
Notes on Regularization1

David J. Fleet Allan Jepson

March 21, 2005

Regularization is a class of techniques that have been widely used to solve interpolation and

approximation problems that frequently arise in image processing, computer vision, and computer

graphics [1, 2, 4, 5, 6, 7]. The techniques are designed to �nd a \smooth", discrete signal v given

a set of noisy and partial measurements u. For a one-dimensional signal, the relationship between

v and u may be modeled by:

u[x] = v[x] + n[x]; x 2 P (1)

where n is a random �eld (e.g., a �eld of independent, zero mean, Gaussian random variables with

common variance), and P is a subset of sample positions where the measurements u are available.

Problems such as these arise in many contexts:

� If v and u are images, then we have a denoising problem. That is, given a set of noisy image

measurements, u, we wish to denoise it to recover v.

� If the measured signal, u, is subsampled and noisy, we might want to estimate the original

image v on a denser sampling lattice. In this case we have many fewer measurements than

we have unknowns.

� In image warping it is often the case that we are given a select set of points at which we know

displacements from a warped image to coordinates in the original image. But often we want

to compute a dense, smooth warp map from this set of sparse displacements so that we can

deform an entire image. This is a form of interpolation/approximation problem.

� We may wish to interpolate a set of orientations measured at strong image edges to be used

for the orientation of brush strokes in painterly rendering.

Denoising.

To start with a simple example, assume that the noisy measurements u are available at every

pixel. We observe a noisy signal u and we wish to recover v. Of course, this problem as stated

is underconstrained; we need to know something about the original signal v and/or the noise. A

typical regularization solution assumes that the original signal is smooth and chooses v to minimize

the following objective function:

E(v) =
NX
x=1

(v[x]� u[x])2 + �

N�1X
x=1

(v[x+ 1]� v[x])2; (2)

where N is the number of samples in the signal. The �rst term is called the data constraint,

specifying that the solution v should be close to the measurements u. The second term is called

the smoothness constraint, specifying that neighboring sample values of v should be similar. The

parameter � determines the tradeo� between the two constraints; if � is large then the solution

will be smoother at the expense of being further from the measurements. It is worth noting that

1Based on a handout by David Heeger at Stanford University.

1

we have (rather arbitrarily) adopted a particular de�nition of what \smoothness" means, a point

that we will return to later. It is also worth noting that we have (arbitrarily) used quadratic error

functions, another point that we will return to later.

Taking the derivative of Eq. 2 with respect to the kth sample value v[k] gives:

@ E(v)

@ v[k]
=

@

@v[k]

h
(v[k] � u[k])2 + � (v[k + 1]� v[k])2 + � (v[k]� v[k � 1])2

i

= 2 (v[k] � u[k]) + 2� (�v[k � 1] + 2v[k] � v[k + 1]):

Taking the derivatives for each sample and setting them equal to zero gives a set of linear equations

of the form:

v[x] + � (�v[x� 1] + 2v[x]� v[x+ 1]) = u[x]: (3)

This equation holds for all points x except the two end points, x = 1 and x = N because they

only have one neighbor each. Therefore, it is important to consider them separately. If we take the

derivatives of Eq. 2 with respect to v[1] and v[N], and set them equal to zero, then we get slightly

di�erent equations:

v[1] + � (v[1] � v[2]) = u[1]

v[N] + � (v[N]� v[N � 1]) = u[N]

Including the end points, we now have N linear equations that can be written collectively using

matrix notation:
0
BBBBBBBBBB@

1 + � �� 0 0 : : : 0

�� 1 + 2� �� 0 : : : 0

0 �� 1 + 2� �� : : : 0

. . .
. . .

. . .

0 : : : 0 �� 1 + �

1
CCCCCCCCCCA

0
BBBBBBBBBB@

v[1]

v[2]

v[3]

...

v[N]

1
CCCCCCCCCCA

=

0
BBBBBBBBBB@

u[1]

u[2]

u[3]

...

u[N]

1
CCCCCCCCCCA

; (4)

and it could be solved in principle by inverting the matrix. But this is not practical when N is very

large, especially for the case in which v and u are two dimensional images and N is the number of

pixels. An alternative is to apply iterative matrix inverse techniques [3].

Perhaps the simplest iterative technique is the Jacobi iteration. The idea is that, if we wanted

to know v[n] and we knew v[m] for all m 6= n, then, using Eq. (3), the solution is easy. Jacobi

iteration works in this way; i.e., at iteration t + 1 we compute each value of vt+1[x] by assuming

that the previous estimates, vt[x], are correct and held �xed. This produces an iteration of the

form:

vt+1[x] =

8>>>>>><
>>>>>>:

1

1+2�
(u[x] + �vt[x� 1] + �vt[x+ 1]) for 1 < x < N

1

1+�
(u[1] + �vt[2]) for x = 1

1

1+�
(u[N] + �vt[N � 1]) for x = N

: (5)

One can view these equations as a feedback system with linear, local feedback. Under suitable

conditions the process converges (i.e., vt+1[x] � vt[x]) to a solution of Eq. 3. This occurs when

2

Eq. 2 is minimized. A simple condition that guarantees convergence of a Jacobi iteration is diagonal

dominance of the matrix: i.e., along each row, the magnitude of the diagonal entry must be larger

than the sum of magnitudes of all the o�-diagonal entries. The more diagonally dominant the

matrix, the faster the convergence.

Compared to other iterative methods, Jacobi iteration converges slowly. But it's the simplest

to explain and to implement. One way to speed it up is to use the updated estimates, vt+1[x], as

they become available in the update stage, rather than use the previous estimates, vt[x], in Eq. (5).

This is called Gauss-Seidel iteration. For other methods and their convergence properties, see [3].

Smoothness Constraints.

The particular smoothness constraint used above is often called the (�rst-order) membrane model.

It is a discrete approximation to the �rst derivative:

v[x+ 1]� v[x] �
dv

dx
:

This smoothness constraint is satis�ed perfectly when v is a constant signal.

Another common choice for the smoothness constraint is called the (second-order) thin-plate

model which is a discrete approximation to the second derivative:

v[x+ 1]� 2v[x] + v[x� 1] �
d2v

dx2
:

This smoothness constraint is satis�ed perfectly when v is a linear ramp signal.

But these smoothness constraints have been chosen somewhat arbitrarily. The choice of smooth-

ness constraint is typically ad hoc, and depends on the desired smoothness of the regularized

solution.

Linear Filter Interpretation.

Another interesting property of this regularization method is evident from the form of the matrix

in Eq. (4). If one neglects the boundary conditions (or applies periodic boundary conditions), then

this is a Toeplitz matrix, and therefore it corresponds to a linear shift-invariant operator. With

the membrane smoothness constraint considered there, the impulse response was ~g = [�1; 2;�1].

If the size of the signal (or image) is much larger than the support of the �lter, as it is in this case,

then a very good approximation to the solution is often obtained if we neglect the boundaries and

rewrite Eq. 3 as a convolution:

v[x] � (Æ[x] + �g[x]) = u[x] : (6)

Note that the roles of the input and output signals have been reversed from our initial discussion

of convolution �ltering. In particular, here the output is v[x] convolved with the �lter kernel

Æ[x] + �g[x], to provide the input. Recall that Eq. 3 was derived from the (�rst-order) membrane

smoothness constraint. Starting with the (second-order) thin-plate smoothness constraint, we would

get an equation of the same form but with a di�erent �lter: ~g = [1;�4; 6;�4; 1]. Indeed, any high-

pass �lter could, in principle, be used instead.

Now that we have shown that regularization can be viewed as a (spatially) shift-invariant linear

system, as illustrated in Eq. 6, we can also examine it in the Fourier domain. Accordingly, let's

3

−π 0 π
0

.5

1

−60 −30 0 30 60
0

.25

0.5

−π 0 π
0

.5

1

−π 0 π
0

.5

1

H(ω)

ω ω ω

λ = 1 λ = 10 λ = 100

h[x]

0

.05

.1

.15

−60 −30 0 30 60

.025

0

.05

−60 −30 0 30 60
x x x

Figure 1: Frequency response H(!) and impulse response h[x] of regularization �lter, for several

values of �.

take the Fourier transform (DTFT) of both sides of Eq. 6 to obtain:

V (!) [1 + �(2� e�i! � ei!)] = U(!) ;

where V and U are the Fourier transforms of v and u, respectively. This simpli�es to:

V (!) [1 + 2�(1� cos(!))] = U(!) ; (7)

where we have used the identity

2 cos(!) = e�i! + ei! :

From Eq. 7 we �nd

V (!) = H(!)U(!) ; (8)

where

H(!) =
1

1 + 2�(1 � cos(!))
: (9)

Therefore, by the convolution theorem, we see that output v[x] is simply the convolution of the

input signal u[x] with a �lter kernel h[x]. Moreover, the Fourier transform of the �lter kernel is

H(!), as given in Eq. 9.

In other words, the matrix equation (Eq. 4) is approximately equal to a convolution of the mea-

surements u[x] with an appropriate linear �lter h[x]. If we adopt a di�erent smoothness constraint,

i.e., a di�erent high-pass �lter g[x], then from Eq. 6, the equivalent feedforward linear �lter has

frequency response:

H(!) =
1

1 + �G(!)
; (10)

where G(!) is the Fourier transform of g[x]. Increasing the value of � makes the output smoother,

i.e., the feedforward �lter becomes more lowpass (see Fig. 1).

4

−π 0 π
0

.5

1 H(ω)

0

.25

0.5
h[n]

0

2

4

−π 0 π

−6 −3 0 3 6

2

-1 -1

g[n]

H(ω)U(ω) V(ω)

Feedback filter Equivalent feedforward
filter

λ G(ω)

U(ω) V(ω)+
-

λ G(ω)

Figure 2: Regularization as a shift-invariant, feedback, linear system: G(!) is the frequency re-

sponse of the feedback �lter and H(!) is the frequency response of the equivalent feedforward �lter

for � = 1

Another iterative approach is suggested by Eq. 10. For small enough values of � such that

j�G(!)j < 1, we can rewrite Eq.10

H(!) =
1

1 + �G(!)
= 1� �G(!) + (�G(!))2 � (�G(!))3 + : : : (11)

Since the desired output V (!) is given by H(!)U(!), we can rewrite Eq.6 as

v[x] = u[x]� �g[x] � u[x] + �g[x] � (�g[x] � u[x])� �g[x] � (�g[x] � (�g[x] � u[x])) + : : : (12)

That is, ��g[x] is used as a recursive linear �lter. The response v[x] can therefore be computed as

the limit (as t!1) of the following iteration

v0[x] = u[x];

vt+1[x] = u[x]� �g[x] � vt[x]; for t � 0:

A system diagram for this is given in Fig. 2.

So regularization is approximately convolution (with an appropriate �lter), or recursive linear

�ltering (with another �lter kernel).

Note that the iterative (feedback) algorithm given by Jacobi iteration in Eq. 5 (or its alterna-

tives) has a number of practical advantages:

� First, the feedforward convolution kernel h[x] is typically very large, depending on the exact

choice of g[x] (see Fig. 1) and the choice of �. In particular, note that the e�ective spatial

extent of the feedforward operator increases with �, even though the spatial support of the

5

feedback computation in Eq. (5) remains unchanged. For many forms of feedback iterations,

the e�ective support of the feedforward �lter is in�nite (IIR �lters), in which case the feedback

solution is the only practical method.

This means that we can achieve signi�cant amounts of smoothing with only very local con-

nectivity through feedback. But this doesn't come for free; as � increases the matrix becomes

less diagonally dominant. In this case the iterative methods take longer to converge, or

even diverge. This is a trade-o� between extent of spatial connectivity versus the speed of

computation.

� Second, the iterative algorithm can be readily extended to deal with the general case (Eq. 1)

in which data are missing (see below).

� Third, iterative methods can also be used for a wide variety of other error functions. For

example, we can easily add additional terms that allow smoothness to be violated in certain

places by using robust error norms. That is, we can replace the quadratic norm in Eq. (2) with

other measures of the magnitude of errors that are more tolerant of outlying measurement

errors

Interpolating Missing Data.

One of the ways that the above regularization framework generalizes naturally, is to deal with

sparse measurements. For the denoising problem above, the solution was essentially a shift-invariant

smoothing operator. When we have sparse data, the problem becomes one of interpolation as well.

So, consider the problem of estimating a smooth signal v[x] from a set of noisy measurements u

where the measurements exist at only a subset of the sample positions. Because the measurements

are not available everywhere, we will have to alter the data constraint in Equation 2. The smooth-

ness constraint, however can remain the same. This yields the following energy function that we

wish to minimize:

E(v) =
X
x2P

(v[x]� u[x])2 + �
X
allx

(v[x+ 1]� v[x])2; (13)

where P is a subset of sample positions where the measurements u are available. For samples where

the measurements exist, the gradient constraints are the same as before (i.e., Eq. 3). For a sample

position k where no measurement exists, taking the derivative of Eq. 13 with respect to v[k] and

setting it equal to zero gives:

�v[k � 1] + 2 v[k] � v[k + 1] = 0:

The full system of linear equations can still be written as a matrix equation, i.e., it is still a

linear system and it could again be solved by inverting a big matrix. The matrix in Eq. 4 gets

replaced by a new matrix in which some of the rows look the same, but some of the rows (those

corresponding to missing data) look like: (0 : : : �1 2 �1 : : : 0), with zeros substituted

for the corresponding u[k] on the right-hand side. Since these rows are di�erent from the other

rows, the system is no longer shift-invariant, and there is no longer a convolution kernel that could

be used to compute v. The linear �lter in Eq. 6 is replaced by a pair of equations:

0 =

8><
>:

u� v � �(g � v) whenx 2 P;

(g � v) otherwise.

(14)

6

An iterative method can again be used to solve for v. For the (�rst-order) membrane model

smoothness constraint, the iterative equation is:

vt+1[x] =

8><
>:

1

1+2�
(u[x] + �vt[x� 1] + �vt[x+ 1]) forx 2 P;

1

2
(vt[x� 1] + vt[x+ 1]) otherwise:

(15)

The equations that govern the endpoints can be expressed in a similar manner.

Two-Dimensional Images.

For two-dimensional images, using the (�rst-order) membrane smoothness constraint, we wish to

minimize:

E(v) =
X

x;y2P

(v[x; y] � u[x; y])2

+�
X
allx;y

(v[x+ 1; y]� v[x; y])2 + (v[x; y + 1]� v[x; y])2 (16)

where P is a subset of pixels where the measurements u are available. Taking derivatives with

respect to v[x; y] and setting them equal to zero gives a linear system of equations that has the

same form as Eq. 14. The only di�erence is that the linear �lter g[x; y] is now 2-dimensional. For

the (�rst-order) membrane model smoothness constraint:

g =

0
@

0 �1 0

�1 4 �1

0 �1 0

1
A :

One can again solve for v iteratively. For the (�rst-order) membrane smoothness model, and

ignoring the edge pixels (for the sake of simplicity):

vt+1[x; y] =

8><
>:

1

1+4�
(u[x; y] + � st[x; y]) whenx; y 2 P;

1

4
st[x; y] otherwise;

(17)

where s[x; y] is the sum of the 4 nearest neighbors, i.e., v[x�1; y]+v[x+1; y]+v[x; y�1]+v[x; y+1].

References

[1] A Blake and A Zisserman. Visual Reconstruction. MIT Press, Cambridge, MA, 1987.

[2] S Geman and D Geman. Stochastic relaxation, Gibbs distributions and the Bayesian restoration

of images. IEEE Pattern Analysis and Machine Intelligence, 6:721{741, 1984.

[3] G H Golub and C F vanLoan. Matrix Computations. Hopkins University Press, 1983.

[4] J Marroquin, S Mitter, and T Poggio. Probabilistic solution of ill-posed problems in computa-

tional vision. J Am Stat Assoc, 82:76{89, 1987.

[5] T Poggio, V Torre, and C Koch. Computational vision and regularization theory. Nature,

317(6035):314{319, 1985.

7

[6] R Szeliski. Fast surface interpolation using heirarchical basis functions. IEEE Pattern Analysis

and Machine Intelligence, 12:513{528, 1990.

[7] D Terzopoulos. Regularization of inverse visual problems involving discontinuities. IEEE Pat-

tern Analysis and Machine Intelligence, 8(4):413{424, 1986.

8

