CSC2503: Foundations of Computer Vision

Object Recognition

Slides are modified from the excellent course notes and tutorials by Antonio Torralba, Fei-Fei Li and Rob Fergus. http://people.csail.mit.edu/torralba/cvpr2007/

Where do we go from here?

- Single class recognition
- Multi-class recognition
- Scene Recognition and Context
- Parsing, Recognition and Segmentation

Multi-class category recognition

Does the approach to single object/category recognition scale?

How many categories are there?

"Muchas"

How many categories are there?

Biederman 1987

Shared features and transfer learning

Can we transfer knowledge from one object category to another?

Scene recognition and context

Is local information enough?

Scene recognition and context

If we have 1000 categories (detectors), and each detector produces 1 false alarm every 10 images, we will have 100 false alarms per image... pretty much garbage...

(d) P (person \mid geometry)

(f) P (person \mid viewpoint) (g) P (person \mid viewpoint,geometry)

Parsing, recognition and segmentation

Contains a motorbike

Datasets

Language
10^{6} samples

Character Recognition (MNIST) 10^{4} samples
$\begin{array}{cccccccccc}3 & 6 & 8 & 1 & 7 & 9 & 6 & 6 & 9 & 1 \\ 6 & 7 & 5 & 7 & 8 & 6 & 3 & 4 & 8 & 5 \\ 2 & 1 & 7 & 9 & 7 & 1 & 2 & 8 & 4 & 5 \\ 4 & 8 & 1 & 9 & 0 & 1 & 8 & 8 & 9 & 4 \\ 7 & 6 & 1 & 8 & 6 & 4 & 1 & 5 & 6 & 0 \\ 7 & 5 & 9 & 2 & 6 & 5 & 8 & 1 & 9 & 7 \\ 2 & 2 & 2 & 2 & 2 & 3 & 4 & 4 & 8 & 0 \\ 0 & 2 & 3 & 8 & 0 & 7 & 3 & 8 & 5 & 7 \\ 0 & 1 & 4 & 6 & 4 & 6 & 0 & 2 & 4 & 3 \\ 7 & 2 & 8 & 6 & 9 & 8 & 6 & 1\end{array}$

Coil

The Columbia Object Image Library (COIL-100): colour images of 100 objects taken at pose intervals of 5 degrees (72 poses per object). [S. A. Nene, S. K. Nayar \& H. Murase, TR: CUCS-006-96, 1996]

Collecting 106-7 Examples

- ESP game (CMU)

Luis Von Ahn and Laura Dabbish 2004

- LabelMe (MIT)

Russell, Torralba, Freeman, 2005

- StreetScenes (CBCL-MIT) Bileschi, Poggio, 2006
- WhatWhere (Caltech) Perona et al, 2007
- PASCAL challenge
 2006, 2007
- Lotus Hill Institute

Song-Chun Zhu et al 2007

Labeling with games

Figure 1. Partners agreeing on an image in the ESP Game. Neither player can see the other's guesses.

Figure 2. Peekaboom. "Peek" tries to guess the word associated with an image slowly revealed by "Boom."
L. von Ahn, L. Dabbish, 2004; L. von Ahn, R. Liu and M. Blum, 2006

Pascal Visual Objects Challenge

Twenty object classes selected are:
Person: person
Animal: bird, cat, cow, dog, horse, sheep
Vehicle: aeroplane, bicycle, boat, bus, car, motorbike, train
Indoor: bottle, chair, dining table, potted plant, sofa, tv/monitor

M. Everingham, Luc van Gool , C. Williams, J. Winn, A. Zisserman 2007

Lef
Label as many objects and regions as you can in this image

Sign in (why?

With your help, there are
91348 labelled objects in the database (more stats)

Instructions (Get more help)

Use your mouse to click around the boundary of some objects in this image. You will then be asked to enter the name of the object (examples: car window).

Labeling tools

Polygons in this image (XML)
$\frac{\frac{\text { door }}{}}{\frac{\text { road }}{\text { stair }}}$
window
window
building region
house
window
window
window

Went online July 1st, 2005 (290,000+ object annotations B. Russell, A. Torralba, K. Murphy, W.T. Freeman. IJCV ‘08 Labelme.csail.mit.edu

LabelMe: Polygon quality

... things do not always look good...

LabelMe: Polygon quality

Most common labels:
test
adksdsa
woiieiie

LabelMe: Online hooligans

