
View-Based Models

Goal: Explore ways to model the image appearance of objects under

a wide range of viewing conditions.

Motivation:

A central question in vision concerns how we represent objects. One

simple approach is to let images themselves be the representation.

• We consider the construction of low-dimensional bases for an en-

semble of training images of the object(s) in question usingprin-

cipal components analysis (PCA).

• We introduce PCA, its derivation, its properties, and some of its

uses.

• We examine its suitability for object detection, and brieflydiscuss

some alternatives.

Readings: Sections 22.1–22.3 of the Forsyth and Ponce.

Matlab Tutorials: trainEigenEyes.m and detectEigenEyes.m
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Template Matching – Straw Man

What if we just stored all images (templates) of the object(s) in each

characteristic viewavailable (the simplest possible view-based model).

For detection we could compute amatching scorebased on cross-

correlation of each template with every image neighbourhood.

Left Eyes Right Eyes

Problems:

• cross-correlation and related detectors are very sensitive to small
variations in object pose, lighting, occlusions, and smallvaria-
tions in object shape and appearance.

• we’d certainly need an extremely large training set of images.

• storage and computation costs become unreasonable as the num-
ber of objects and views increases.

Question: How can we find a more efficient representation for the
ensemble of views, and more effectve methods for matching?
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Subspace Appearance Models

Idea: Images are not random, especially those of an object, or similar

objects, under different viewing conditions.

Rather, than storing every image, we might try to represent the images

more effectively, e.g., in a lower dimensionalsubspace.

For example, let’s represent eachN × N image as a point in anN2-

dim vector space (e.g., ordering the pixels lexicographically to form

the vectors).

(red points denote images, blue vectors denote image differences)

How do we find a low-dimensional basis to accurately model (approx-

imate) each image of the training ensemble (as a linear combination

of basis images)?
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Linear Subspace Models

We seek a linear basis with which each image in the ensemble isap-

proximated as a linear combination of basis imagesbk(~x)

I(~x) ≈ m(~x) +

K
∑

k=1

ak bk(~x), (1)

variants which emphasize detection instead of image generation here

m(~x ) is the mean of the image ensemble. Thesubspace coefficients

~a=(a1, ..., aK) comprise the representaion.

With some abuse of notation, assuming basis imagesbk(~x) with N2

pixels, let’s define

~bk – anN2×1 vector with pixels arranged in lexicographic order

B – a matrix with columns~bk, i.e., B = [~b1, ..., ~bK ] ∈ RN2×K

With this notation we can rewrite Eq. (1) in matrix algebra as

~I ≈ ~m + B~a (2)

In what follows, we assume that the mean of the ensemble is~0. (Oth-

erwise, if the ensemble we have is not mean zero, we can estimate the

mean and subtract it from each image.)
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Choosing The Basis

Orthogonality: Let’s assume orthogonal basis functions,

‖ ~bk ‖2 = 1 , ~bj
T~bk = δjk .

Subspace Coefficients: It follows from the linear model in Eq. (2)

and the orthogonality of the basis functions that

~bk
T~I ≈ ~bk

T
B~a = ~bk

T
[~b1, ..., ~bK ]~a = ak

This selection of coefficients,~a = B
T~I , minimizes the sum of squared

errors (or sum of squared pixel differences, SSD):

min
~a∈RK

‖ ~I − B~a ‖2
2

Basis Images: In order to select the basis functions{~bk}K
k=1 , sup-

pose we have a training set of images

{~Il }L
l=1 , with L � K

If the mean is nonzero, subtract the mean image,1
L

∑

l
~Il, from each

training image. (Recall we are assuming the images are mean zero.)

Finally, let’s select the basis,{~bk}K
k=1 , to minimize squared recon-

struction error:
L
∑

l=1

min
~al

‖ ~Il − B~al ‖2
2
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Intuitions

Example: let’s consider a set of images{~Il }L
l=1, each with only two

pixels. So, each image can be viewed as a 2D point,~Il ∈ R2.
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For a model with only one basis image, what should~b1 be?

Approach: Fit an ellipse to the distribution of the image data, and

choose~b1 to be a unit vector in the direction of the major axis.

Define the ellipse as~xTC−1~x = 1, whereC is the sample covariance

matrix of the image data,

C =
1

L

L
∑

l=1

~Il
~Il

T

The eigenvectors ofC provide the major axis, i.e.,

CU = UD

for orthogonal matrixU = [~u1, ~u2], and diagonal matrixD with el-

ementsd1 ≥ d2 ≥ 0. The direction~u1 associated with the largest

eigenvalue is the direction of the major axis, so let~b1 = ~u1.
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Principal Components Analysis

Theorem: (Minimum reconstruction error)The orthogonal basisB,

of rankK < N2, that minimizes the squared reconstruction error over

training data,{~Il}L
l=1, i.e.,

L
∑

l=1

min
~al

‖ ~Il − B~al ‖2
2

is given by the firstK eigenvectors of the data covariance matrix

C =
1

L

L
∑

l=1

~Il
~Il

T ∈ RN2×N2

, for which CU = UD

whereU= [~u1, ..., ~uN2] is orthogonal, andD= diag(d1, ..., dN2) with

d1≥d2≥ ... ≥dN2.

That is, the optimal basis vectors are~bk =~uk, for k = 1...K. The cor-

responding basis images{bk(~x)}K
k=1 are often called eigen-images.

Proof: see the derivation below.
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Derivation of PCA

To begin, we want to findB in order to minimize squared error in subspace approximations to the

images of the training ensemble.

E =
L
∑

l=1

min
~al

‖ ~Il − B~al ‖2

2

Given the assumption that the columns ofB are orthonormal, the optimal coefficients are~al = B
T~Il,

so

E =
L
∑

l=1

min
~al

‖ ~Il −B~al ‖2

2
= ‖ ~Il −BB

T~Il ‖2

2
(3)

Furthermore, writing the each training image as a column in amatrixA =
[

~I1, ...,~IL

]

, we have

E =

L
∑

l=1

‖ ~Il −BB
T~Il ‖2

2
= ‖ A −BB

T
A ‖2

F
= trace

[

AA
T
]

− trace
[

B
T
AA

T
B
]

You get this last step by expanding the square and notingB
T
B = IK , and using the properties of

trace, e.g.,trace[A] = trace[AT ], and alsotrace[BT
AA

T
B] = trace[AT

BB
T
A] .

So the minmize the average squared error in the approximation we want to findB to maximize

E ′ = trace
[

B
T
AA

T
B
]

(4)

Now, let’s use the fact that for the data covariance,C we haveC = 1

L
AA

T . Moreover, as defined

above the SVD ofC can be written asC = UDU
T . So, let’s substitute the SVD intoE ′:

E ′ = trace
[

B
T
UDU

T
B
]

(5)

where of courseU is orthogonal, andD is diagonal.

Now we just have to show that we want to chooseB such that the trace strips off the firstK elements

of D to maximizeE ′. Intuitively, note thatBT
U must be rankK sinceB is rankK. And note that

the diagonal elements ofD are ordered. Also the trace is invariant under matrix rotation. So, the

highest rankK trace we can hope to get is by choosingB so that, when combined withU we keep

the firstK columns ofD. That is, the columns ofB should be the firstK orthonormal rows ofU.

We need to make this a little more rigorous, but that’s it for now...
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Other Properties of PCA

Maximum Variance: The K-D subspace approximation captures

the greatest possible variance in the training data.

• Fora1 = ~b
T

1
~I, the direction~b1 that maximizes the variance E[a2

1] =

~b1
T
C~b1, subject to~b

T

1
~b1 = 1, is the first eigenvector ofC.

• The second maximizes~b
T

2 C
~b2 subject to~b

T

2
~b2 =1 and~b

T

1
~b2 =0.

• For ak = ~bk
T~I, and~a = (a1, ..., aK), the subspace coefficient

covariance is E[~a~aT ] = diag(d1, ..., dK). That is, the diagonal

entries ofD are marginal variances of the subspace coefficients:

σ2
k ≡ E[a2

k] = dk .

So the total variancecapturedin the subspace is sum of firstK

eigenvalues ofC.

• Total variancelostowing to the subspace projection (i.e., the out-

of-subspace variance) is the sum of the lastN2−K eigenvalues:

1

L

L
∑

l=1

[

min
~al

‖ ~Il − B~al ‖2
2

]

=

N2

∑

k=K+1

σ2
k

Decorrelated Coefficients: C is diagonalized by its eigenvectors,

soD is diagonal, and the subspace coefficients are uncorrelated.

• Under a Gaussian model of the images (where the images are

drawn from anN2-dimensional Gaussian pdf), this means that

the coefficients are also statistically independent.
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PCA and Singular Value Decomposition

The singular value decomposition of the data matrixA,

A =
[

~I1, ...,~IL

]

, A ∈ RN2×L , where usuallyL � N2 .

is given by
A = USV

T

whereU ∈ RN2×L , S ∈ RL×L , V ∈ RL×L . The columns ofU and

V are orthogonal, i.e.,UT
U = IL×L andV

T
V = IL×L, and matrixS

is diagonal,S = diag(s1, ..., sL) wheres1 ≥ s2 ≥ ... ≥ sL ≥ 0.

Theorem: The best rank-K approximation toA under the Frobenius

norm,Ã, is given by

Ã =

K
∑

k=1

sk~uk~uk
T = BB

T
A , where min

rank(Ã)=K
‖A−Ã‖2

F =

N2

∑

k=K+1

s2
k ,

andB = [~u1, ..., ~uK ]. Ã is also the best rank-K approximation under

theL2 matrix norm.

What’s the relation to PCA and the covariance of the trainingimages?

C =
1

L

L
∑

l=1

~Il
~Il

T
=

1

L
AA

T =
1

L
USV

T
VS

T
U

T =
1

L
US

2
U

T

So the squared singular values ofA are proportional to the firstL

eigenvalues ofC:

dk =

{

1
L

s2
k for k = 1, ..., L

0 for k > L

And the singular vectors ofA are just the firstL eigenvectors ofC.
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Eigen-Images for Generic Images?

Fourier components are eigenfunctions of generic image ensembles.

Why? Covariance matrices for stationary processes are Toeplitz.

PCA yields unique eigen-images up to rotations of invariantsub-
spaces (e.g., Fourier components with the same marginal variance).
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Eye Subspace Model

Subset of 1196 eye images (25 × 20):

Left Eyes Right Eyes

Defn: Let Vk ≡ ∑k
j=1 s2

j , dQk ≡ s2
k/VL, andQk ≡ Vk/VL:
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Left plot showsdQk, the fraction of the total variance contributed by
thekth principal component.
Right plot showsQk the fraction of the total variance captured by the
subspace formed from the firstk principal components.
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Eye Subspace Model

Mean Eye:

Basis Images(1−6, and 10 :5 :35):

Reconstructions(for K = 5, 20, 50):

Eye Image Reconstruction
(K = 5)

Reconstruction
(K = 20)

Reconstruction
(K = 50)

Eye Image Reconstruction
(K = 5)

Reconstruction
(K = 20)

Reconstruction
(K = 50)
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Generative Eye Model

Generative model,M, for random eye images:

~I = ~m +

(

K
∑

k=1

ak
~bk

)

+ ~e

where~m is the mean eye image,ak∼N (0, σ2
k), σ2

k is the sample vari-

ance associated with thekth principal direction in the training data,

and~e ∼ N (0, σ2
e IN2) whereσ2

e = 1
N2

∑N2

k=K+1 σ2
k is the per pixel

out-of-subspace variance.

Random Eye Images:

Random draws from generative model  (with K = 5, 10, 20, 50, 100, 200)

So the likelihood of an image of a eye given this modelM is

p(~I |M) =

(

K
∏

k=1

p(ak|M)

)

p(~e |M)

where

p(ak|M) =
1√

2πσk

e
− a2

k

2σ2

k , p(~e |M) =
N2

∏

j=1

1√
2πσe

e
−

e2
j

2σ2
e .
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Eye Detection

The log likelihood of the model is given by

L(M) ≡ log p(~I |M) =

(

K
∑

k=1

log p(ak|M)

)

+ log p(~e |M)

=

(

K
∑

k=1

−a2
k

2σ2
k

)

+





N2

∑

j=1

−e2
j

2σ2
e



 + const

≡ Sin(~a) + Sout(~e) + const

Detector:

1. Given an image~I

2. Compute the subspace coefficients~a = B
T (~I − ~m)

3. Compute residual~e = ~I − ~m − B~a

4. For S(~a,~e) = Sin(~a) + Sout(~e), and a given thresholdτ , the

image patch is classified as an eye when

S(~a,~e) > τ .

2503: View-Based Models Page: 15



Eye Detection

Terminology:

• true positive = hit

• true negative = correct rejection

• false positive = false alarm (type I error)

• false negative = miss (type II error)

classified positives classified negatives

true examples true positives,Tpos false negatives,Fneg Npos = Tpos + Fneg

false examples false positives,Fpos true negatives,Tneg Nneg = Fpos + Tneg

Cpos Cneg N

Definitions:

• true positive (hit) rate:ρtp = Tpos/Npos (sensitivity)
(i.e., what fraction of the true eyes do we find?)

• true negative (reject) rate:ρtn = Tneg/Nneg (specificity)

• false positive rate:ρfp = Fpos/Nneg = 1−ρtn (1 - specificity)

• precision: Tpos/Cpos

(i.e., what fraction of positive response are correct hits?...
i.e., how noisy is the detector?)

• recall: ρtp = Tpos/Npos

(i.e., what fraction of the true eyes do we actually find?)
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Eye Detection

ROC Curves:

• true detection rate (sensitivity) vs false positive rate (1-specificity)
• trade-off (as a function of decision thresholdτ ) between sensitiv-

ity (hit rate) and specificity (responding only to positive cases)
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Here the eye images in the test set were different from the those in the
training set. Non-eyes were drawn at random from images.

Precision-Recall Curves:

• precision vs true detection rate (sensitivity)
• better whan ROC when theNneg � Npos, so even a low false

positive rate can yield many more false alarms than hits.
• that’s why precision divides true hits by total number of hits

rather than total number of positives.
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Face Detection

The wide-spread use of PCA for object recognition began withthe

work Turk and Pentland (1991) for face detection and recognition.

Shown below is the model learned from a collection of frontalfaces,

normalized for contrast, scale, and orientation, with the backgrounds

removed prior to PCA.

Here are the mean image (upper-left) and the first 15 eigen-images.

The first three show strong variations caused by illumination. The

next few appear to correspond to the occurrence of certain features

(hair, hairline, beard, clothing, etc).
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Face Detection/Recognition

Moghaddam, Jebara and Pentland (2000): Subspace methods are

used for head detection and then feature detection to normalize (warp)

the facial region of the image.

Recognition: Are these two images (test and target) the same?

Approach 1:Single Image Subspace Recognition:

Project test and target faces onto the face subspace, and look at dis-
tance within the subspace.

Approach 2:Intra/Extra-Personal Subspace Recognition:

• An intra-personal subspace is learned from difference images of
the same persion under variation in lighting and expression.

• The extra-personal subspace learned from difference between im-
ages of different people under similar conditions.
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Object Recognition

Murase and Nayar (1995)
• images of multiple objects, taken from different positionson the

viewsphere
• each object occupies a manifold in the subspace (as a function of

position on the viewsphere)
• recognition: nearest neighbour assuming dense sampling ofob-

ject pose variations in the training set.
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Object Recognition
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Object Recognition
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Quadratic Discriminant Analysis (QDA)

Classification. PCA was originally optimized for good reconstruc-

tion, for maximizing variance and decorrelating subspace coefficients,

but not for classification.

Suppose we have a mixture of Gaussian model for an image~d

p(~d ) = p(M1)G(~d; ~µ1, C1) + p(M2)G(~d; ~µ2, C2).

Herep(M1) + p(M2) = 1, with p(Mk) the prior for modelMk. The

ownership probability for~d is then

p(Mk|~d) =
p(Mk)G(~d; ~µk, Ck)

p(~d)
.

Finally, the log oddsδ(~d ) for modelM2 overM1 is defined to be

δ(~d) ≡ log

[

p(M2|~d )

p(M1|~d )

]

= log

[

p(M2)|C1|1/2

p(M1)|C2|1/2

]

+

1

2

[

(~d − ~µ1)
TC−1

1 (~d − ~µ1) − (~d − ~µ2)
TC−1

2 (~d − ~µ2)
]

A natural classifier forM2 is to threshold the log odds. Simplifying

the previous expression, we see we should choose modelM2 if and

only if

(~d − ~µ1)
TC−1

1 (~d − ~µ1) − (~d − ~µ2)
TC−1

2 (~d − ~µ2) > τq. (6)

Hereτq is a selected constant.

Notice this decision boundary is a quadratic surface in~d space.
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Linear Discriminant Analysis (LDA)

In the special case where the two classes have the same covariance,

i.e., C1 = C2, we see the quadratic terms in (6) cancel. As a result,

the decision criterion simplifies to (for some constantτl)

~d TC−1
1 (~µ2 − ~µ1) > τl. (7)

Notice this decision boundary is simply a hyperplane in~d space.

Often we assume the form of the decision boundary (e.g., linear or

quadratic), and fit the parameters to maximize the log-odds of some

training data (e.g., see [Hastie et al, 2001]).

For our purposes here,

• we note the direct connection of both LDA and QDA with thresh-

olding the ownership probability of a Gaussian mixture model,

with one Gaussian component modeling each class;

• LDA and QDA both generate simple decision boundaries (cf. the

eigenspace plots from Murase & Nayar, on p.20).

2503: View-Based Models Page: 24



Towards Better Detectors

PCA Summary

• PCA finds the subspace (of a specified dimension) that maxi-
mizes (projected) signal variance.

• A single Gaussian model is naturally associated with a PCA rep-
resentation. The principal axes are the principal directions of the
Gaussian’s covariance.

Issues:

• The single Gaussian model is often rather crude. PCA coeff’scan
exhibit significantly more structure (cf. Murase & Nayar).

• As a result of this unmodelled structure, detectors based onsingle
Gaussian models are often poor.

Alternatives:

• An alternative approach is to consider warped and aligned view
based models (see Cootes, Edwards, & Taylor, 1998).

• Richer density models of the subspace coefficients are possible
(e.g., nearest neighbour as in Murase & Nayar, or mixture mod-
els).

• More flexible detectors are very successful (see Viola & Jones,
2004).
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Binary Classification Problem

Given training data{~xk, yk}K
k=1, where

• ~xk ∈ <d is the feature vector for thekth data item,

• yk ∈ {−1, 1} denotes the class membership of thekth item~xk,

we seek a classifierF (~x) such thaty(x) ≡ sign(F (~x)) approximates

(in some sense) the training data.

In particular, on the training data, the given class indicator yk should

agree with the modelsign(F (~xk)) as much as possible.

AdaBoost is an algorithm for greedily training classifiersF (~x ) which

take the form of additive linear models.
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Additive Linear Models

An additive linear model has the form

Fm(~x) =

m
∑

j=1

αjfj(~x; ~θj) (8)

= Fm−1(~x) + αmfm(~x; ~θm).

Herem ≥ 1 and

• Fm(~x) is a weighted (i.e.αj) sum of simpler functionsfj(~x; ~θj).

• Note the simpler functions depend on parameters~θj, which we

need to fit along with the weightsαj.

• Here we take the simpler functionsfj(~x; ~θj) to be weak classi-

fiers, providing values in{−1, 1}.

• We useF0(~x) ≡ 0 in the recursive definition above.

Eigen-appearance models, wavelets, and mixtures of Gaussians mod-

els provide simple examples of additive linear models (although, the

basis functions are not simply weak classifiers, as they are here).
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Exponential Loss

We seek a modelFm(~x) such thatsign(Fm(~xk)) typically agrees with

the class indicatoryk ∈ {−1, 1} in the training data.

How should we measure agreement/disagreement?

Sinceyk should have the same sign asFm(~xk), it is convenient to

considerykFm(~xk), which should be positive.
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Possible loss (cost) functions ofz ≡ yF (~x) are:

• Classification Error. C(z) = 1 if z <= 0, else0. Hard to

optimize due to discontinuity.

• Quadratic Loss.C(z) = (z−1)2. Easy to optimize but penalizes

F (~x) for being the correct sign but too large (i.e. confident and

correct).

• Exponential Loss.C(z) = exp(−z). Smooth and monotonic in

z. Large costs forF (~x) large in absolute value, but the wrong

sign (i.e. confident and wrong, e.g. data outliers).
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Greedy Fitting and AdaBoost

Suppose we have trained a classifierFm−1(~x) with m − 1 weak com-

ponents, and wish to add one more linear component,

Fm(~x) = Fm−1(~x) + αmfm(~x; ~θm).

Suppose we chooseαm and~θm to minimize the exponential loss

K
∑

k=1

C(ykFm(~xk)) ≡
K
∑

k=1

e−ykFm(~xk)

=
K
∑

k=1

e−ykFm−1(~xk)e−ykαmfm(~xk,~θm)

=

K
∑

k=1

wm−1
k e−ykαmfm(~xk,~θm)

Here the weightswm−1
k = e−ykFm−1(~xk) are just the exponential losses

for the previous functionFm−1(~x) on each training item.

Note the weights are largest for data points which the previous func-

tion Fm−1(~x) confidently classifies incorrectly (i.e.ykFm−1(~xk) sig-

nificantly negative), and are smallest for points confidently classified

correctly (i.e.ykFm−1(~xk) significantly positive).

This greedy fitting of the weak classifiers in an additive model leads

to the AdaBoost learning algorithm (see Friedman et al, 2000).
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Viola and Jones Face Detector

Rejection cascade architecture:

Features are formed from Haar filters...

These features can be computed extremely rapidly using integral im-

ages.

The result is a real-time face detector with good classification perfor-

mance (Viola and Jones, 2004).
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Viola and Jones, Results
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