
Edge Detection

Goal: Detection and Localization of Image Edges.

Motivation:

� Significant, often sharp, contrast variations in images caused by
illumination, surface markings (albedo), and surface boundaries.
These are useful for scene interpretation.

� Edgels (edge elements): significant local variations in image
brightness, characterized by the position~xp and the orientation�
of the brightness variation. (Usually� mod � is sufficient.)
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� Edges: sequence of edgels forming smooth curves

Two Problems:

1. estimating edgels
2. grouping edgels into edges

Matlab Tutorials: cannyTutorial.m
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1D Ideal Step Edges

Assume an ideal step edge corrupted by additive Gaussian noise:

I(x) = S(x) + n(x) :

Let the signalS have a step edge of heightH at locationx0, and

let the noise at each pixel be Gaussian, independent and identically

distributed (IID).

Gaussian IID Noise:

n(x) � N(0; �2
n) ; pn(n; 0; �

2
n) =

1p
2��n

e�n2=�2
n

Expectation:

mean: E[n] �
Z

n pn(n) dn = 0

variance: E[n2] �
Z

n2 pn(n) dn = �2
n

Independence:p(n(x1); n(x2)) = p(n(x1))p(n(x2)) for x1 6= x2.

E[n(x1)n(x2)] = �2
nÆx1;x2 =

(
0 whenx1 6= x2

�2
n x1 = x2

(1)

Remark: Violations of the main assumptions, i.e., the idealized step
edge and additive Gaussian noise, are commonplace.
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Signal Response

Assume a linear filter, with impulse responsef(x):

r(x) = f(x) � I(x) = f(x) � S(x) + f(x) � n(x)
= rS(x) + rn(x)

So the response is the sum of responses to the signal and the noise.

We will use large values of the absolute responsejr(x)j to detect

edges.

Therefore we wantjr(x)j to be small whenH = 0 (i.e. no step,

S(x) = c for a constantc). So we require

f � c = 0

for any constantc. Equivalently,X
k

f(k) = 0: (2)

Thus the filter kernel has zero DC response (“DC” denotes a signal

with frequency0).
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Response to Noise

The mean and variance of the response to noisern(x),

rn(x) =

KX
k=�K

f(�k)n(x + k) ;

whereK is the radius of filter support, can be shown to be (see notes

on next page)

E[rn(x)] =
X
k

f(�k)E[n(x + k)] = 0

E[r2n(x)] =
X
k

X
l

f(�l) f(�k)E[n(x+k)n(x+l)]

= �2
n

X
k

f 2(k)

Note that the standard deviation of the noise response,

�
E[r2n(x)]

�1=2
= �n

sX
k

f 2(k);

depends only on the 2-norm of the filter kernelf(k), not on the de-

tailed shape of the kernel, nor on the pixelx.
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Expectation of Sums and Products of Random Variables

Supposen1 andn2 are two random variables with the joint probability distributionp(n1; n2). If the

variables are independent then this joint distribution can be written as the product of the individual

probability distributionsp(n1) andp(n2), namelyp(n1; n2) = p(n1)p(n2). In anycase, we have the

general marginalization property of probability distributions

p(n1) =

Z
p(n1; n2)dn2; andp(n2) =

Z
p(n1; n2)dn1: (3)

Note this is easy to show for independent random variablesn1 andn2.

Let a; b be two constants. Then it follows that E[an1 + bn2] = aE[n1] + bE[n2]. In

particular, the expectation of a sum of random variables is just the sum of the expectation of each

term. The variablesn1 andn2 don’t need to be independent. The derivation of this is as follows,

E[an1 + bn2] �

Z Z
(an1 + bn2)p(n1; n2)dn1dn2;

=

Z Z
an1p(n1; n2)dn1dn2 +

Z Z
bn2p(n1; n2)dn1dn2;

=

Z
an1p(n1)dn1 +

Z
bn2p(n2)dn2; by marginalization;

= a

Z
n1p(n1)dn1 + b

Z
n2p(n2)dn2;

= aE[n1] + bE[n2]: (4)

Note that here we just used the marginalization property ofp(n1; n2), and not independence ofn1
andn2.

In contrast, it isnot generally the case that the expectation of products of random

variables is just the product of the expectations. For example, E[n1n1] = �2n 6= E[n1]E[n1] = 0.

However, forindependentrandom variablesn1 andn2 we have

E[n1n2] �

Z Z
n1n2p(n1; n2)dn1dn2;

=

Z Z
n1n2p(n1)p(n2)dn1dn2; by independence;

=

�Z
n1p(n1)dn1

��Z
n2p(n2)dn2

�
;

= E[n1]E[n2] for independentn1, n2: (5)
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Expectation and Variance of Noise Responsern(x)

Using equation (4) (and its extension to sums of more than two random variables), we find

E[rn(x)] = E[
KX

k=�K

f(�k)n(x + k)] =
KX

k=�K

f(�k)E[n(x + k)] = 0:

Similarly,

E[r2n(x)] = E[f
KX

k=�K

f(�k)n(x + k)gf
KX

j=�K

f(�j)n(x + j)g];

= E[
KX

k=�K

KX
j=�K

f(�k)n(x + k)f(�j)n(x+ j)];

=
KX

k=�K

KX
j=�K

f(�k)f(�j)E[n(x + k)n(x+ j)];

=
KX

k=�K

KX
j=�K

f(�k)f(�j)�2nÆk;j; by equation (1),

=
KX

k=�K

f 2(�k)�2n;

which is the desired result reported on p.4.
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Signal to Noise Ratio

What is the optimal linear filter for the detection and localization of a

step edge in an image?

We might measure how well we are doing by comparingjE[r(x0)]j
(i.e., the absolute value of expected value of the signal at a step edge

x0), to the standard deviation of the noise in this response,
p

E[r2n(x0)].

From the analysis above, we have

jE[r(x0]j = jrs(x0) + E[rn(x0)]j = jrs(x0)j = jf � S(x0)j:

And

E[r2n(x0)] = �2
n

KX
k=�K

f 2(k):

So we defineSignal-to-Noise Ratio(SNR) to be:

SNR =
j(f � S)(x0)j
�n
pP

k f
2(k)

Note the SNR is invariant to scalingf . That is, replacingf(k) by the

filter af(k) gives the same SNR for any constanta 6= 0.
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Criteria for Optimal Filters

Criterion 1: Good Detection.Choose the filter to maximize the

SNR of the response at the edge location, subject to constraint that

the responses to constant signals are zero.

For a filter with a support radius ofK pixels, the optimal filter is a

matched filter, i.e., a difference of square box functions:

Response to ideal step:

Explanation:

Assume, with out loss of generality that
P

f 2(x) = 1, and to ensure

zero DC response,
P

f(x) = 0.

Then, to maximize theSNR, we simply maximize the inner product

of S(x) and the impulse response, reflected and centered at the step

edge location, i.e.,f(x0 � x).
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Criteria for Optimal Filters (cont)

Criterion 2: Good Localization.Let fx�l gLl=1 be the local maxima

in response magnitudejr(x)j. Choose the filter to minimize the root

mean squared error between thetrue edge locationand theclosest

peakin jrj; i.e., minimize

LOC =
1p

E[ mink jx�l � x0j2 ]

Caveat:for an optimal filter this does not mean that the closest peak

should be the most significant peak, or even readily identifiable.

Result: Maximizing the product,SNR � LOC, over all filters with

support radiusK produces the same matched filter already found by

maximizingSNR alone.
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Criteria for Optimal Filters (cont)

Criterion 3: Sparse Peaks.MaximizeSNR � LOC, subject to the

constraint that peaks injr(x)j be as far apart, on average, as a manu-

ally selected constant,xPeak:

E[ jx�k+1 � x�kj ] = xPeak

WhenxPeak is small,f(x) is similar to the matched filter above.

But for xPeak larger (e.g.,xPeak � K=2) then the optimal filter is

well approximated by a derivative of a Gaussian:

f(x) � dG(x;�r)

dx
=

�xp
2��3

r

e
� x

2

2�2
r ; with F

�
dG(x;�r)

dx

�
= i ! e�

!
2
�
2
r

2

Conclusion:

Sparsity of edge detector responses is a critical design criteria, en-
couraging a smooth envelope, and thereby less power at high fre-
quencies. The lower the frequency of the pass-band, the sparser the
response peaks.

There is a one parameter family of optimal filters, varying in the width
of filter support,�r. Detection (SNR) improves and localization
(LOC) degrades as�r increases.
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Multiscale Edge Features

Multiple scales are also important to consider because salient edges
occur at multiple scales:

1) Objects and their parts occur at multiple scales:

2) Cast shadows cause edges to occur at many scales:

3) Objects may project into the image at different scales:
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