Image Segmentation

Introduction. The goal of image segmentation is to cluster pixels into
salientimage regions, i.e., regions corresponding twviddal surfaces,
objects, or natural parts of objects.

A segmentation could be used for object recognition, ooaiusound-
ary estimation within motion or stereo systems, image cesgon,
image editing, or image database look-up.

We considebottom-up image segmentationThat is, we ignore (top-

down) contributions from object recognition in the segnaéioh pro-
cess.

For input we primarily consider image brightness here calth simi-
lar techniques can be used with colour, motion, and/or gtéisparity
information.

Reading on SegmentationSee Chapter 14 of the text.
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Example Segmentations: Simple Scenes

Segmentations of simple gray-level images can provideulisafor-
mation about the surfaces in the scene.

Original Image Segmentation (by SMC)

Note, unlike edge images, these boundaries delimit disjoiage re-

gions (i.e. they arelosed.
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Siren Song of Segmentation

Why would a good segmentation be useful? Imagine...

Parent to baby: “Look, there is a baby horse with its mommy!”
Baby:
Reasonlng Image

Fol | ow poi nting gesture.
Acqui re i mge.

horse is an ani nal

ani ml ~» quadruped

baby horse ~» small horse

O R wN e

Vi sual Task: Seek correl ates
of two simlar quadrupeds in inage,
one smaller than the other.

Bottom-Up Segmentation Parse of Two Quadrupeds

Baby: “Gaaa.” (Translation: “Eureka, | can see!”)
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Key Questions

1. How well can we expect to segment images without recoggizi
objects (i.e. bottom-up segmentation)?

2. What determines a segment? How can we pose the problem math
ematically?

3. How do we solve the specified problem(s)?

4. How can we evaluate the results?
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Example Segmentations: Horses Image

Original Image

Which is the best segmentation? Why?
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Example Segmentations: Tiger Image

Original Image

p———

Group these intd( categories based on quality< (= 27?)
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Observations on Example Segmentations

The previous segmentations were done by the local varigtighal-
gorithm [7], spectral min-cut (SMC) [6], human (H) [11, 9]dgpe-
augmented mean-shift (ED) [4, 3], and normalized cut (NG) Hl.

e The quality of the segmentation depends on the image. Shyooth
shaded surfaces with clear gray-level steps between eliffesur-
faces are ideal for the above algorithms.

e Humans probably use object recognition in conjunction \seQ-
mentation, although the machine algorithms exhibited alay
not.

e For relatively simple images it is plausible that machingnsen-
tations, such as those shown on p.2, are useful for sevexadlvi
tasks, including object recognition.

e For more complex images (pp. 5, 6), the machine segmensation
provide a less reliable indicator for surface boundaries|, their
utility for subsequent processing becomes guestionable.

e While many segmentation algorithms work well with simple ex
amples, they will all break down given examples with enoughc
ter and camouflage. The assessment of segmentation atgsrith
therefore needs to be done on standardized datasets.
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Current Goals

e Provide a brief introduction to the current image segmeortdit-
erature, including:

— Feature space clustering approaches.

— Graph-based approaches.

e Discuss the inherent assumptions different approaches atadut
what constitutes a good segment.

e Emphasize general mathematical tools that are promising.

e Discuss metrics for evaluating the results.
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Clustering in Feature Space

Given an imagéd (Z), consider feature vectofs() of the form

T
F(r) = | I(Z)
L()
HereE(:E) is a vector of local image features, perhaps bandpass filter

responses. For colour images(#) would also include information
about the colour at pixet.

In order to segment the image we might seek a clustering detteare
vectorsﬁ(f) observed in that image. A compact region of the image
having a distinct gray-level or colour will correspond tcegion in the
feature space with a relatively high density of sampleduiesatectors.
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Mixture of Gaussians Model

A natural approach is then to model the observed featurevditri-
bution using a mixture of Gaussians (MoG) modé)

K
p(F|M) = Zﬂkg(ﬁ‘mkazk)-
k=1

Herer, > 0 are the mixing coefficients, with; | 7. = 1, andsiy,,
>, are the means and covariances of the component Gaussians.

For a givenK, the parameter§(ry, i, 3x) H, of the MoG model
can be fit to the datdF(Z)}zcx using maximum-likelihood (her&
denotes the set of all pixels).

Penalized likelihood (aka minimum description length (MDtan be
used to select the number of componeits,
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Maximum Ownership Labelling

The segment label ) = k for a pixelZ is thek which maximizes the
ownership ofF(Z) in the MoG model\/. That s,

Here K = 3 (above right). The max-
ownership image was post-processed us:
ing connected components and small re-
gions were discarded (gray). The aver-
age colour of the remaining large com-
ponents is shown (right). The width of
the segment boundaries is due to the use
of a spatial texture feature. From Blobworld [2].

Variations: The MoG model can be replaced by K-means (see text), or
restricted to use low-dimensional parameterizationsfofeg. block
diagonal).
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Assumptions Come Home to Roost
The quality of the resulting segmentation depends on theedetp
which the given image matches the (implicit) assumptionsbegan
with, namely:

1. Different segments form compact, well-separated claster.

2. Gaussian components i correspond to salient regions.

From Blobworld [2].

Nevertheless, this feature space clustering can be usafuxtract-
ing rough summaries of image content suitable for querymgge

databases [2].
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Mean-Shift Segmentation

The mean-shift segmentation algorithm [4] also consideesproba-
bility density of feature vector$'(Z) obtained from a given image.
However, anon-parametric model of the density is used instead of
an MoG. In particular, a kernel-density estimate is useth wi

q 1 L o .
p(F) = 7 Y K(F - F(z)), with F € R,
‘ ‘ reX
where X is the set of all pixels in the imageX| is the number of
pixels, andK (€) is a kernel.

Common choices foK (¢€) have the form
K(@) = k(eTs'e), (1)

wherek(s) is a concave decreasing function of the squared deviation
s=ely~le> 0. For example,

k(s) = ce*?, for a Gaussian kernel (2)

k(s)=c|l—s]4, for an Epanechnikov kernel  (3)

Herec = ¢(X) is a normalizing constant which ensuigsée) integrates
to one, and z |, denotes positive rectification, i.€z|, = max(z,0).

We show an example next.
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Example Feature Density

20 3 40 S0 80 70 80 90 100

NORMALIZED DEMSITY
o
S

(c) From Comaniciu and Meer [4].
The kernel density estimate using the Epanechnikov kemalr{ the
2d feature points in (a). The covariance paramgtef the kernelK (¢)
determines the smoothness of the density estimaté’). The trade-
off is between sampling artifacts (kernel too narrow) vergss of res-
olution inpy (E) (kernel too broad).
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Mean-Shift Iterations

We will use the modes (i.e. peaks)mf(ﬁ) to be segmentation labels,
replacing the use of the component labels in the previous koGel.
That is, we wish to locally solve

F. =arg m@pr(ﬁ).
F

This is similar to robust M-estimation, although here weraaximiz-

ing the objective functiop (F'), not minimizing it. A similar deriva-
tion to the one for M-estimation shows must satisfy

wherew(é) = —k'(€7%71¢) andk/(s) = %(s). In words, F, must be

the weighted mean of () using the weightso(F(Z) — F.) centered
onF..

The analogue of the iterative reweighting idea used in Nlvesdion is
to solve forF., here by iterating thenean-shiftequation

FH‘H _ D_fex w<ﬁ(€) — F})§<f)
! S ey w(F(7) — F))

Note F;, is just the weighted mean of the feature poifts), with

(4)

the weightsw(F () — F;) centered on the previous guess
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Watersheds of Mean-Shift

The label for an arbitrary pixef, denotes the mode that the mean shift
iterations (4) converge to, when started at the feakyre ﬁ(fo). That

IS, the segments produced by mean-shift are defined to @othains

of convergencdaka watersheds) of the mean-shift iterations.

In the figure on p.14 the trajectories of mean-shift are shiown). The
labelling resulting from the watersheds is shown by the wadan (b).

Properties:

1. Convergence: The mean-shift iterations converge to a stationary
point of p (F) (see [4]).

2. Anti-edge Detection: The mean-shift iterations are repelled from
local maxima of the norm of the gradient (wiftof F Z(Z)X 1 F ().
This occurs, for example, at strong edges in the imdge

3. Fragmentation of Constant Gradient Regions:The density ()
IS constant (up to discretization artifacts) in regions weltbe gra-
dient of F 7(£)2 1 F(Z) is constant. For example, wha&nl (z) is
constant, every point gf(F) is stationary and the mean-shift it-
erations stall (see figure p.14, part c). Postprocessiragisimred to

keep only salient local maxima (see [4]).
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Example Mean-Shift Segmentations

Segmentations from the basic mean-shift algorithm:

The scale of the mean-shift kernel (controlledX)yroughly controls
the size and shape of the extracted regions. There is adfidetween
maintaining the salient boundaries but suffering ovemsagtation, ver-
sus missing some of the important boundaries and underesggig

the image. The segmentations above illustrate a typicapcomise.

An enhanced system (EDISON [3]) combines the mean-shifiralgn
with image edge information. An edge-saliency measure &sl ue
modify the weight function used in the mean-shift equatidn (This
eases the above trade-off, allowing weak boundaries to peikdehe
segmentation without incurring as much over-segmentatibnage
segmentation results using the EDISON system are shown oBp
6 (labelled ED). The use of salient-edge information sigaifitly im-

proves the results.
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Similarity Graph Based Methods

Graph-based methods provide an alternative to feature spastering.

A weighted undirected grap& = (V, E) is formed, with the set of
verticesV' corresponding to the pixel8 in the image. Edge# in
the graph are taken between any two pixglsindz; within a small
distance of each other.

The edge weightv(z;, ;) > 0 reflects the dissimilarity (alternatively,
the similarity) between the two image neighbourhoods eedten pix-
elsz; andz;. A common form of the weight function is to usgz;, =) =
1 — a(7;, 7;) where the affinityu(;, 7)) is given by

Here F(Z) is a feature vector associated with pixefor example:

1. ﬁ(:i’) = I(¥), so the affinity is determined only by the grey-level
difference between neighbouring pixels,

—

2. F(Z) = I(), the RGB values for a colour image, or some mapping
of the RGB values to a more uniform colour space (eg. L*u*v*).

3. F(Z) includes texture primitives, such as local filter responses
along with the brightness and/or colour at pixel
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Connected Components (Not Robust)

A simple approach is to delete all edges between dissimpaig(i.e.,
with weightsw(z;,Z;) > 7), and then seek connected components
(CCs) in the remaining graph.

Note that a single edge with(z;, ;) < 7 would be sufficient to cause
two desired regions to be merged. Therefore CCs are nottrtibsisay
links (aka “leaks”) between regions. The consequence istlleae is
often no suitable value af which gives a useful segmentation.

Kruskal's Algorithm. In passing, it is useful to point out that an ef-
ficient way to do CC clustering, with a variabte is to first build a
minimal spanning tree (MST) of the graph. Kruskal’s algamtcan be
used, which is a greedy approach guaranteed to give an dp¥Bi&
Beginning with the completely disconnected graph, edgesadded
one at a time in increasing order of their weights, so longdakng an
edge does not introduce cycles in the current sub-graph.

The CCs of the decimated graph (with edges having;, ©;) > 7
removed) are then efficiently computed by deleting theseesaaiges
from the MST. The trees in the resulting forest provide thareel CCs.

A modified version of Kruskal’s algorithm is considered next
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Local Variation Method

Felzenszwalb and Huttenlocher [7] introduce a simple btecéfe

modification of Kruskal's algorithm. As in Kruskal’s algtim, it be-

gins with the completely disconnected graph, edges aredanluke at a
time in increasing order of their weights, maintaining aekirof MSTs
for the current components.

During processing, each MST; is associated with a threshold
(i) = w(Ci) + k/|Ci] (5)

wherew(C;) is the maximum weight in the spanning trég(i.e. the
local variation of C;). Also k > 0 is a constant, an@;| is the number
of pixels inC,.

Suppose the edde;, 7)) is to be processed next, and its two endpoints
are in two separate MSKs; andC';. Then these MSTs are merged by
adding the edgér;, 7;) only if

w(Z, 77) < min(T(Cy), T(C))). (6)

Note that, as the size @f; increases, (5) and (6) dictate an increasingly
tight upper bound’(C;) (compared to the largest weightC;) in C;)
for the acceptable affinity of an edge mergigwith another region.
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Examples of Local Variation Segmentation

Sorting the edges according to weight causes the algorithgrdw
relatively homogeneous regions first.

The parametek in (5) roughly controls the size of the regions in the
resulting segmentation. Larg&rprovides a looser constraint (6), and
allows more merging.

The merging is sensitive to the local variation within thgioms being
merged. Due to the increasingly tight bound (5), a large lganeous
regionC; is only merged using edges with weights at most fractionally
larger thanw(C;), the largest affinity in the MST;. However, this
bound is much looser for small regio@$, encouraging their growth.

The approach has a tendency to produce narrow regions aiarg) *
segment boundaries (see examples above).

The approach is very efficient computationally, requiriig log(e))
operations where is the number of edges.
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Source-Sink Minimum Cut

An alternative graph-based approach makes use of efficodutians
of the max-flow/min-cut problem between source and sink sade
directed graphs.

S-T Min Cut

From Boykov and Kolmogorov [1].

S-T Min-Cut Problem. An S-T graph is a weighted directed graph
with two identified nodes, the soureeand the sink. We seek a mini-
mum cut separating andt. That is, we seek a partioning of the graph
into two sets of nodes’ andG, with G =V — F,s € I, andt € G,
such that the linkage

LIF,G)= > al@ ). (7)

T,eFTieCG

IS minimized.
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Source-Sink Minimum Cut (Cont.)

Efficient algorithms have recently been developed thatesthe S-T
min-cut problem (see [1]).

The S-T min-cut problem is computationally much simplemthie

more generafraph partitioning problem, which is to find a (non-
empty) partitiont" andG = V — F which minimizesL(F, G) (i.e.,

without any further constraints, suchas F andt € G.)

To take advantage of an efficient solution to the S-T min-cablem,

we need to generate an S-T graph. Given two disjoint setsxel9i

S and T, we form a weighted directed graph as follows. For each
edge(7;, ¥;) in the previous undirected graph, the two directed edges
(@3, ;) and the reverse edde;, z;) are included. Both of these edges
are weighted by the affinity(z;, ¥;). In addition, two additional nodes

s andt are created, namely the source and sink nodes, respectiely
nally, infinitely weighted directed linkés, ;) and(z;, ¢) are included

for eachr; € S andz; € T'.

The resulting S-T min-cut then provides a globally minimuostccut
between the sets of pixelsandT'.

2503: Segmentation Page: 23



Seed Regions for S-T Min Cut

The setsS and T (connected to the source and sink, respectively)
should satisfy:

1. EachS andT generated must be sufficiently large (otherwise the
minimum cut is eithelS andV — S, or T andV — 1),

2. EachS andT should be contained within different ‘true’ segments
(due to the infinite weights, neithéror T" will be partitioned),

3. Enough pair$s and7T" should be generated to identify most of the
salient segments in the image.

One suitable generation process is discussed in Estradd@t dt

IS based on spectral properties of a matrix representin@gffivéties.
Sample results are given in segmentations labelled SMC a2, Bp
and 6 above.

The process is much more computationally intensive thapté&aous
ones. Several hundred min-cut problems are typically sbfee dif-
ferentS, T', and these alone require several minutes on relativelylsmal
images (eg. 40K pixels).

The intriguing property of this approach is that the S-T roirt-algo-
rithm computegylobally optimal cuts (subject to the proposals for
andT).
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Normalized Cut

Finally we outline the normalized cut approach of Shi andiNMg@i3].
Here we seek a partitioh' andG = V' — F' of the affinity weighted,
undirected graph (without source and sink nodes). In oeavbid
partitions where one aF or G is a tiny region, Shi and Malik propose
the normalized cut criterion, namely thatandG should minimize

1 1
N(F,G) = L(F,G) <L(F,V)+L(G,V))’ (8)

wherelL is the linkage defined in (7).

Unfortunately, the resulting graph partitioning problem,

F:arg?ncigN(F,V—F), (9)

is computationally intractable [13]. Therefore we musksagorithms
which provide approximate solutions of (9).

Note any segmentation technique can be used for generatipgg$als for suitable
regionsF, for which N(F,V — F') could be evaluated. Indeed, the SMC approach
above can be viewed as usifigandT’ to provide lower bounds on the termgF, V)

and L(G,V) (namely L(S, V) and L(T, V'), respectively), and then using the S-T
min cut to globally minimizel (F, G) subjecttoS C F andT C G.
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Discrete Rayleigh Quotient

Shi and Malik [13] prove that (9) is equivalent to the disereptimiza-

tion problem
(D — Ay -
arg min Y (*TD“ )y subject toy; € {1, —b} andd’y=0. (10)
y y- Ly

Here A is the N x N symmetric matrix of affinities.(z;, Z;), which
is arranged (say) according to the raster ordering of thelpik, : =
1,....N.Also,d = AT, wherel is the N-vector of all ones) > 0, and
D is the diagonal matrix wittD, ; = d;.

Given a solution; of (10), the corresponding solutidn of (9) is then
obtained by setting” = {%; | v; > 0}. And, vice versa, givel’ we set
y; = 1 for eachz; € F, and set the other elements®fo —b, where
b > 0 is chosen such that’ 7 = 0.
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Spectral Approximation for Normalized Cut

Equation (10) is a discrete version of a standard eigenvéamtmula-
tion, namely the Rayleigh quotient. This suggests usingrénegable
approximation obtained by temporarily allowiggo be a real-valued
vector (instead of 2-valued). By settifg= D~'/%i we find

@I - B)d
aTd

subject tod 72 = 0. (11)

arg min
u

with B = D-Y24D~1/2, a symmetric matrix. This is a standard eigen-
value problem in linear algebral!

Equation (11) can be simplified further by noting thiat= d'/? is an
eigenvector ofB with eigenvalud. It therefore must be an eigenvector
of I — B with eigenvalug). Moreover, it can be shown that all the
eigenvalues of — B are in the interval0, 2]. Thus (11) is the standard
Rayleigh quotient form for the eigenvectoof I — B with thesecond
smallesteigenvalue.
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Spectral Approximation (Cont.)

In the original Ncut algorithm [13], an approximation to &cliete so-
lution of (10) is then obtained by thresholdid®}/?% at each of a set

of values. For each threshotgthe Ncut objective function (8) is eval-
uated, and the best value ofis selected. This produces two regions
F andV — F'. Regions are then recursively partitioned using the same
approach, until a user-specified number of segments isr@utaiSee
pp.5-6 for examples.

The step of thresholding the second largest eigenvectoravide a

partitioning proposal is a key limitation of the approach. practice,
the approximation only appears to be consistently relialiien there
IS exactly one obvious way to partition the data. More relgeft and

Shi [14] attempt to alleviate this problem by extractiAhgsegments
from the subspace spanned by fkesigenvectors of — B having the
smallest eigenvalues.

For further information, see the reading list in the CVPR20§raph-
based segmentation tutorial [12].
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Natural Image Boundaries

As we have seen, segmentation involves finding salient nsgamd
their boundaries.

A boundary in an image is a contour that represents the change from
one object or surface to another. This is distinct from imadges
which mark rapid changes in image brightness (say), but mayay

not correspond to salient boundaries.

The previous segmentation techniques could be (and sonechiemn)
usefully coupled with a bottom-up boundary detector. Faneple:

1. The EDISON mean-shift segmentation algorithm [3] illaged one
example of this in reweighting the mean-shift iterationsdzhon
salient edge information.

2. The affinities used in the Ncut algorithm [13] use intemgredge
information to reduce the affinities between pairs of pix8]s

The development of local, bottom-up, boundary detectoas isnpor-
tant problem, complimentary to the segmentation appraadiseussed
here. See Martin et al [10] for recent work.
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Berkeley Segmentation Database

The Berkeley Segmentation Dataset [9, 11] provides imagmeata-
tions done by humans. As stated on the dataset’s webpage:

The goal of this work is to provide an empirical and scientific
basis for research on image segmentation and boundary detec
tion.

The public portion of this dataset consists of the segmiemsbf 300
images by roughly 5 humans each, done separately for gedyden
colour versions of the images. Three examples from one inaage
shown below:

Note these segmentations appear to be consistent, extfeptii sub-
jects have decided to resolve particular regions into moless detail.
This variability should be taken into account in a quantiacompari-
son of two segmentations.
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Benchmarking Segmentation

Segmentation algorithms have been benchmarked on synfinet-
tal images. The precision-recall curves for the detectibeegment

boundary points were computed (Estrada and Jepson, saedimitt

-Vl S2ERA

Here the rows correspond to the test image, the true segtioentand

the results from SE-MinCut, NCut, LocalVariation, and M8&aift.
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Precision-Recall on Fractal Images

Tuning Curves for all Algorithms
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Precision-Recall on Berkeley Dataset
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