View-Based Models

Goal: Explore ways to model the image appearance of objects under
a wide range of viewing conditions.

Motivation:

A central question in vision concerns how we represent ¢hj€ane
simple approach is to let images themselves be the repetmant

e We consider the construction of low-dimensional basesra@ara
semble of training images of the object(s) in question upngr
cipal components analysis (PCA).

e We introduce PCA, its derivation, its properties, and somi&so
uses.

e We examine its suitability for object detection, and briefigcuss
some alternatives.

Readings: Sections 22.1-22.3 of the Forsyth and Ponce.
Matlab Tutorials: trainEigenEyes.m and detectEigenEyes.m
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Template Matching — Straw Man

What if we just stored all images (templates) of the objgat(®ach
characteristic vievavailable (the simplest possible view-based model).

For detection we could computemaatching scorébased on cross-
correlation of each template with every image neighboudhoo
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Problems:

e cross-correlation and related detectors are very seasdgismall
variations in object pose, lighting, occlusions, and smatia-
tions in object shape and appearance.

e we'd certainly need an extremely large training set of insage

e storage and computation costs become unreasonable asthe nu
ber of objects and views increases.

Question: How can we find a more efficient representation for the
ensemble of views, and more effectve methods for matching?
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Subspace Appearance Models

ldea: Images are not random, especially those of an object, olaimi
objects, under different viewing conditions.

Rather, than storing every image, we might try to represenirhages
more effectively, e.g., in a lower dimensiorsalbspace

For example, let’s represent eadhx N image as a point in afv?-
dim vector space (e.g., ordering the pixels lexicograplyi¢da form
the vectors).

A

(red points denote images, blue vectors denote image eliters)

How do we find a low-dimensional basis to accurately modegd(ex-
imate) each image of the training ensemble (as a linear guatibin
of basis images)?
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Linear Subspace Models

We seek a linear basis with which each image in the ensemhl is
proximated as a linear combination of basis imaiges)

K
I(X) = m(T)+ ) apbi(X), (1)
k=1

variants which emphasize detection instead of image geoeraere
m(Z ) is the mean of the image ensemble. Bubspace coefficients

a=(ay, ..., ax) comprise the representaion.
With some abuse of notation, assuming basis imageg with N?

pixels, let's define
b, — anNZx 1 vector with pixels arranged in lexicographic order
B — a matrix with columndy, i.e., B = [by, ..., by] € RV <K

With this notation we can rewrite Eq. (1) in matrix algebra as
I ~m+Ba&a (2)

In what follows, we assume that the mean of the ensemble(3th-
erwise, if the ensemble we have is not mean zero, we can dstihe

mean and subtract it from each image.)

2503: View-Based Models Page: 4



Choosing The Basis

Orthogonality: Let's assume orthogonal basis functions,

S ST
[ brl =1, b; b, = 0.

Subspace Coefficients: It follows from the linear model in Eq. (2)
and the orthogonality of the basis functions that

- T=

b;{; I ~ BkTBﬁ = B;{; [bl,...,BK]ﬁ = Qf

This selection of coefficientss = B”T, minimizes the sum of squared
errors (or sum of squared pixel differences, SSD):

min |I-BA& |?
acRK

Basis Images: In order to select the basis functiorﬁgk}f:l, sup-
pose we have a training set of images

(L, ., with L>K

If the mean is nonzero, subtract the mean imagk;, I;, from each
training image. (Recall we are assuming the images are nexat) z

Finally, let's select the basigb,}X ,, to minimize squared recon-
struction error:

L
ijn |L, —Ba |3
=1
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Intuitions

Example: let's consider a set of imaggk }£ ., each with only two
pixels. So, each image can be viewed as a 2D pﬁil@,R?

—

us

For a model with only one basis image, what shdulde?

Approach: Fit an ellipse to the distribution of the image data, and
choose61 to be a unit vector in the direction of the major axis.

Define the ellipse a’ C~!xX = 1, whereC is the sample covariance
matrix of the image data,

1 L T
C=- > LT,
1=1
The eigenvectors df provide the major axis, i.e.,
CU =UD

for orthogonal matrixU = [u;, us], and diagonal matri with el-
ementsd; > dy > 0. The directionu; associated with the largest
eigenvalue is the direction of the major axis, soHet= 4.
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Principal Components Analysis

Theorem: (Minimum reconstruction error)T'he orthogonal basiB,
of rank X' < N2, that minimizes the squared reconstruction error over
training data{I;}~ ., i.e.,

L
> min || T -Ba |3
=1
is given by the first eigenvectors of the data covariance matrix
1 L T 2. A2
. I T N*xN . .
C_E;IZIZ eR . forwhich CU = UD

whereU = [uy, ..., Uz2| is orthogonal, and =diag(ds, ..., d2) with
di>dy> ... >dyo.

That is, the optimal basis vectors d}@: ug, fork = 1...K. The cor-
responding basis imagés,(X)}_, are often called eigen-images.

Proof: see the derivation below.

2503: View-Based Models Page: 7



Derivation of PCA

To begin, we want to find in order to minimize squared error in subspace approximatio the
images of the training ensemble.

L
E = ) minl|I-Ba |3
=1

Given the assumption that the columndére orthonormal, the optimal coefficients aye= BTfl,
SO

L
E =Y mn|L-B&|; = |L-BB'L; 3)
=1 M
Furthermore, writing the each training image as a columnrnraftix A = [fl, cey TL} , we have
L
E= ) ||[L-BB'L|} = |A-BB"A|} = trace[AA"]| —trace[B"AA"B]
=1

You get this last step by expanding the square and n@hB = I,, and using the properties of
trace, €.9.,trace[A] = trace[A”], and alsdrace[BY AATB] = trace] ATBBTA] .
So the minmize the average squared error in the approximagowvant to findB to maximize

E' = trace BTAA"B] 4)
Now, let’s use the fact that for the data covarianCexe haveC = %A AT. Moreover, as defined
above the SVD of” can be written a€ = U D U”. So, let’s substitute the SVD int’:
E' = trace [ BTUDU'B] (5)
where of coursdJ is orthogonal, an® is diagonal.

Now we just have to show that we want to cho@ssuch that the trace strips off the filstelements
of D to maximizeFE'. Intuitively, note thaB” U must be ranki sinceB is rank K. And note that
the diagonal elements @ are ordered. Also the trace is invariant under matrix rotatiSo, the
highest rankK" trace we can hope to get is by choosiBgo that, when combined witd we keep
the first K columns ofD. That is, the columns dB should be the firsi orthonormal rows olU.
We need to make this a little more rigorous, but that’s it fown.

2503: View-Based Models Notes: 8



Other Properties of PCA

Maximum Variance: The K-D subspace approximation captures
the greatest possible variance in the training data.

~T' = o . :
e Fora; = b, I, the directiorb, that maximizes the varianced®] =
- T - . -1 - . . .
b; Cby, subject tob, b; = 1, is the first eigenvector dof.
T A . -7 — —T -
e The second maximizéds, Cb, subjecttdb, b, =1 andb, by, =0.
> TS . ..
e Fora;, = by I, anda = (ay,...,ax), the subspace coefficient
covariance is Ea'| = diagd,,...,dx). Thatis, the diagonal
entries ofD are marginal variances of the subspace coefficients:

or = Ela?] = dy, .

So the total varianceapturedin the subspace is sum of first
eigenvalues o€.

e Total variancdostowing to the subspace projection (i.e., the out-
of-subspace variance) is the sum of the [i$t- K eigenvalues:

N2
L2 | IE-Ba ] = 3 o
Decorrelated Coefficients: C is diagonalized by its eigenvectors,
soD is diagonal, and the subspace coefficients are uncorrelated
e Under a Gaussian model of the images (where the images are
drawn from an/N?-dimensional Gaussian pdf), this means that

the coefficients are also statistically independent.
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PCA and Singular Value Decomposition
The singular value decomposition of the data matix
A= [fl, ...,fL} A cRM*L  where usuallyL, < NZ.

IS given by

A=USV?
whereU € RV*L S ¢ REXL, V € REXL | The columns otJ and
V are orthogonal, i.eU’U =1,,;, andV!V =1,,,, and matrixS
Is diagonal S = diag sy, ..., sp) wheres; > s9 > ... > s;, > 0.

Theorem: The best rankk approximation toA under the Frobenius
norm, A, is given by

K N2
A =) s = BBTA, where min |A-A|L =) s,
1 rank(A): b K41

andB = [iy, ..., lig]. A is also the best rank approximation under
the L, matrix norm.

What's the relation to PCA and the covariance of the traimmages?

1 1
ZI;IZ — —AAT — ZUSVTVSTUT — ZUSQUT

So the squared singular values Afare proportional to the first

eigenvalues o€:

q %si fork=1,....L
k: p—
0 fork > L

And the singular vectors oA are just the first. eigenvectors o€.
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Eigen-Images for Generic Images?

Fourier components are eigenfunctions of generic imagerebkes.

Why? Covariance matrices for stationary processes ardifep

1

PCA vyields unique eigen-images up to rotations of invarisurb-
spaces (e.g., Fourier components with the same marginaheay).
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Eye Subspace Model

Subset of 1196 eye image8q x 20):
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Si/VL, anko = Vk/VL:

Variance Fraction Explained by Subspace

Defn: LetV, = >0 52, dQ;

js

dQ(k): Variance Fraction Explained by one s.v.

o
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Singular value index, k Singular value index

Left plot showsd@;, the fraction of the total variance contributed by
the k' principal component.

Right plot shows();. the fraction of the total variance captured by the
subspace formed from the firstprincipal components.
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Eye Subspace Model

Mean Eye:

Basis Imageg1—6, and 10:5:35):

2l 1ok
MESESE

Reconstructions(for K = 5, 20, 50):

Eye Image Reconstructlon Reconstruction Reconstruction
(K =20) (K=50)

Eye Image Reconstructlon Reconstruction Reconstruction
(K =20) (K'=50)
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Generative Eye Model

Generative modelM, for random eye images:

K

I = m+ <Zakbk> + &

k=1
wherem is the mean eye image;, ~ N (0, o3), o3 is the sample vari-
ance associated with thé" principal direction in the training data,
andé ~ N(0,021y2) whereo? = ﬁZkNjKH oi is the per pixel
out-of-subspace variance.

Random Eye Images:

i
. I

Random draws from generative model (with K =5, 10, 20, 50, 100, 200)

So the likelihood of an image of a eye given this madelis

<Hp ay| M) ) €| M)

where
2 2
(M) = e ™ H o
a = e : e
Ak V2moy, Y 27‘(’0’6
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Eye Detection

The log likelihood of the model is given by

K
LM) = logp(I|M) = (Zlogp(ak/\/l)> + logp(€| M)

k=1
K 2 N? 2
= — | + + const
(Z 20]%) (Z 203)
k=1 Jj=1
= Sin(8) + Sout(€) + const

Detector:

1. Given an imagé

2. Compute the subspace coefficiesits B” (I — m)

3. Compute residua = I — m — B&

4. For S(a,€) = Si(a) + Soue(€), and a given threshold, the

image patch is classified as an eye when

S(@a,€) > 7.
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Terminology:

Eye Detection

e true positive = hit

e true negative = correct rejection

o false positive = false alarm (type | error)

e false negative = miss (type Il error)

classified positives

classified negative$

true exampleg

true positivesy,,,

false negativesl,.,

Npos = Tpos + Fneg

false examples

 false positivesf),s

true negatives/,.,

Nneg = Fpos + Tneg

Definitions:

C11005

Cneg

N

e true positive (hit) rate:py, = T)0s/Npos (SENSItiVity)
(i.e., what fraction of the true eyes do we find?)

e true negative (reject) ratep, = T,/ Nyey (SpeCcificity)

o false positive rateps, = Fjps/Npey = 1—p1n (1 - Specificity)

e precision

: Tpos / Cpos

(i.e., what fraction of positive response are correct hits?
l.e., how noisy is the detector?)

o recall: py, = Tos/Npos
(i.e., what fraction of the true eyes do we actually find?)
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Eye Detection

ROC Curves:

e true detection rate (sensitivity) vs false positive ratsigcificity)
e trade-off (as a function of decision threshaldbetween sensitiv-
ity (hit rate) and specificity (responding only to positivases)

ROC
l,
0.98+
0.96+
0.94r
[}
IS
X 0.92+
c
=
g 0.9t
o 0.88F i —— nBasis= 0
2 ‘ nBasis = 1
o / .
0.86F | nBasis = 2
e nBasis = 4
| nBasis = 8
0.84 —— nBasis = 20
/ — nBasis = 50
0.82- —— nBasis =100
/ / —— nBasis =200
08 I | | T J
0 0.05 0.1 0.15 0.2

False Positive Rate

Here the eye images in the test set were different from theethrothe
training set. Non-eyes were drawn at random from images.

Precision-Recall Curves:

e precision vs true detection rate (sensitivity)

e better whan ROC when th¥),,., > N,,, so even a low false
positive rate can yield many more false alarms than hits.

e that’s why precision divides true hits by total number ofshit
rather than total number of positives.
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Face Detection

The wide-spread use of PCA for object recognition began wnén
work Turk and Pentland (1991) for face detection and redagni

Shown below is the model learned from a collection of frofdaks,
normalized for contrast, scale, and orientation, with thekigrounds
removed prior to PCA.

Here are the mean image (upper-left) and the first 15 eigagas
The first three show strong variations caused by illumimatid he
next few appear to correspond to the occurrence of certaiturfes
(hair, hairline, beard, clothing, etc).
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Face Detection/Recognition

Multiscale

Head Search

»| Feature
Search

S 0 e (T “‘E

Moghaddam, Jebara and Pentland (2000): Subspace methods ar
used for head detection and then feature detection to nizer(alarp)

the facial region of the image.

Recognition: Are these two images (test and target) the same?

Approach 1:Single Image Subspace Recognition:
Project test and target faces onto the face subspace, akdtals-

tance within the subspace.

Approach 2:ntra/Extra-Personal Subspace Recognition:

e An intra-personal subspace is learned from difference enay
the same persion under variation in lighting and expression

e The extra-personal subspace learned from difference leature
ages of different people under similar conditions.

2503: View-Based Models
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Object Recognition

Murase and Nayar (1995)
e images of multiple objects, taken from different positi@msthe
viewsphere
e each object occupies a manifold in the subspace (as a faraitio
position on the viewsphere)
e recognition: nearest neighbour assuming dense sampling-of
ject pose variations in the training set.
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Object Recognition
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Object Recognition
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Quadratic Discriminant Analysis (QDA)

Classification PCA was originally optimized for good reconstruc-
tion, for maximizing variance and decorrelating subspaedficients,
but not for classification.

Suppose we have a mixture of Gaussian model for an imfage
p(d) = p(My)G(d: fir, C1) + p(Mo)G(d: fiz, Cs).

Herep(M;) + p(Ms) = 1, with p(M}) the prior for model)M,.. The
ownership probability forl is then
p(My)G(d; jiy, Cy)
p(d)
Finally, the log Oddﬁ(cf) for model M, over M; is defined to be

) = log [m@] _ 1g[5 el
—(d—

p(My|d) =

My)|Cy| 2
i) Cy M (d - )]
A natural classifier foM/; is to threshold the log odds. Simplifying

the previous expression, we see we should choose midgddl and
only if

(d— i)' Crid — i) — (d— i) Cy M d — i) > 7. (B)
Herer, is a selected constant.

Notice this decision boundary is a quadratic surfaceé space.
2503: View-Based Models Page: 23



Linear Discriminant Analysis (LDA)

In the special case where the two classes have the sameatwari
l.e.,C; = (5, we see the quadratic terms in (6) cancel. As a result,
the decision criterion simplifies to (for some constait

'Oy iy — i) > 7 (7)
Notice this decision boundary is simply a hyperplané%rpace.

Often we assume the form of the decision boundary (e.g.atioe
guadratic), and fit the parameters to maximize the log-oddsme
training data (e.g., see [Hastie et al, 2001]).

For our purposes here,

e We note the direct connection of both LDA and QDA with thresh-
olding the ownership probability of a Gaussian mixture mpde
with one Gaussian component modeling each class;

e LDA and QDA both generate simple decision boundaries (&. th
eigenspace plots from Murase & Nayar, on p.20).
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Towards Better Detectors
PCA Summary

e PCA finds the subspace (of a specified dimension) that maxi-
mizes (projected) signal variance.

e A single Gaussian model is naturally associated with a PQA re
resentation. The principal axes are the principal direstiof the
Gaussian’s covariance.

Issues:

e The single Gaussian model is often rather crude. PCA caoedfis
exhibit significantly more structure (cf. Murase & Nayar).

e As aresult of this unmodelled structure, detectors baseihghe
Gaussian models are often poor.

Alternatives:

e An alternative approach is to consider warped and alignea vi
based models (see Cootes, Edwards, & Taylor, 1998).

e Richer density models of the subspace coefficients arelpessi
(e.g., nearest neighbour as in Murase & Nayar, or mixture-mod
els).

e More flexible detectors are very successful (see Viola & 3pne
2004).
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Binary Classification Problem

Given training datd 7, y }1*_,, where
e 7; € R¢is the feature vector for thi" data item,
e 4. € {—1,1} denotes the class membership of kifeitem 7.,

we seek a classifief'(7) such thaty(z) = sign(F' (7)) approximates
(in some sense) the training data.

In particular, on the training data, the given class indicag; should
agree with the modeign(F'(7})) as much as possible.

AdaBoost is an algorithm for greedily training classifiéis’) which
take the form of additive linear models.
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Additive Linear Models

An additive linear model has the form

Fu(Z) = Y o,fi(#6)) (8)

Herem > 1 and
e [,(%)is a weighted (i.ea;) sum of simpler functiong;(; §j).

e Note the simpler functions depend on parame@e,rsrvhich we
need to fit along with the weights;.

—

e Here we take the simpler functiornfs(z; ;) to be weak classi-
fiers, providing values ig—1, 1}.

e We usef(r) = 0 in the recursive definition above.

Eigen-appearance models, wavelets, and mixtures of Gansssiod-
els provide simple examples of additive linear models @alth, the
basis functions are not simply weak classifiers, as theyen®) h
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Exponential Loss

We seek a moddt,, (%) such thatign(F;, (7)) typically agrees with
the class indicatoy, € {—1, 1} in the training data.

How should we measure agreement/disagreement?

Sincey; should have the same sign &%,(%%), it is convenient to
considerny,. F,, (7)), which should be positive.

4—

= Class Error
35} Exp. Loss |4
= Quad. Loss

3t
25}

2t

151
1 : 1
051 1
0 . . :

-2 -15 -1 -05 0 0.5 1 15 2
y F(x)

Loss

Possible loss (cost) functions of= y F'(7) are:

e Classification Error. C(z) = 1if z <= 0, else(. Hard to
optimize due to discontinuity.

e Quadratic Loss. C(z) = (z—1)%. Easy to optimize but penalizes
F (&) for being the correct sign but too large (i.e. confident and
correct).

e Exponential Loss. C(z) = exp(—z). Smooth and monotonic in
z. Large costs forF' () large in absolute value, but the wrong
sign (i.e. confident and wrong, e.g. data outliers).
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Greedy Fitting and AdaBoost

Suppose we have trained a classifigy | (z) with m — 1 weak com-
ponents, and wish to add one more linear component,

—

Fo(Z) = Fna(Z) + amfin(T; 0m).

Suppose we chooseg, andd,, to minimize the exponential loss

K

K
Y ClypFu(@) = Y e whnli

k=1 k=1
K —
_ E e~ UkFm—1(T1) o =yram fn(Ty.0m)

k=1
K

— E wzl_le_ykamfm(fkagm)
k=1

Here the weightsy)" ! = e~%n-1(7) are just the exponential losses
for the previous functior¥;,,_ () on each training item.

Note the weights are largest for data points which the pres/fanc-
tion F,,_1(%) confidently classifies incorrectly (i.ay F,,—1(Z;) Sig-
nificantly negative), and are smallest for points confidecaithssified
correctly (i.e.y, F,,—1(Z}) significantly positive).

This greedy fitting of the weak classifiers in an additive mdelads
to the AdaBoost learning algorithm (see Friedman et al, 2000
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Viola and Jones Face Detector

Rejection cascade architecture:
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These features can be computed extremely rapidly usingradtam-
ages.
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The result is a real-time face detector with good classibogterfor-
mance (Viola and Jones, 2004).
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Viola and Jones, Results
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