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1 Robust Estimataion.

The �eld of robust statistics [3, 4] is concerned with estimation problems in which the data contains

gross errors, or outliers that do not conform to the statistical assumptions for the majority of the

data (e.g., Gaussian noise). The main goals of robust statistics are: \(i) To describe the structure

best �tting the bulk of the data, (ii) To identify deviating data points (outliers) or deviating

substructures for further treatment, if desired."

2 Robust Regularization.

Denoising (revisited). Let us again consider the problem of denoising a one-dimensional

input signal. A generalization of the previous regularization formulation is to minimize the objective

function constraints:

E(v) =
NX
x=1

�(v[x] � u[x]; �d) + �
N�1X
x=1

�(v[x+ 1]� v[x]; �s); (1)

where � is an error norm and �d and �s are scale parameters. The least-squares formulation

discussed in the previous regularization notes is the special case in which �(z; �) = z2. But the

least-squares approach is notoriously sensitive to outliers; the problem being that outliers contribute

too much to the overall solution.

To analyze the behavior of a �-function, we consider its derivative (denoted �0) which is called

the in
uence function. The in
uence function characterizes the bias that a particular measurement

has on the solution. For example, the quadratic �-function has a linear �0-function:

�(z) = z2; �0(z) = 2z:

For least-squares estimation, the in
uence of outliers increases linearly and without bound (Fig. 1).

To increase robustness, an estimator must be more forgiving about outlying measurements; that

is it should increase less rapidly. For example, consider the Lorentzian error norm:

�(z; �) = log

 
1 +

1

2

�
z

�

�2
!
; �0(z; �) =

2z

2�2 + z2
: (2)

The Lorentzian error norm (�) is plotted along with its in
uence function (�0) in Fig. 1. Examination

of the �0-function reveals that when the absolute value of a residual increases beyond a threshold,

its in
uence decreases. The Lorentzian is one of many possible robust error functions (see [3] for

other options).

The least-squares regularization formulation assumes that the signal is equally smooth through-

out. Figure 2 shows a \step" input with added noise. Linear regularization removes the noise ap-

propriately, but it also blurs the step edge. Robust regularization smooths the smooth part while

keeping the step sharp.
1Based on a handout by David Fleet and David Heeger at Stanford University.
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Figure 1: A: Least-square error (�) function. B: Least-squares in
uence (�0) function. C:

Lorentzian error (�) function. D: Lorentzian in
uence (�0) function.
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Figure 2: A: Original step signal. B: Noisy step signal. C: Regularization result using quadratic

error norm for both the data constraint and the smoothness constraint. D: Regularization re-

sult using a quadratic norm for the data constraint, but a robust Lorentzian error norm for the

smoothness constraint.
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Likewise, the least-squares regularization formulation assumes that the error/noise in the mea-

surements is independent and identically distributed (IID). Consider a signal in which the kth input

measurement is very badly corrupted. This will force the corresponding output value to be way o�

to minimize the squared di�erence between the two: (u[k]�v[k])2. This also forces neighboring out-

put values to be a�ected to minimize the smoothness terms: (v[k+1]�v[k])2 and (v[k]�v[k�1])2.

This e�ect ripples from one neighboring sample to the next, so that the one bad measurement

throws o� the entire solution. Robust regularization allows the data constraint to be violated near

the bad measurement.

Robust regularization can interpolate missing data, simply by leaving out the data constraint

for those samples (as was done above for linear regularization). Robust regularization, like linear

regularization, can be extended to two or more dimensions, and it can handle endpoints and edge

pixels in a natural way.

Implementation Given a robust regularization formulation, there are numerous techniques

that can be employed to recover the smoothed and interpolated signal. In general, robust formula-

tions do not admit closed form solutions. A standard approach is to use a numerical optimization

algorithm such as Newton's method.

Newton's method minimizes a function iteratively. For example, to minimize a function f(x),

Newton's method iterates:

z(i+1)
m = z(i)m � f 0(z

(i)
m )

f 00(z
(i)
m )

; (3)

where zm is the estimate of the location of the minimum (i.e., f(zm) < f(z) for all z). The functions

f 0(z) and f 00(z) are, respectively, the �rst and second derivatives of f .

To apply Newton's method to minimize Eq. 1, we write its �rst and second derivatives with

respect to v[k]:

@ E

@ v[k]
= �0(v[x] � u[x]) + � �0(v[k] � v[k � 1])� � �0(v[k + 1]� v[k])

@2E

@(v[k])2
= �00(v[x]� u[x]) + � �00(v[k] � v[k � 1]) + � �00(v[k + 1]� v[k])

For example, using a quadratic error function (least-squares), substituting for the derivatives in

Eq. 3 gives:

v(i+1)[x] = v(i)[x]� (v(i)[x]� u[x]) + �(�v(i)[k � 1] + 2v(i)[k]� v(i)[k + 1])

1 + 2�

=
1

1 + 2�
(u[x] + �v(i)[k � 1] + �v(i)[k + 1]);

which is identical to the Jacobi iteration introduced in the linear regularization notes.

Robust formulations typically result in nonconvex optimization problems. To �nd a globally

optimal solution when the objective function is nonconvex we choose a robust �-function with a

scale parameter, and we adjust the scale parameter to construct a convex approximation. This

approximation is readily minimized. Then successively better approximations of the true objective

function are constructed by slowly adjusting the scale parameter back to its original value. This

process is sometimes called graduated non-convexity [2].
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Figure 3: Lorentzian error functions and (left) in
uence functions (right) for several values of �

(1/2, 1, 2, and 4).

For example, Fig. 3 shows a family of Lorentzian error and in
uence functions for several values

of �. For larger values of �, the error functions become more like quadratics and the in
uence

functions become more like lines. The nonconvex Lorentzian error function becomes a simple

(convex) quadratic when � is very large. To compute the result in Fig. 2D, we initially set �s = 10

and then gradually reduced it to a value of 0:1.

The graduated non-convexity algorithm begins with the convex (quadratic) approximation so

the initial estimate contains no outliers. Outliers are gradually introduced by lowering the value of

� and repeating the minimization. While this approach works well in practice, it is not guaranteed

to converge to the global minimum since, as with least squares, the solution to the initial convex

approximation may be arbitrarily bad.

Measurements beyond some threshold, � , can be considered outliers. The point where the

in
uence of outliers �rst begins to decrease occurs when the second derivative of the �-function is

zero. For the Lorentzian, the second derivative,

�00(z) =
2(2�2 � z2)

(2�2 + z2)2
;

is zero when z = �p2�. If the maximum expected (absolute) residual is � , then choosing � =

�=
p
2 will result in a convex optimization problem. A similar treatment applies to other robust

�-functions. Note that this also gives a simple test of whether or not a particular residual is treated

as an outlier. In the case of the Lorentzian, a residual is an outlier if jzj � p2�.
Figure 4 shows an example of applying robust regularization to a two-dimensional image, using a

quadratic error norm for the data constraint and a Lorentzian error norm for the (�rst-order) mem-

brane model smoothness constraint. Note that the regularization result is essentially a piecewise

constant image, i.e., an image made up of constant regions separated by sharp discontinuities.

Piecewise Smoothness. In linear regularization, the (�rst-order) membrane model smooth-

ness constraints are satis�ed perfectly when the �rst derivative of the output v is everywhere zero,

i.e., when the output is a constant signal. For robust regularization (Eq. 1), the robust �rst-order

smoothness constraints are minimized by a piecewise constant signal (see Figs. 2 and 4).

Likewise, the (second-order) thin-plate model smoothness constraints in linear regularization

are satis�ed when the second derivative of the output is everywhere zero, i.e., when v is a linear

ramp. For robust regularization, the robust second-order smoothness constraints are minimized by

a signal that is made up of linear ramps separated by sharp discontinuities.
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Figure 4: (Left) Input Image. (Middle) Regularization result using a robust Lorentzian error norm

for the smoothness constraint. (Right) Edges obtained at pixels which are indicated to be outliers

according to the Lorentzian error norm.

Regularization with Line Processes. Another approach to extending linear regularization

has been to add line processes, which allows one to recover a piecewise smooth signal/image by

marking the speci�c locations of discontinuities. For example, regularization using the (�rst-order)

membrane model smoothness constraint with a line process minimizes the following error function:

E(v; l) =
NX
x=1

(v[x] � u[x])2 + �
NX
x=1

[(v[x + 1]� v[x]) l[x] + 	(l[x])]; (4)

where l[x] takes on values 0 � l[x] � 1. The line process indicates the presence (l[x] ! 0) or

absence (l[x] ! 1) of a discontinuity between neighboring samples. The function 	(l[x]) can be

thought of as the \penalty" for introducing each discontinuity. Penalty functions typically go to

1 as l[x] tends to 0 and vice versa. Thus, when no discontinuity is present, the smoothness term

has the original least-squares form, but when a discontinuity is introduced, the smoothness term is

dominated by 	. An example penalty function is: 	(l) = (1 � l). Minimizing Eq. 4 with respect

to v[x] and l[x] gives a piecewise smooth signal with breaks where the spatial gradient is too large.

Black and Rangarajan [1] have recently uni�ed the line process regularization formulation with

the robust regularization formulation. That is, given a penalty function in Eq. 4, one can derive

a robust error norm for the smoothness constraint in Eq. 1, and vice versa, so that the two opti-

mization problems will be identical. For example, using the penalty function 	(l) = l � 1 � log(l)

in Eq. 4 is the same as using a Lorentzian error norm for the smoothness constraint in Eq. 1.

Regularization of Vector Fields. Imagine that a user has interactively speci�ed the spatial

displacement for an image warp, but only for a handful of pixels. This is commonly done for image

morphing. Regularization can be used to compute a dense spatial warp from the sparse and

scattered speci�cation. Keeping the same notation as before, ~u is now the sparse speci�cation of

the spatial displacements and ~v is the desired dense spatial displacements. Both are vector-valued

so we use vector distance in the objective function

E(~v) =
X

[x;y]2P

k~v[x; y]�~u[x; y]k2+�
X

all [x;y]

k4~v[x; y]�~v[x�1; y]�~v[x; y�1]�~v[x+1; y]�~v[x; y+1]k2:

(5)

This objective function can again be minimized with simple iterative techniques.
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A similar process could also be used in painterly rendering. Here a given input image is to be

copied in painterly style. The spatial orientation of the individual paint strokes is given by some

orientation �eld. One way to automatically generate constraints on a desirable orientation �eld

is to use strong edges observed in the original image (say, using the Canny edge detector). The

orientation of these edges can be represented by a 2D unit vector ~u[x; y]. However, these strong

edges are only observed at a small subset P of the image pixels. What orientation should we use for

paint strokes away from these edges? We could again minimze Eq. 5 to approximately interpolate

the observed edge orientations at the pixels in P to a smooth orientation �eld ~v[x; y] across the full

image. Alternatively, a robust estimator could be used on the spatial term in Eq. 5 to allow for

spatial discontinuities in the orientation �eld.

One issue that arises speci�cally for orientation �elds is that we may not want to distinguish

the sign of the gradient at an edge. For example, we may wish to consider a vertical edge where

the x-component of the image gradient is positive to be the same orientation as another vertical

edge having a negative x-component. If we used the angle of the image gradient to represent the

orientation of these two edges, then these angles di�er by ��.
A standard trick that is useful here is to use a doubled angle representation for edge orientation.

That is, we encode edges with a tangent direction ~t[x; y] = (cos(�[x; y]); sin(�[x; y]))T in terms of the

doubled angle 2�[x; y]. So ~t[x; y] is represented by the vector ~u[x; y] = (cos(2�[x; y]); sin(2�[x; y]))T .

In this case, image gradients with the opposite signs have angles � which di�er by ��, so their

doubled angles di�er by �2�. As a result, they are represented by identical vectors ~u[x; y]. The

orientation �eld can then be �lled in by minimizing an objective function such as the one in Eq. 5,

or a robust version of it. Once the vector �eld ~v[x; y] is computed, the orientation to be used for

paint strokes can be set to be half the angle of ~v[x; y].
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