
Image Pyramids

Goal: Develop filter-based representations to decompose images
into information at multiple scales, to extract features/structures of
interest, and to attenuate noise.

Motivation:

� extract image features such as edges at multiple scales
� redundancy reduction and image modeling for

– efficient coding

– image enhancement/restoration

– image analysis/synthesis

Examples:

� Gaussian Pyramid
� Laplacian Pyramid

Matlab Tutorials: imageTutorial.m and pyramidTutorial.m (up to
line 200).
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Linear Transform Framework

Projection Vectors: Let~I denote a 1D signal, or a vectorized repre-

sentation of an image (so~I 2 RN), and let the transform be

~a = PT ~I : (1)

Here,

� ~a = [a0; :::; aM�1] 2 RM are the transform coefficients.

� The columns ofP = [~p0; ~p1; :::; ~pM�1] are the projection

vectors; themth coefficient,am, is the inner product~pm
T~I

� WhenP is complex-valued, we should replacePT by the

conjugate transposeP�T

Sampling: The transformPT 2 RM�N is said to becritically sam-

pledwhen M = N . Otherwise it is over-sampled (whenM > N ),

or under-sampled (whenM < N ).

Basis Vectors: For many transforms of interest there is a correspond-

ing basis matrixB satisfying

~I = B~a : (2)

The columnsB = [~b0; ~b1; :::; ~bM�1] are called basis vectors as they

form a linear basis for~I:

~I =

M�1X
m=0

am~bm
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Linear Transform Framework (cont)

Completeness

� the transform is complete, encoding all image structure, if it is

invertible.

� when critically sampled, it is complete ifB = (PT )�1 exists.

� if over-sampled, the transform is complete ifrank(P) = N .

In this caseB is not unique – one choice is the pseudoinverse of

P T

B = (PPT )�1P

� if undersampled, thenrank(P) < N and it is not invertible in

general.

Self-Inverting

� the transform is self-inverting ifPP T = �IN for some constant

�. HereIN is theN � N identity matrix. In this case, the basis

matrix is simplyB = 1

�P .

� in the critically sampled case the transform is orthogonal (uni-

tary), up to the constant�.

Example. The Fourier transform is a critically sampled, complex-

valued, self-inverting linear transform (remember to use the conjugate

transposeP�T ).
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Gaussian Pyramid

Sequence of low-pass, down-sampled images,[~l0; ~l1; :::; ~lN ].

Usually constructed with a separable 1D kernelh = [h1; h2; h3; h4; h5],

and a down-sampling factor of 2 (in each direction):

In matrix notation (for 1D) the mapping from one level to the next has
the form:

~lk+1 = R~lk =

2
64
1 0 0 0 0

0 0 1 0 0 � � �

0 0 0 0 1

...
. . .

3
75

2
6664

. . .

�h�
�h�

�h�
. . .

3
7775 ~lk

down-sampling convolution

Typical weights for the impulse response from binomial weights

h =
1

16
[1; 4; 6; 4; 1]
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Gaussian Pyramid (cont)

Example of image and next four pyramid levels:

First three levels scaled to be the same size:

Properties of Gaussian pyramid:

� used for multi-scale edge estimation,

� efficient to compute coarse scale images. Only5-tap 1D filter

kernels are used,

� highly redundant, coarse scales provide much of the information

in the finer scales.
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Laplacian Pyramid

Over-complete decomposition based on difference-of-lowpass filters;

the image is recursively decomposed into low-pass and highpass bands.

� Each band of the Laplacian pyramid is the difference between two

adjacent low-pass images of the Gaussian pyramid,[~l0; ~l1; :::; ~lN ].

That is:

~bk = ~lk � E~lk+1

whereE~lk+1 is an up-sampled, smoothed version of~lk+1 (so that

it will have the same dimension as~lk).

E~lk+1 =

2
6664

. . .

� g�
� g�

� g�
. . .

3
7775

2
6664
1 0 0 0

0 0 0 0

0 1 0 0 � � �

0 0 0 0

...
. . .

3
7775 ~lk+1

convolution up-sampling

Often the filters used to construct the Gaussian and Laplacian

pyramids,g andh, are identical.

TheLaplacian pyramid withL levels is given by[~b0; ~b1; :::; ~bL�1; ~lL].

The representation is overcomplete by a factor of roughly4

3
for 2D

images (i.e.1 + 1=4 + 1=16 + ::: = 4=3).
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Laplacian Pyramid (cont)

Construction of the Laplacian bands:

-+ -+ -+-+ -+ -+ -+ -+ -+

A Laplacian pyramid with four levels:
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Laplacian Pyramid (cont)

Construction: of [~b0; ~b1; :::; ~bL�1; ~lL].

~l0 = ~I

~lk+1 = R~lk

~bk = ~lk � E~lk+1

Reconstruction: of~I is exact (for any filters) and straightforward:

~lk = ~bk + E~lk+1

~I = ~l0

System Diagram: shows the filters and sampling steps used to com-
pute the pyramid, and to then reconstruct the image from the trans-
form coefficients. Gaussian pyramid levels are computed usingh(n).
Filter g(n) is used with up-sampling so that adjacent Gaussian levels
can be subtracted.

Analysis/synthesis diagram for a 2-layer Laplacian pyramid
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Laplacian Pyramid Filters

In practive:

� often use same filters forh andg (apply same operators for smooth-

ing and interpolation in construction and reconstruction)

� use separable lowpass filters

� desire isotropy so all orientations handled the same way.

Constraints on 5-tap lowpass filterh:

� even-symmetry means that taps areh =
�
a2
2
; a1
2
; a0;

a1
2
; a2
2

�
.

� assume thatdc signal is preserved, i.e.ĥ(0) = 1 :

ĥ(0) =

2X
n=�2

h(n) e�i 0n = a0 + a1 + a2 = 1:

� assume that spectrum decays to 0 at fold-over rate, i.e.ĥ(�) = 0 :

ĥ(�) =

2X
n=�2

h(n) e�i � n = a0 � a1 + a2 = 0:

� So there are two linear equations for the three unknownsa0, a1,

anda2. There is therefore one free degree of freedom.

� For example, choosea0 = 6

16
, thenh(n) is the binomial 5-tap

filter

h(n) =
1

16
(1; 4; 6; 4; 1):
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On the name “Laplacian”

The well-known Laplacian derivative operator (isotropic second deriva-

tive) is given by

r2f(x; y) =
@2f

@x2
+

@2f

@y2

For Gaussian kernels,g(x;�) = 1p
2��

e�x
2=2�2,

dg(x;�)

dx
=

�x

�2
g(x;�)

d2g(x;�)

dx2
=

�
x2

�2
� 1

�
1

�2
g(x;�)

dg(x;�)

d�
=

�
x2

�2
� 1

�
1

�
g(x;�)

Therefore

d2g(x;�)

dx2
= c0(�)

d g(x;�)

d�
� c1(�) (g(x;�)� g(x;� +��))

That is, if the low-pass filterh used to create the Laplacian pyramid is

Gaussian, then the Laplacian pyramid levels approximate the second

derivative of the image at scale�.
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Uses of Laplacian Pyramid: Coding

Multiscale image representations are natural for image coding and
transmission. The same basic ideas underly jpeg encoding.

Approach: Use quantization levels that become more coarse as one
moves to higher frequency pass bands.

� high frequency coefficients are more coarsely coded (i.e., to fewer
bits) than lower frequency bands.

� this quantization matches human contrast sensitivity

� vast majority of the coefficients are in high frequency bands.

Advantages:

� Eliminates blocking artifacts of JPEG at low frequencies because
of the overlapping basis functions.

� approach also allows for progressive transmission, since low-pass
representations are reasonable approximations to the image.

� coding and image reconstruction are simple

0.03 0.1 0.31 0.81 1.58

bits per pixel

0.03 0.1 0.31 0.81 1.58

bits per pixel
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Uses of Laplacian Pyramid: Restoration (Coring)

Transform coefficients for the Laplacian transform are often near zero.
Significantly non-zero values are generally sparse.

Histograms of transform coefficients are often well approximated by
a so-called ”generalized Laplacian” density,c e�jx=sj

k

, where

� 
 is usually between 0.7 and 1.2

� s controls the variance

� peaked at 0, with heavy tails −100 −80 −60 −40 −20 0 20 40 60 80 100

Coring:

� set all sufficiently small transform coefficients to zero,
� leave others unchanged, and possibly clip at large magnitudes.

old

new

old

new

Original image + additive

noise (SNR = 9dB)

Cored image

(SNR = 13.82dB)

Original image + additive

noise (SNR = 9dB)

Cored image

(SNR = 13.82dB)

320: Image Pyramids Page: 12



Uses of Laplacian Pyramid: Image Compositing

Goal: Seamlessly stitch together images into an image mosaic (i.e.,
register the images andblurring the boundary), by smoothing the
boundary in a scale-dependent way to avoid boundary aritfacts.

Method:

� assume imagesI1(~n) andI2(~n) are registered and letm1(~n) be a
mask that is 1 at pixels where we want the brightness fromI1(~n)

and 0 otherwise (i.e., where we want to seeI2(~n)).
� create Gaussian pyramid form1(~n), denotedfl0(~n); l1(~n); :::; lL(~n)g
� create Laplacian pyramids forI1(~n) andI2(~n), denoted by

fb1;0(~n); :::; b1;L�1(~n); l1;L(~n)g and fb2;0(~n); :::; b2;L�1(~n); l2;L(~n)g

� create blended pyramidfb0;0(~n); :::; b0;L�1(~n); l0;L(~n)g where

b0;j(~n) = b1;j(~n) lj(~n) + b2;j(~n) (1� lj(~n))

l0;L(~n) = l1;L(~n) lL(~n) + l2;L(~n) (1� lL(~n))

� collapse blended pyramid to reconstruct image
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Uses of Laplacian Pyramid: Enhancement

Goal: Create a high fidelity image from a set of images take with
different focal lengths, shutter speeds, etc.

� Images with different focal lengths will have different image re-
gions in focus.

� Images with different shutter speeds may have different contrast
and luminance levels in different regions.

Approach:

� Given pyramids for two imagesI1(~n) andI2(~n), construct 2 or 3
levels of a Laplacian pyramid:

fb1;0(~n); :::; b1;L�1(~n); l1;L(~n)g and fb2;0(~n); :::; b2;L�1(~n); l2;L(~n)g

� at levelj, define a maskm(~n) that is 1 whenjb1;j(~n)j > jb2;j(~n)j

and 0 elsewhere.

� then form the blended pyramid with levelsb0;j[~n] given by

b0;j[~n] = m[~n] b1;j[~n] + (1�m[~n]) b2;j[~n]

� averaged the low-pass bands from the two pyramids.

Image 1 Image 2 Composite
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