
CSC320| Visual Computing, Winter 2005

Assignment 2: Image Morphs

Due: 9:10am, Wed., Mar. 2 (at the start of the lecture)
This assignment is worth 10 percent for your grade in this course.

1. Fourier Transform of Comb Functions [10pts]: In the lecture notes on sampling we de�ned the
comb function as

C(n;ns) =

(N=ns)�1X
m=0

Æn;mns

Here we assume C(n;ns) is a signal of length N , and N is divisible by ns. Prove the following proposition:

Proposition 1. The discrete Fourier transform of the comb function is another comb function:

F(C[n;ns]) =
N

ns
C[k;N=ns]: (1)

2. Convolutions of Fourier Transforms [10pts]: Prove the following proposition, as stated in the lecture
notes on sampling:

Proposition 2. Suppose f [n] and g[n] are two signals of length N (extended to be N -periodic). Then

F(f [n]g[n]) =
1

N
F(f) � F(g)

�
1

N

N=2�1X
j=�N=2

f̂ [j] ĝ[k � j]: (2)

where f̂ and ĝ denote the Fourier transforms of f and g, respectively.

3. Warp for Image Morphing [10pts]: Read the paper by Beier and Neely, Feature-based image meta-
morphosis, available from the course home page. Pay particular attention to section 3.

Suppose I0(~x) and I1(~x) are two source images to be used in image morphing. Let f(~Pk;j ; ~Qk;j)g
J
j=1

denote J directed line segments from ~Pk;j to ~Qk;j in each of the source images Ik(~x) for k = 0; 1. Here the

directed segment (~P0;j ; ~Q0;j) in image I0(~x) corresponds to the jth directed segment (~P1;j ; ~Q1;j) in the
second source image I1(~x). An example of such data is provided in the Matlab code in morphHandout.zip

available from the home page.

Given these source images, and the sets of corresponding line segments, we wish to form intermediate
destination images Is(~x) for s 2 [0; 1]. To do this, we �rst de�ne interpolated segments (~Ps;j ; ~Qs;j) to have
the endpoints

~Ps;j = (1� s)~P0;j + s~P1;j ;

~Qs;j = (1� s) ~Q0;j + s ~Q1;j :

(see the Matlab script showLineInterp.m available from the above zip �le).

Given these interpolated segments we can describe any point ~x in the destination image Is(~x) in terms of

(u; v) coordinates relative to the jth segment (~Ps;j ; ~Qs;j). Beier and Neely de�ne these (u; v) coordinates

1



as follows:

Ls;j = jj ~Qs;j � ~Ps;j jj2;

~ts;j = ( ~Qs;j � ~Ps;j)=Ls;j ;

~ns;j =

�
0 �1
1 0

�
~ts;j ;

us;j(~x) = ~t Ts;j(~x�
~Ps;j)=Ls;j

vs;j(~x) = ~n T
s;j(~x�

~Ps;j)

Here (us;j ; vs;j) provide coordinates for the point ~x relative to the jth line. Indeed, it follows that

~x = ~Ps;j + ( ~Qs;j � ~Ps;j)us;j + ~ns;jvs;j : (3)

So, for example, (u; v) = (0; 0) corresponds to ~x = ~Ps;j , and (u; v) = (1; 0) corresponds to ~x = ~Qs;j .

Since the directed line segment (~Ps;j ; ~Qs;j) in the destination image Is(~x) is meant to correspond to

the segment (~Pk;j ; ~Qk;j) in the kth source image, it is natural to use the same (u; v) coordinates for
corresponding points in the source image Ik(~x). That is, de�ne the warp function for the jth segment to
be

~Wk;s;j(~x) = ~Pk;j + ( ~Qk;j � ~Pk;j)us;j(~x) + ~nk;jvs;j(~x); (4)

This is identical to (3) except that endpoints ~Ps;j and ~Qs;j in the destination image Is(~x) have been

replaced by the endpoints ~Pk;j and ~Qk;j in the kth source image, and the derived normal ~ns;j is replaced

by ~nk;j . As a consequence of this de�nition, (u; v) = (0; 0) and (1; 0) produce ~Wk;s;j equal to ~Pk;j and
~Qk;j , respectively. Moreover, points ~x on the segment between ~Ps;j and ~Qs;j map to points ~Wk;s;j(~x) on

the corresponding segment (~Pk;j ; ~Qk;j).

Finally, we need to combine these individual segment warp functions ~Wk;s;j(~x) together to form a single

warp function ~Wk;s(~x) which takes the location ~x in the destination image to the corresponding location
~Wk;s(~x) in the kth source image. Beier and Neely suggest doing this by allowing each of the segment-based

warps ~Wk;s;j(~x) to vote for the source location, with the amount of the vote denoted by ms;j(~x) � 0. The
combined warp is then de�ned by

~Wk;s(~x) =

PJ
j=1ms;j(~x) ~Wk;s;j(~x)PJ

j=1ms;j(~x)
(5)

The denominator here is just the total number of votes, and therefore the right hand side is just a weighted
average of the warps ~Wk;s;j(~x) for individual segments.

In order for this warp ~Wk;s(~x) to roughly map each segment (~Ps;j ; ~Qs;j) to the corresponding segment

(~Pk;j ; ~Qk;j) we need the votes ms;j(~x) to be large when ~x is near (~Ps;j ; ~Qs;j) and the other votes ms;l(~x)

relatively small for l 6= j. In this case, the right hand side in (5) reduces to roughly ~Wk;s;j(~x), which
properly maps the jth segment.

Beier and Neely propose that the voting functions be de�ned by

~ms;j(~x) =

 
Lp
s;j

a+ ds;l(~x)

!b

: (6)

Here a 2 (0; 1], b 2 [1=2; 2], p 2 [0; 1] are selected constants (see Beier and Neely's paper). And ds;l(~x) is

the minimum distance between ~x and the segment (~Ps;j ; ~Qs;j) . That is,

ds;j(~x) =

8<
:

jj~x� ~Qs;j jj2 for us;j(~x) > 1;
jvs;j j for 0 � us;j(~x) � 1;

jj~x� ~Ps;j jj2 for us;j(~x) < 0:

(7)

2



Your job is to write a Matlab function

function [W0, W1] = morphWarps(linePairs, szIm, s, a, b, p)

where linePairs is as in showLineInterp.m, szIm is the size of the source images I0(~x) and I1(~x), and
s 2 [0; 1] is the interpolation parameter for the destination image. The last three arguments specify the
constants a, b, and p used in the de�nition of the votes, namely equation (6).

This function should return the warp functions as de�ned above, namely ~Wk;s for k = 0; 1, in the 3-

dimensional arrays W0 and W1, respectively. That is, W0(j; i; 1) gives the �rst component of ~W0;s evalu-
atated at ~x = (i; j), and similarly for W1(j; i; 1). These warps need to be evaluated for all ~x = (i; j) (i.e.
1 � i � szIm(2) and 1 � j � szIm(1)).

In order to run quickly in Matlab (and for you to get more than half marks on this question) you must
not use a loop over image positions ~x. Instead, use one loop over the corresponding line segments,
and use array operations over all pixel locations to build up the required warps, as de�ned in (5).

You will be required to submit your M-�le morphWarps.m electronically.

4. Perform the Warp by Looping Over Pixels [10pts]: Write a Matlab function

function ims = morphImagesLoop(im0, im1, linePairs, s)

where im0 and im1 are gray-level images and linePairs are the corresponding line segments, as in
showLineInterp.m. The last parameter s 2 [0; 1] is the interpolation parameter for the destination image.
This function should return the morphed image

Is(~x) = (1� s)I0( ~W0;s(~x)) + sI1( ~W1;s(~x)): (8)

This function should loop over pixels ~x = (i; j) and perform a bicubic spline interpolation using the
Catmull-Rom interpolation kernel discussed in the interpolation notes. (Since the displacements are likely
to vary with image position, we cannot simply use convolution.)

Hand in printed copies of the resulting morphed images for s equal to 1=4, 1=2 and 3=4. You will also be
required to submit your M-�le morphImagesLoop.m electronically.

Note that in performing the warps we did not use any pre�ltering to blur the source images. In your
write up, explain precisely when this may lead to aliasing and poor results. (You do not need to �x this
problem.)

5. Perform the Warps Using Interp2 [10pts]: Redo problem 4, only this time write a Matlab function

function ims = morphImages(im0, im1, linePairs, s)

which does not loop over pixel positions. Instead it uses the Matlab image interpolation function
interp2 to perform the interpolation.

Hand in printed copies of the resulting morphed images for s equal to 1=4, 1=2 and 3=4. You will also be
required to submit your M-�le morphImages.m electronically.

3


