Image Gradients

Given a discrete imagg i), consider the smoothed continuous imdgje’) defined by

B(#) = G(&;0? ZGf ky02)1(K), (1)

™

|

whereG (7;02) = 1se 7. Here|Z| is the 2-norm for the vectaf = (z,y)T. Thatis,|Z| =

2no2
a4+ 2

Note thatG (%) does not satisfy the interpolation conditiofi$0) = 1 andG(i#) = 0 for integer
valuedii # 0. ThereforeB(#) does not in general interpolate the original discrete im&ge (i.e.,
generallyB(7i) # I(7) for integer valued image coordinatés InsteadB (%) provides a smoothed
approximation of the imag#&(i) atz = 7.

The gradient of a smooth imad& %) is defined to be the vector of partial derivatives,

= (5@, 5o @) @)

By differentiating inside the sum in (1) we find

P = L rw-0i, ©
k

OB, .  =0G . o -

L@ = - R, @

Note the derivative of a 2D Gaussian is the separable product of a 1D Gaussian times the derivative
of a 1D Gaussian, as in

Flwa) = —2a@a)

whereG (z;02) = \/%U e~%"/(277) is a one-dimensional Gaussian. Therefore separable convolution
can be used to compute the image gradient according to equations (2), (3) and (4) above.

Implementation Details. Typically the radiusk’ of the discrete filter support is taken to be =
3o0,. This gives 1D filter kernels of length¥ + 1. Moreover, in order to avoid strong discretization
artifacts in sampling the Gaussian, typically> 1 is used. The smallest gradient filters of this type
are thereforg x 1 andl x 7, which are used fos, = 1 (see cannyTutorial.m).
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Properties of Gradients

What does the image gradie‘ﬁtB(:f) tell us about the local image brightness? To understand this,
consider the directional derivative of the imageran the directioni = (uy, u,)”, defined by

B B,
DgB(7) = %(x + tit)] =0,
= {aa_lj(f + ﬁt)%(x + ugt) + aa—l;(:f + ﬂ't)%(y + uﬂ)] t:O by the chain rule
o N\T
— (VB(:L-)) . (5)

Therefore, given the gradient, we can easily compute the directional derivative in any diigction

Note that from equation (5) we sé&; B(&) = 0 for directionsi orthogonal to the gradieit B(z).
The image gradient is therefore orthogonal to curves of constant intensity, i.e. contours satisfying
B(Z(t)) = ¢, for any constant.

The steepest ascent directian(at a particular value of) is defined to be the unit vector which
maximizes the directional derivative;B(%). From equation (5) this steepest ascent direction is
given by

it = VB(&)/|VB(Z), (6)

where|w| = y/w? + w? denotes the Euclidean norm (i.e., 2-norm). Thus the gradient points in the
steepest ascent direction.

If the gradientﬁB(f) = 0, then is said to be a stationary point &(z). Typically this is a local
minimum, maximum or saddle point iB(Z). At a stationary point, the directional derivative
D;B(%) = 0 for any directioni, and therefore the steepest ascent direction is undefined at such an
Z (i.e., a divide by zero occurs in equation (6)).
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2D Edge Detection

We extend our approach to 1D edge detection to 2D images by consid-
ering the variation of image brightness in particular directi@nghat

IS, at a pixelz, we consider the variation along a 1D slié¢ey + t),

in the neighbourhood af= 0.

The direction of this slice is chosen to be the steepest ascent direction
at each pixel, as given by the direction of the image gra(ﬁéﬁb:

i(®) = X
[R(x)|
As described in the previous notes, this gradient can be estimated by

differentiating a Gaussian blurred and interpolated approximation of
the image,

R(X) = VG(X; 0?) * I(X)

Image Edgel Detection: Recall that in 1D we detected edges by
identifying local maxima in the absolute value of the response of a
derivative of Gaussian filter applied to the signal. The analogous op-
eration in 2D is to search for maxima in the directional image deriva-
tive taken in the gradient directiai(X). Since the gradient direction
u(X) is perpendicular to curves of constant brightness, we take any
detected edgel to have normabiven by the gradient direction, that

IS, n(X) = u(X).

320: Edge Detection Page: 14



2D Edge Detection (cont.)

Search for local maxima of gradient magnitusiet) = |R(%)], in
the direction normal to local edg@&,x), suppressing all responses
except for local maxima (called non-maximum suppression).

In practice, the search for local maxima $fx) takes place on the
discrete sampling grid. Givex,, with normaln,, compareS(x,) to

nearby pixels closest to the direction-bh,, e.g., pixels ak, + q,,

whereqj is 5 ( /8)n0 with each of its coefficients rounded to the

nearest mteger.

The red circle depicts pomt%oi2S1 W/g) . Normal directions be-

tween (blue) radial lines all map to the same neighboui;of
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Canny Edge Detection

Algorithm:

1. Convolve with gradient filters (possibly at multiple scates

—

R(X) = (Ri(R), Ra(X))" = VG(X; o)) = I(X).

2. Compute response magnitudéx) = / R} (X) + R3(X) .

3. Compute local edge orientation (represented by unit normal):

L (R1(X), Ry(X))/S(X) if S(X) > threshold
0 otherwise

4. Peak detection (non-maximum suppression along edge normal)

Extensions: In order to select an appropriate scalefor an edgel,
non-maximum suppression can also be done across neighbouring scales
Also the simple thresholding described above can be replaced by hys-
teresis thresholding along edges (see Canny (1986) for details). These

are beyond the scope of this course.
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Filtering with Derivatives of Gaussians

Imagethree.pgm Gaussian Blur = 1.0
Gradient inz Gradient iny
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Canny Edgel Measurement

Gradient Strength Gradient Orientations
. ¥

Edgel Overlay

Colour gives gradient direction (red)>*; blue —90°; green —270°)
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Gaussian Pyramid Filtering (Subsamplex 2)

Blurred and Down-Sampled) Gaussian Blur = 1.0

373

Gradient Magnitude (deg2) Gradient Orientations
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Gaussian Pyramid Filtering (Subsamplex 4)

Blurred and Down-Sampled{) Gaussian Blur = 1.0

=373

Gradient Magnitude (deg4) Gradient Orientations
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Multiscale Canny Edgels

Imagethree.pgm Edgels (x 1)

Edgels (x 2) Edgels (x 4)
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Edge-Based Image Editing

Existing edge detectors are sufficient for a wide variety of applica-
tions, such as image editing, tracking, and simple recognition.

[from Elder and Goldberg (2001)]

Approach:

1. Edgels represented by location, orientation, blur scale (min reli-
able scale for detection), and brightness on each side.

2. Edgels are grouped into curves (i.e., maximum likelihood curves
joining two edge segments specified by a user.)

3. Curves are then manipulated (i.e., deleted, moved, clipped etc).

4. The image is reconstructed from edgel positions and the image
brightnesses each side.
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Further Readings
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John Canny, "A computational approach to edge detectiBiE Transactions on PAM8(6):679—
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James Elder and Richard Goldberg, "Image editing in the contour doniaBE Transactions on
PAMI, 23(3):291-296, 2001.
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