CSC2503: Foundations of Computer Vision

Object Recognition

Slides are modified from the excellent course notes and tutorials by Antonio Torralba, Fei-Fei Li and Rob Fergus. <u>http://people.csail.mit.edu/torralba/cvpr2007/</u>

Where do we go from here?

- Single class recognition
- Multi-class recognition
- Scene Recognition and Context
- Parsing, Recognition and Segmentation

Multi-class category recognition

Does the approach to single object/category recognition scale?

How many categories are there?

How many categories are there?

Biederman 1987

Shared features and transfer learning

Can we transfer knowledge from one object category to another?

Slide by Erik Sudderth

Scene recognition and context

Is local information enough?

Scene recognition and context

If we have 1000 categories (detectors), and each detector produces 1 false alarm every 10 images, we will have 100 false alarms per image... pretty much garbage...

Hoiem, Efros, Herbert, 2006

Parsing, recognition and segmentation

Contains a motorbike

Datasets

Language

10⁶ samples

Character Recognition (MNIST) 10⁴ samples

368/796641Visual Objec 67578634850^{3} samples 21797/2876 4819018894 7592658197 1222234480 0338073857 0146460243772896986/

The Columbia Object Image Library (COIL-100): colour images of 100 objects taken at pose intervals of 5 degrees (72 poses per object).

[S. A. Nene, S. K. Nayar & H. Murase, TR: CUCS-006-96, 1996]

Collecting 10⁶⁻⁷ Examples

- ESP game (CMU) Luis Von Ahn and Laura Dabbish 2004
- LabelMe (MIT) Russell, Torralba, Freeman, 2005
- StreetScenes (CBCL-MIT) Bileschi, Poggio, 2006
- WhatWhere (Caltech) Perona et al, 2007
- PASCAL challenge 2006, 2007
- Lotus Hill Institute Song-Chun Zhu et al 2007

Labeling with games

Figure 1. Partners agreeing on an image in the ESP Game. Neither player can see the other's guesses.

Figure 2. Peekaboom. "Peek" tries to guess the word associated with an image slowly revealed by "Boom."

L. von Ahn, L. Dabbish, 2004; L. von Ahn, R. Liu and M. Blum, 2006

Pascal Visual Objects Challenge

Twenty object classes selected are:

Person: person

Animal: bird, cat, cow, dog, horse, sheep

Vehicle: aeroplane, bicycle, boat, bus, car, motorbike, train *Indoor:* bottle, chair, dining table, potted plant, sofa, tv/monitor

M. Everingham, Luc van Gool , C. Williams, J. Winn, A. Zisserman 2007

Sign in (why?)

With your help, there are

91348 labelled objects in the database

Label as many objects and regions as you can in this image

Went online July 1st, 2005 (290,000+ object annotations B. Russell, A. Torralba, K. Murphy, W.T. Freeman. IJCV '08 Labelme.csail.mit.edu

LabelMe: Polygon quality

... things do not always look good...

LabelMe: Polygon quality

Most common labels: test adksdsa woiieiie

LabelMe: Online hooligans

Polygons in this (XML) Benen bovenlichaam hoofd haar oog1 oog2

