
Image Gradients

Given a discrete imageI(~n), consider the smoothed continuous imageB(~x) defined by

B(~x) = G(~x; �2
r) � I(~n) �

X
~k

G(~x� ~k; �2
r)I(

~k); (1)

whereG(~x; �2
r) = 1

2��2r
e
� j~xj2

2�2r . Here j~xj is the 2-norm for the vector~x = (x; y)T . That is,j~xj =p
x2 + y2.

Note thatG(~x) does not satisfy the interpolation conditionsG(~0) = 1 andG(~n) = 0 for integer

valued~n 6= ~0. ThereforeB(~x) does not in general interpolate the original discrete imageI(~n) (i.e.,

generallyB(~n) 6= I(~n) for integer valued image coordinates~n). InsteadB(~x) provides a smoothed

approximation of the imageI(~n) at~x = ~n.

The gradient of a smooth imageB(~x) is defined to be the vector of partial derivatives,

~rB(~x) � (
@B

@x
(~x);
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(~x))T : (2)

By differentiating inside the sum in (1) we find
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Note the derivative of a 2D Gaussian is the separable product of a 1D Gaussian times the derivative

of a 1D Gaussian, as in
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whereG(x; �2
r ) =

1p
2��r

e�x
2=(2�2r ) is a one-dimensional Gaussian. Therefore separable convolution

can be used to compute the image gradient according to equations (2), (3) and (4) above.

Implementation Details. Typically the radiusK of the discrete filter support is taken to beK =

3�r. This gives 1D filter kernels of length2K + 1. Moreover, in order to avoid strong discretization

artifacts in sampling the Gaussian, typically�r � 1 is used. The smallest gradient filters of this type

are therefore7� 1 and1� 7, which are used for�r = 1 (see cannyTutorial.m).
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Properties of Gradients

What does the image gradient~rB(~x) tell us about the local image brightness? To understand this,

consider the directional derivative of the image at~x in the direction~u = (u1; u2)
T , defined by

D~uB(~x) �
dB

dt
(~x + ~ut)jt=0;

=

�
@B

@x
(~x + ~ut)

d

dt
(x + u1t) +

@B

@y
(~x+ ~ut)

d

dt
(y + u2t)

�����
t=0

by the chain rule;

=
�
~rB(~x)

�T
~u: (5)

Therefore, given the gradient, we can easily compute the directional derivative in any direction~u.

Note that from equation (5) we seeD~uB(~x) = 0 for directions~u orthogonal to the gradient~rB(~x).

The image gradient is therefore orthogonal to curves of constant intensity, i.e. contours satisfying

B(~x(t)) = c, for any constantc.

The steepest ascent direction~u (at a particular value of~x) is defined to be the unit vector which

maximizes the directional derivativeD~uB(~x). From equation (5) this steepest ascent direction is

given by

~u = ~rB(~x)=j~rB(~x)j; (6)

wherej~wj =
p
w2
1 + w2

2 denotes the Euclidean norm (i.e., 2-norm). Thus the gradient points in the

steepest ascent direction.

If the gradient~rB(~x) = ~0, then~x is said to be a stationary point ofB(~x). Typically this is a local

minimum, maximum or saddle point inB(~x). At a stationary point~x, the directional derivative

D~uB(~x) = 0 for any direction~u, and therefore the steepest ascent direction is undefined at such an

~x (i.e., a divide by zero occurs in equation (6)).

320: Edge Detection Notes: 13



2D Edge Detection

We extend our approach to 1D edge detection to 2D images by consid-

ering the variation of image brightness in particular directions~u. That

is, at a pixel~x, we consider the variation along a 1D slice,I(~x + ~ut),

in the neighbourhood oft = 0.

The direction of this slice is chosen to be the steepest ascent direction

at each pixel, as given by the direction of the image gradient~R(~x):

~u(~x) =
~R(~x)

j~R(~x)j
:

As described in the previous notes, this gradient can be estimated by

differentiating a Gaussian blurred and interpolated approximation of

the image,

~R(~x) = ~rG(~x; �2
r) � I(~x)

Image Edgel Detection: Recall that in 1D we detected edges by

identifying local maxima in the absolute value of the response of a

derivative of Gaussian filter applied to the signal. The analogous op-

eration in 2D is to search for maxima in the directional image deriva-

tive taken in the gradient direction~u(~x). Since the gradient direction

~u(~x) is perpendicular to curves of constant brightness, we take any

detected edgel to have normal~n given by the gradient direction, that

is, ~n(~x) = ~u(~x).
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2D Edge Detection (cont.)

Search for local maxima of gradient magnitudeS(~x) = j~R(~x)j, in

the direction normal to local edge,~n(~x), suppressing all responses

except for local maxima (called non-maximum suppression).

In practice, the search for local maxima ofS(~x) takes place on the

discrete sampling grid. Given~x0, with normal~n0, compareS(~x0) to

nearby pixels closest to the direction of�~n0, e.g., pixels at~x0 � ~q0,

where~q0 is 1
2 sin(�=8)

~n0 with each of its coefficients rounded to the

nearest integer.
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The red circle depicts points~x0�
1

2 sin(�=8)
~n0. Normal directions be-

tween (blue) radial lines all map to the same neighbour of~x0.
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Canny Edge Detection

Algorithm:

1. Convolve with gradient filters (possibly at multiple scales�r)

~R(~x) � (R1(~x); R2(~x) )
T = ~rG(~x; �2

r) � I(~x) :

2. Compute response magnitude,S(~x) =
p
R2

1(~x) +R2
2(~x) .

3. Compute local edge orientation (represented by unit normal):

~n(~x) =

(
(R1(~x); R2(~x))=S(~x) if S(~x) > threshold

~0 otherwise

4. Peak detection (non-maximum suppression along edge normal)

Extensions: In order to select an appropriate scale�r for an edgel,

non-maximum suppression can also be done across neighbouring scales.

Also the simple thresholding described above can be replaced by hys-

teresis thresholding along edges (see Canny (1986) for details). These

are beyond the scope of this course.
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Filtering with Derivatives of Gaussians

Imagethree.pgm Gaussian Blur� = 1.0

Gradient inx Gradient iny
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Canny Edgel Measurement

Gradient Strength Gradient Orientations

Canny Edgels Edgel Overlay

Colour gives gradient direction (red –0Æ; blue –90Æ; green –270Æ)

320: Edge Detection Page: 18



Gaussian Pyramid Filtering (Subsample� 2)

Blurred and Down-Sampled (�2) Gaussian Blur� = 1.0

Gradient Magnitude (dec�2) Gradient Orientations
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Gaussian Pyramid Filtering (Subsample� 4)

Blurred and Down-Sampled (�4) Gaussian Blur� = 1.0

Gradient Magnitude (dec�4) Gradient Orientations
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Multiscale Canny Edgels

Imagethree.pgm Edgels (x 1)

Edgels (x 2) Edgels (x 4)
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Edge-Based Image Editing

Existing edge detectors are sufficient for a wide variety of applica-

tions, such as image editing, tracking, and simple recognition.

[from Elder and Goldberg (2001)]

Approach:

1. Edgels represented by location, orientation, blur scale (min reli-

able scale for detection), and brightness on each side.

2. Edgels are grouped into curves (i.e., maximum likelihood curves

joining two edge segments specified by a user.)

3. Curves are then manipulated (i.e., deleted, moved, clipped etc).

4. The image is reconstructed from edgel positions and the image

brightnesses each side.
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