by the SVD analysis is a matrix of eigen-

vectors for the sample covarianceC. Moreover, the associated eigen-

values of the sample covariance are just1

M
�2n, for n = 1; : : : ; N .

Thus principal component analysis can be formulated in terms of eigen-

vectors of the sample covariance matrixC or, equivalently, in terms of

the SVD of the data matrixE.
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