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Local Features Tutorial

References:

• Matlab SIFT tutorial (from course webpage)

• Lowe, David G. ’Distinctive Image Features from
Scale Invariant Features’, International Journal of
Computer Vision, Vol. 60, No. 2, 2004, pp. 91-110
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Local Features Tutorial

Previous week: View based models for object

recognition

- The problem: Build a model that captures general

properties of eye appearance that we can use to identify
eyes (though the approach is general, and does not
depend on the particular object class).

- Generalized model of eye appearance based on PCA.
Images taken from same pose and normalized for
contrast.

- Demonstrated to be useful for classification, key
property: the model can find instances of eyes it has
never seen before.
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Local Features Tutorial

Today: Local features for object recognition

- The problem: Obtain a representation that allows
us to find a particular object we’ve encountered before
(i.e. “find Paco’s mug” as opposed to “find a mug”).

- Local features based on the appearance of the object
at particular interest points.

- Features should be reasonably invariant to
illumination changes, and ideally, also to scaling,
rotation, and minor changes in viewing direction.

- In addition, we can use local features for matching,
this is useful for tracking and 3D scene reconstruction.
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Local Features Tutorial

Key properties of a good local feature:

- Must be highly distinctive, a good feature should
allow for correct object identification with low
probability of mismatch. Question: How to identify

image locations that are distinctive enough?.

- Should be easy to extract.

- Invariance, a good local feature should be tolerant to
� Image noise
� Changes in illumination
� Uniform scaling
� Rotation
� Minor changes in viewing direction
Question: How to construct the local feature to

achieve invariance to the above?

- Should be easy to match against a (large) database
of local features.
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SIFT features

Scale Invariant Feature Transform (SIFT) is an
approach for detecting and extracting local feature
descriptors that are reasonably invariant to changes in
illumination, image noise, rotation, scaling, and small
changes in viewpoint.

Detection stages for SIFT features:

- Scale-space extrema detection

- Keypoint localization

- Orientation assignment

- Generation of keypoint descriptors.

In the following pages we’ll examine these stages in
detail.
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Scale-space extrema detection

Interest points for SIFT features correspond to local
extrema of difference-of-Gaussian filters at different
scales.

Given a Gaussian-blurred image

L(x, y, σ) = G(x, y, σ) ∗ I(x, y),

where

G(x, y, σ) = 1/(2πσ2) exp−(x2+y2)/σ2

is a variable scale Gaussian, the result of convolving an
image with a difference-of-Gaussian filter

G(x, y, kσ) − G(x, y, σ)

is given by

D(x, y, σ) = L(x, y, kσ) − L(x, y, σ) (1)
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Which is just the difference of the Gaussian-blurred
images at scales σ and kσ.

Figure 1: Diagram showing the blurred images at different

scales, and the computation of the difference-of-Gaussian images

(from Lowe, 2004, see ref. at the beginning of the tutorial)

The first step toward the detection of interest points
is the convolution of the image with Gaussian filters
at different scales, and the generation of difference-of-
Gaussian images from the difference of adjacent blurred
images.
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Scale-space extrema detection

The convolved images are grouped by octave (an
octave corresponds to doubling the value of σ), and the
value of k is selected so that we obtain a fixed number
of blurred images per octave. This also ensures that
we obtain the same number of difference-of-Gaussian
images per octave.

Note: The difference-of-Gaussian filter provides an
approximation to the scale-normalized Laplacian of
Gaussian σ2

∇
2G. The difference-of-Gaussian filter is

in effect a tunable bandpass filter.
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Scale-space extrema detection

Figure 2: Local extrema detection, the pixel marked × is

compared against its 26 neighbors in a 3 × 3 × 3 neighborhood

that spans adjacent DoG images (from Lowe, 2004)

Interest points (called keypoints in the SIFT
framework) are identified as local maxima or minima
of the DoG images across scales. Each pixel in the
DoG images is compared to its 8 neighbors at the
same scale, plus the 9 corresponding neighbors at
neighboring scales. If the pixel is a local maximum or
minimum, it is selected as a candidate keypoint.
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Scale-space extrema detection

For each candidate keypoint:

- Interpolation of nearby data is used to accurately
determine its position.

- Keypoints with low contrast are removed

- Responses along edges are eliminated

- The keypoint is assigned an orientation

To determine the keypoint orientation, a gradient
orientation histogram is computed in the neighborhood
of the keypoint (using the Gaussian image at the closest
scale to the keypoint’s scale). The contribution of each
neighboring pixel is weighted by the gradient magnitude
and a Gaussian window with a σ that is 1.5 times the
scale of the keypoint.

Peaks in the histogram correspond to dominant
orientations. A separate keypoint is created for the
direction corresponding to the histogram maximum,
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and any other direction within 80% of the maximum
value.

All the properties of the keypoint are measured relative
to the keypoint orientation, this provides invariance to
rotation.
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SIFT feature representation

Once a keypoint orientation has been selected, the
feature descriptor is computed as a set of orientation
histograms on 4 × 4 pixel neighborhoods. The
orientation histograms are relative to the keypoint
orientation, the orientation data comes from the
Gaussian image closest in scale to the keypoint’s scale.

Just like before, the contribution of each pixel is
weighted by the gradient magnitude, and by a Gaussian
with σ 1.5 times the scale of the keypoint.

Figure 3: SIFT feature descriptor (from Lowe, 2004)
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Histograms contain 8 bins each, and each descriptor
contains an array of 4 histograms around the keypoint.
This leads to a SIFT feature vector with 4 × 4 × 8 =
128 elements. This vector is normalized to enhance
invariance to changes in illumination.
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SIFT feature matching

- Find nearest neighbor in a database of SIFT features
from training images.

- For robustness, use ratio of nearest neighbor to ratio
of second nearest neighbor.

- Neighbor with minimum Euclidean distance →

expensive search.

- Use an approximate, fast method to find nearest
neighbor with high probability.
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Recognition using SIFT features

- Compute SIFT features on the input image

- Match these features to the SIFT feature database

- Each keypoint specifies 4 parameters: 2D location,
scale, and orientation.

- To increase recognition robustness: Hough transform
to identify clusters of matches that vote for the same
object pose.

- Each keypoint votes for the set of object poses that
are consistent with the keypoint’s location, scale, and
orientation.

- Locations in the Hough accumulator that accumulate
at least 3 votes are selected as candidate object/pose
matches.

- A verification step matches the training image for
the hypothesized object/pose to the image using a
least-squares fit to the hypothesized location, scale,
and orientation of the object.
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SIFT matlab tutorial

Gaussian blurred images and Difference of Gaussian
images

 Range: [−0.11, 0.131] 
 Dims: [959, 2044] 

Figure 4: Gaussian and DoG images grouped by octave
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SIFT matlab tutorial

Keypoint detection

a)

c)

b)

Figure 5: a) Maxima of DoG across scales. b) Remaining

keypoints after removal of low contrast points. C) Remaining

keypoints after removal of edge responses (bottom).
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SIFT matlab tutorial

Final keypoints with selected orientation and scale

Figure 6: Extracted keypoints, arrows indicate scale and

orientation.
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SIFT matlab tutorial

Warped image and extracted keypoints

Figure 7: Warped image and extracted keypoints.

The hough transform of matched SIFT features yields
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the transformation that aligns the original and warped
images:

Computed affine transformation from rotated image to

original image:

>> disp(aff);

0.7060 -0.7052 128.4230

0.7057 0.7100 -128.9491

0 0 1.0000

Actual transformation from rotated image to

original image:

>> disp(A);

0.7071 -0.7071 128.6934

0.7071 0.7071 -128.6934

0 0 1.0000

SIFT matlab tutorial 20



(c) 2004 F. Estrada & A. Jepson & D. Fleet

SIFT matlab tutorial

Matching and alignment of different views using local
features.

Orignial View

 Range: [0, 1] 
 Dims: [384, 512] 

Reference View

 Range: [0, 1] 
 Dims: [384, 512] 

Aligned View

 Range: [−0.0273, 1] 
 Dims: [384, 512] 

Reference minus Aligned View

 Range: [−0.767, 0.822] 
 Dims: [384, 512] 

Figure 8: Two views of Wadham College and affine

transformation for alignment.
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SIFT matlab tutorial

Object recognition with SIFT

Image

 Range: [0, 1] 
 Dims: [480, 640] 

Model

 Range: [0, 1] 
 Dims: [480, 640] 

Location

 Range: [−0.986, 0.765] 
 Dims: [480, 640] 

Image

 Range: [0, 1] 
 Dims: [480, 640] 

Model

 Range: [0, 1] 
 Dims: [480, 640] 

Location

 Range: [−1.05, 0.866] 
 Dims: [480, 640] 

Image

 Range: [0, 1] 
 Dims: [480, 640] 

Model

 Range: [0, 1] 
 Dims: [480, 640] 

Location

 Range: [−1.07, 1.01] 
 Dims: [480, 640] 

Figure 9: Cellphone examples with different poses and occlusion.
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SIFT matlab tutorial

Object recognition with SIFT

Image

 Range: [0, 1] 
 Dims: [480, 640] 

Model

 Range: [0, 1] 
 Dims: [480, 640] 

Location

 Range: [−0.991, 0.992] 
 Dims: [480, 640] 

Image

 Range: [0, 1] 
 Dims: [480, 640] 

Model

 Range: [0, 1] 
 Dims: [480, 640] 

Location

 Range: [−1.05, 0.963] 
 Dims: [480, 640] 

Image

 Range: [0, 1] 
 Dims: [480, 640] 

Model

 Range: [0, 1] 
 Dims: [480, 640] 

Location

 Range: [−0.988, 1.05] 
 Dims: [480, 640] 

Figure 10: Book example, what happens when we match similar

features outside the object?
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Closing Comments

- SIFT features are reasonably invariant to rotation,
scaling, and illumination changes.

- We can use them for matching and object recognition
among other things.

- Robust to occlusion, as long as we can see at least 3
features from the object we can compute the location
and pose.

- Efficient on-line matching, recognition can be
performed in close-to-real time (at least for small object
databases).
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Closing Comments

Questions:

- Do local features solve the object recognition
problem?

- How about distinctiveness? how do we deal with false
positives outside the object of interest? (see Figure
10).

- Can we learn new object models without
photographing them under special conditions?

- How does this approach compare to the object
recognition method proposed by Murase and Nayar?
Recall that their model consists of a PCA basis
for each object, generated from images taken under
diverse illumination and viewing directions; and a
representation of the manifold described by the training
images in this eigenspace (see the tutorial on Eigen
Eyes).

Closing Comments 25


