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Introduction to Linear Systems
David Fleet

For operatorT , inputI, and responseR = T [I], T satisfies:

� homogeniety: iff T [aI] = a T [I] 8a 2 C
� additivity: iff T [I1 + I2] = T [I1] + T [I2]

� superposition: iff T [aI1 + bI2] = a T [I1] + b T [I2] 8a; b 2 C

T is linear iff it satisfies superposition.

We’ll consider 1D signals for now, typically in one of three forms:

� continuous: I(x) for x 2 R
� discrete: I[n] for n 2 I, and often0 � n � N � 1.

� vector form: ~I = (I[0]; :::; I[N � 1])T .

We will, where convenient, work with discrete signals.

If an operatorT is linear, andR = T [I], then there exists a matrixA where

~R = A~I

The response of a linear operator is given by matrix multiplication. The response at a

particular sample, such asR[n] is given by the inner product of~I and thenth row of

A.

In the continuous domain, by comparison, the response is given by an integral equation

of the form

R(x) =

Z
A(x; �) I(�) d�

In what follows, however, we are going to concentrate mainly on discrete signals and

matrices as a consequence.
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Shift-Invariance and Toeplitz Matrices

If T is a shift-invariant operator, then8d 2 I

R[n] = T [I[n]] iff R[n�m] = T [I[n�m]]

In words, the operator performs the same operation at every position in the signal. If

I shift the input signal, then the response will be shifted a similar amount. There is no

preferred origin.

A linear, shift-invariant operator is equivalent to a matrix multiplication with a

Toeplitz matrix,A:

� each row ofA is equal to the previous row, but shifted right by one; so that the

elements ofA are constant along the diagonal, as in

][
You can also see from this that each column is a shifted version of every other

column! You might find it useful to prove to yourself that shift-invariance implies

a Toeplitz matrix with this structure.

� E.g., let’s say we want to compute a weighted average of the input at each point

using that point and its two neighbours. Let the weights be 0.25, 0.5, and 0.25

respectively. ThenA has the form:

1
4

...  0  1  2  1  0  ...
...  0  1  2  1  0  ...

...  0  1  2  1  0  ... ][
� Often we’ll deal withlocal filters; i.e., pixels that contribute to the response at a

position are nearby. This produces a banded Toeplitz matrix, like the averaging

filter above. The width of nonzero entries in a row is called thesupportof the

operator.
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Shift-Invariance and Toeplitz Matrices (cont.)

Boundary Issues (failure of shift-invariance?): With finite discrete signals we

cannot apply the same operation everywhere because there are no samples beyond the

ends of signal. To handle this in a reasonable way:

1. Assume the input is padded with zeros beyond the endpoints out to infinity. Then

we can talk about shift-invariance. But in practice, we only have to pad with zeros

out to the support of the linear operator. If the operator support isM samples,

then we need to pad byM � 1 zeros. This means that the length of the output

vector will be longer than the input byM � 1.

2. If we pad the input as above, but we then truncate the output vector so it has the

same length, as is often done, then the transform has the form:

][1
4

2  1  0  ...
1  2  1  0  ...

...  0  1  2  1
...  0  1  2

●

●

●
●

●

●
●

●

●

This case definitely violates shift invariance. But for signals that are much longer

than the support of the operator, we’re often not too worried about the results at

the boundaries.

3. Assume the signal is periodic and that shifts are cyclical. If one had a local

operator with a banded matrix, then an assumption of cyclical shifts will intro-

duce nonzero entries in the upper-right and lower-left corners of the matrix. For

example:

][1
4

2  1  0  ...            1
1  2  1  0  ...

...  0  1  2  1
1            ...  0  1  2

●

●

●
●

●

●
●

●

●
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Convolution and Impulse Response

One can also characterize a linear operator with its impulse response.

� Kronecker delta function (discrete)

Æ[n] =

(
1 n = 0

0 otherwise

� Dirac delta function (continuous)

Æ(x) = 0 8x 6= 0; and
Z

Æ(x)f(x) dx = f(0)

for sufficiently smoothf(x)

The impulse response of a linear shift-invariant system is the response to an impulse.

� In the discrete case, multiplyingA by Æ[n � m] amounts to extracting themth

column fromA.

~h = A~em; ~em = (0; : : : ; 0; 1; 0; : : : ; 0)T :

Here,h[n�m] is referred to the impulse response. Note that if we handle bound-

aries by padding with zeros and truncating the result, then it would be wise to

make the origin somewhere in the middle of the vector so that we don’t get a

truncated impulse response!

� If we appliedA to a shifted version of the impulse, then we get another column,

which is just a shifted version of the impulse response.

� Therefore, given the impulse response, you could construct the entire matrix! (ie.

it contains all the relevant information to define the operator)
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Convolution (cont.)

Remarks:

1. Another way to develop the idea of the inpulse response is to express the input

signal as a weighted sum of shifted impulses. For example, assume that the signal

value at positionp waswp. Then we can writeI[n] as

I[n] =
1X

p=�1

wp Æ[n� p]

GivenT , along with superposition and shift-invariance, we find

T [I[n]] = T

"
1X

p=�1

wp Æ[n� p]

#

=
1X

p=�1

wp T [Æ[n� p]]

=
1X

p=�1

wp h[n� p]

Notice how the impulse response shows up again. This equation says that opera-

tor’s output is equal to a weighted sum of shifted impulse responses.

2. We can also rewrite this operation in a slightly different form. Because the value

of I at p is equal towp, and becauseR[n] = T [I[n]], we can rewrite this last

equation as

R[n] =
1X

p=�1

I[p]h[n� p]

This is the most common formulation of a linear shift-invariant filter, and this

operation is referred to as the convolution ofI andh. It’s sufficiently important

that we have a special operator symbol for it, namely,�.

I � h =
1X

p=�1

I[p]h[n� p] :

With continuous signals,h(x) andI(x), convolution is written as

I � h =

Z
1

p=�1

I(�)h(x� �)d�
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3. It can be shown that convolution operator is

� commutative:I � h = h � I
(for periodic boundary treatment). Not all matrix operations commute, but

this one does.

� associative: (h1 � h2) � h3 = h1 � (h2 � h3)
This is true of all matrix multiplication.

� distributive over addition:(h1 + h2) � h3 = h1 � h3 + h2 � h3
This is true of all matrix multiplication.

4. Often the impulse response is relatively limited in its support (its number of

nonzero values). Let’s say thath[m] is only nonzero forM=2 � m � M=2. In

that case, it is convenient to rewrite the convolution equation in yet another way

as

I � h =

M=2X
p=�M=2

I[n+ p]h[�p] :

In words, this equation describes the following: for each image position,n, cen-

ter the impulse response at that position, flip the impulse response, and then take

its inner product with the image. This describes a much more efficient way to

implement the filter than by matrix multiplication!

5. There are a variety of ways of finding an inverse to a convolution operator. One

uses the Fourier transform. The other, more expensive but intuitively obvious

method is to create the effective Toeplitz matrix, and invert it. One can show

that the inverse of a Toepliz matrix (with periodic boundary treatment) is also

Toepliz, which shows that the inverse of a linear shift-invariant operator, if it

exists, is also linear and shift-invariant.
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2D Convolution and Images

In two dimensions, a linear shift-invariant filter computes, at each position in the im-

age, a linear combination of pixel values.

The convolution equation is given by

R[n;m] =
1X

p=�1

1X
q=�1

I[p; q]h[n� p;m� q]

Computational Expense: Convolution in two dimensions will require, in the general

case,O(N2M2) multiplications and additions whereN2 is the number of pixels in the

image, andM2 is the 2d support of the impulse response. If we can decompose the

filter into a separable filter, then we can reduce this computational load toO(N2M).

Separability: If a 2d filter can be expressed ash(x; y) = h1(x)h2(y) for someh1(x)

and someh2(y), thenh is said to be separable. In the discrete case, an operatorh[n;m]

is separable if it can be expressed as an outer product:

][ h[n,m] ( (h [n]1

( (h [m]2

=

With separability, the convolution operation can be decomposed into a cascade of 1d

convolutions, first along the rows, and then along the columns. Because convolution

is commumtative, it doesn’t matter which is done first. Each 1d operation requires

only O(n2m) multiplications and additions. This yields a significant savings when

the filter support is larger than 4 or 5 pixels.
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Examples:

� Them�m constant matrix (a crude 2d averaging operator) can be expressed as

an outer product of two 1d constant vectors.

� In continuous terms, the Gaussian is the only 2d isotropic function that can be

decomposed into a separable product of two 1d Gaussians:

1

2��2
e�(x

2+y2)=2�2 =
1p
2��

e�x
2=2�2 1p

2��
e�y

2=2�2

� Discrete approximations to Gaussians are given by binomial coefficientsi, (e.g,

(1, 4, 6, 4, 1)/16)).



c David J Fleet, 1998 9

Figure 1: Blurring of Al: The original image of Al and a blurred version are shown. The blurring

kernel was simple a separable kernel composed of the outer product of the 5-tap 1d impulse response
1

16
(1; 4; 6; 4; 1).

Figure 2: This shows Al and a high-pass filtered version of Al. This impulse response is defined by

Æ[n;m]� h[n;m] whereh[n;m] is the separable blurring kernel used in the previous figure.

Figure 3: From left to right is the original Al, a band-pass filtered version of Al, and the zero-crossings

of the filtered image. This impulse response is defined by the difference of two low-pass filters.
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Figure 4: Derivative filters are common in image processing as discussed in more detail below. (top)

Crude approximations to a horizontal derivative and a vertical derivative, each of which is separable and

composed of an outer product of a smoothing filter in one direction (i.e.,1

4
(1; 2; 1)) and a first-order

central difference (i.e.,1
2
(�1; 0; 1)) in the other direction. (bottom) The sum of squared derivative

responses gives a measure of the magnitude of the image gradient at each pixel. When clipped, this

gives us a rough idea of where edges might be found.


