
Object Recognition

Goal: Introduce central issues of object recognition, basic techniques,

and emerging directions.

Outline:

1. What is object recognition and why is it challenging?

2. Historical perspective

3. Basic view-based classifiers and common problems

4. Multi-Class recognition

5. Scene and Geometric Context

6. Parsing and Segmentation

Optional Readings:

• J. Mundy. ”Object recognition in the geometric era: A retrospec-

tive”

• S. Dickinson. ”The evolution of object categorization and the chal-

lenge of image abstraction”

Matlab Tutorials and Demo Code:

• SIFT

• Boosted classifier (A. Torralba):

http://people.csail.mit.edu/torralba/shortCourseRLOC/boosting/boosting.html
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Background

What is object recognition?

• validation

• detection

• instance recognition (identification)

• category recognition

• scene/context recognition

• activity recognition

Challenges

• variation in view point and lighting

• variation in shape, pose and appearance

• clutter and occlusion

• function versus morphology

Historical Perspective

• Blocks world

• 3D shape and part decomposition

• Perceptual organization

• Appearance-based models

• Context (3D and 2D) and Parsing
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Subspace Models for Detection

Mean Eye:

Basis Images(1−6, and 10 :5 :35):

Reconstructions(for K = 5, 20, 50):

Eye Image Reconstruction
(K = 5)

Reconstruction
(K = 20)

Reconstruction
(K = 50)

Eye Image Reconstruction
(K = 5)

Reconstruction
(K = 20)

Reconstruction
(K = 50)
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Subspace Models for Detection

Generative model,M, for random eye images:

~I = ~m +

(

K
∑

k=1

ak
~bk

)

+ ~e

where ~m is the mean eye image,ak ∼ N (0, σ2
k), σ2

k is the sample

variance associated with thekth principal direction in the training data,

and~e ∼ N (0, σ2
e IN2) whereσ2

e = 1
N2

∑N2

k=K+1 σ2
k is the per pixel

out-of-subspace variance.

Random Eye Images:

Random draws from generative model  (with K = 5, 10, 20, 50, 100, 200)

So the likelihood of an image under this model of eyes is

p(~I |M) =

(

K
∏

k=1

p(ak|M)

)

p(~e |M)

where

p(ak|M) =
1√

2πσk

e
− a2

k

2σ2
k , p(~e |M) =

N2
∏

j=1

1√
2πσe

e
−

e2
j

2σ2
e .

2503: Object Recognition Page: 4



Eye Detection

The log likelihood of the model is given by

L(M) ≡ log p(~I |M) =

(

K
∑

k=1

log p(ak|M)

)

+ log p(~e |M)

=

(

K
∑

k=1

−a2
k

2σ2
k

)

+





N2
∑

j=1

−e2
j

2σ2
e



 + const

≡ Sin(~a) + Sout(~e) + const

Detector:

1. Given an image~I

2. Compute the subspace coefficients~a = B
T (~I − ~m)

3. Compute residual~e = ~I − ~m − B~a

4. For S(~a,~e) = Sin(~a)+Sout(~e), and a given thresholdτ , the image

patch is classified as an eye when

S(~a,~e) > τ .
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Eye Detection

Terminology:

• true positive = hit

• true negative = correct rejection

• false positive = false alarm (type I error)

• false negative = miss (type II error)

classified positives classified negatives

true examples true positives,Tpos false negatives,Fneg Npos = Tpos + Fneg

false examples false positives,Fpos true negatives,Tneg Nneg = Fpos + Tneg

Cpos Cneg N

Definitions:

• true positive (hit) rate:ρtp = Tpos/Npos (sensitivity)
(i.e., what fraction of the true eyes do we find?)

• true negative (reject) rate:ρtn = Tneg/Nneg (specificity)

• false positive rate:ρfp = Fpos/Nneg = 1−ρtn (1 - specificity)

• precision: Tpos/Cpos

(i.e., what fraction of positive response are correct hits?...
i.e., how noisy is the detector?)

• recall: ρtp = Tpos/Npos

(i.e., what fraction of the true eyes do we actually find?)
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Eye Detection

ROC Curves:

• true detection rate (sensitivity) vs false positive rate (1-specificity)
• trade-off (as a function of decision thresholdτ ) between sensitivity

(hit rate) and specificity (responding only to positive cases)

0 0.05 0.1 0.15 0.2
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1
ROC

False Positive Rate

T
ru

e 
D

et
ec

tio
n 

R
at

e

nBasis =  0
nBasis =  1
nBasis =  2
nBasis =  4
nBasis =  8
nBasis = 20
nBasis = 50
nBasis =100
nBasis =200

Here the eye images in the test set were different from the those in the
training set. Non-eyes were drawn at random from images.

Precision-Recall Curves:

• precision vs true detection rate (sensitivity)
• better whan ROC when theNneg ≫ Npos, so even a low false

positive rate can yield many more false alarms than hits.
• that’s why precision divides true hits by total number of hits rather

than total number of positives.
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Face Detection

The wide-spread use of PCA for object recognition began withthe work Turk and Pentland (1991)

for face detection and recognition.

Shown below is the model learned from a collection of frontalfaces, normalized for contrast, scale,

and orientation, with the backgrounds removed prior to PCA.

Here are the mean image (upper-left) and the first 15 eigen-images. The first three show strong

variations caused by illumination. The next few appear to correspond to the occurrence of certain

features (hair, hairline, beard, clothing, etc).
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Face Detection/Recognition

Moghaddam, Jebara and Pentland (2000): Subspace methods are used for head detection and then

feature detection to normalize (warp) the facial region of the image.

Recognition: Are these two images (test and target) the same?

Approach 1:Single Image Subspace Recognition:

Project test and target faces onto the face subspace, and look at distance within the subspace.

Approach 2:Intra/Extra-Personal Subspace Recognition:

• An intra-personal subspace is learned from difference images of the same persion under varia-

tion in lighting and expression.

• The extra-personal subspace learned from difference between images of different people under

similar conditions.
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Object Recognition

Murase and Nayar (1995)

• images of multiple objects, taken from different positionson the viewsphere

• each object occupies a manifold in the subspace (as a function of position on the viewsphere)

• recognition: nearest neighbour assuming dense sampling ofobject pose variations in the train-

ing set.
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Gaussian Class-Conditional Models

In general, suppose we have Gaussian class-conditional models for the

image feature vector~d. For modelsMk, we model the observation

densitiesp(~d |Mk) with Gaussians.

E.g., for two classes,M1 andM2, let the prior probabilities bep(M1)

andp(M2) = 1 − p(M1). The observation densities are Gaussian with

means~µk and covariancesCk (for k = 1, 2).

Then, the posterior probability for modelMk given the data~d

p(Mk | ~d) =
p(Mk) G(~d; ~µk, Ck)

p(~d)
.

The log oddsδ(~d ) for modelM1 overM2 is defined to be

δ(~d) ≡ log

[

p(M1 | ~d )

p(M2 | ~d )

]

= log

[

p(M1) |C2|1/2

p(M2) |C1|1/2

]

+

1

2

[

(~d− ~µ2)
TC−1

2 (~d− ~µ2) − (~d − ~µ1)
TC−1

1 (~d− ~µ1)
]

(1)

Thresholding the log odds at zero yields the decision boundary.

The decision boundary is a quadratic surface in~d space (a quadratic

discriminant). When both classes have the same covariance,i.e.,C1 =

C2, the quadratic terms in (1) cancel and the decision boundarybe-

comes a hyperplane.
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Logistic Regression

Let’s return to the posterior class probability:

P (M1 | ~d) =
p(~d |M1)P (M1)

p(~d |M1)P (M1) + p(~d|M2)P (M2)
. (2)

Dividing the numerator and denominator byp(~d|M1)P (M1) gives:

P (M1|~d) =
1

1 + e−a(~d)
, a(~d) = ln

p(~d|M1)P (M1)

p(~d|M2)P (M2)
. (3)

The posterior probability ofM1 grows asa grows, and whena = 0,

the posterior isP (M1|~d) = 1
2; i.e.,a(~d) = 0 is the decision boundary.

Let’s assume a linear decision boundary (independent of anyassump-

tions about or having to fit the observation densities). Thatis, let

a(~d) = ~wT~d + b (4)

To learn a classifier, given IID training exemplars,{~dj, yj}, whereyj =

{1, 2}, we minimize the negative log likliehood:

log p({~dj, yj} |w, b) ∝ p({yj} | {~dj},w, b)

=
∑

j:yj=1

P (M1 | ~dj)
∑

j:yj=2

(1 − P (M1 | ~dj)) (5)

Although this objective function cannot be optimized in closed-form,

it is convex, which means it has a single minimum. Therefore,we can

optimize it with some form of gradient descent, for which theinitial

guess is not critical.
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Issues with Class-Conditional and LR Models

Class-Conditional Models:

• The single Gaussian model is often rather crude. PCA coeff’scan

exhibit significantly more structure (cf. Murase & Nayar).

• A Gaussian model will also be a poor model of non-eye images.

• As a result of this unmodelled structure, detectors based onsingle

Gaussian models are often poor.

Losgistic Regression:

• Discriminative model does note require a model over the observa-

tions, and often has fewer parameters as a result.

• LR is an example but its linear decision boundary is only rich

enough to limited domains.

Alternatives:

• An alternative approach is to consider warped and aligned view

based models (see Cootes, Edwards, & Taylor, 1998).

• Richer density models of the subspace coefficients are possible

(e.g., nearest neighbour as in Murase & Nayar, or mixture models).

Breakthrough:

• More sophisticated discriminative models with simple (fast) fea-

ture extraction (see Viola & Jones, 2004).
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AdaBoost: Binary Classification Problem

Given training data{~xj, yj}N
j=1, where

• ~xj ∈ ℜd is the feature vector for thejth data item,

• yj ∈ {−1, 1} denotes the class membership of thejth item~xj,

we seek a classifierF (~x) such thaty(x) ≡ sign(F (~x)) approximates

(in some sense) the training data.

In particular, on the training data, the given class indicator yj should

agree with the modelsign(F (~xj)) as much as possible.

AdaBoost is an algorithm for greedily training classifiersF (~x ) which

take the form of additive linear models.
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Additive Linear Models

An additive linear model has the form

Fm(~x) =

m
∑

k=1

αkfk(~x; ~θk) (6)

= Fm−1(~x) + αmfm(~x; ~θm).

Herem ≥ 1 and

• Fm(~x) is a weighted (i.e.αk) sum of simpler functionsfk(~x; ~θk) .

• Note the simpler functions depend on parameters~θk, which we

need to fit along with the weightsαk.

• Here we take the simpler functionsfk(~x; ~θk) to be weak classifiers,

providing values in{−1, 1} (e.g., decision stumps).

• We useF0(~x) ≡ 0 in the recursive definition above.

Eigen-appearance models, wavelets, and mixtures of Gaussians mod-

els provide simple examples of additive linear models (although, the

basis functions are not simply weak classifiers, as they are here).
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Exponential Loss

We seek a modelFm(~x) such thatsign(Fm(~xk)) typically agrees with

the class indicatoryj ∈ {−1, 1} in the training data.

How should we measure agreement/disagreement?

Sinceyk should have the same sign asFm(~xk), it is convenient to con-

siderykFm(~xk), which should be positive.
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Possible loss (cost) functions ofz ≡ yF (~x) are:

• Classification Error. C(z) = 1 if z <= 0, else0. Hard to opti-

mize due to discontinuity.

• Quadratic Loss. C(z) = (z − 1)2. Easy to optimize but penalizes

F (~x) for being the correct sign but too large (i.e. confident and

correct).

• Exponential Loss. C(z) = exp(−z). Smooth and monotonic in

z. Large costs forF (~x) large in absolute value, but the wrong sign

(i.e. confident and wrong, e.g. data outliers).
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Greedy Fitting and AdaBoost

Suppose we have trained a classifierFm−1(~x) with m − 1 weak com-

ponents, and wish to add one more linear component,

Fm(~x) = Fm−1(~x) + αmfm(~x; ~θm).

Suppose we chooseαm and~θm to minimize the exponential loss

N
∑

j=1

C(yjFm(~xj)) ≡
N
∑

j=1

e−yjFm(~xj)

=

N
∑

j=1

e−yjFm−1(~xj)e−yjαmfm(~xj ,~θm)

=

N
∑

j=1

wm−1
j e−yjαmfm(~xj ,~θm)

Here the weightswm−1
j = e−yjFm−1(~xj) are just the exponential losses

for the previous functionFm−1(~x) on each training item.

Note the weights are largest for data points which the previous func-

tion Fm−1(~x) confidently classifies incorrectly (i.e.yjFm−1(~xj) sig-

nificantly negative), and are smallest for points confidently classified

correctly (i.e.yjFm−1(~xj) significantly positive).

This greedy fitting of the weak classifiers in an additive model leads to

the AdaBoost learning algorithm (see Friedman et al, 2000).
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AdaBoost Algorithm

for all training exemplars:j = 1...N , w
(1)
j = 1

for m = 1 to M do

Fit weak classifierm to minimize the objective function:

ǫm =
∑

j w
(m)
j I(fm(~xj ,~θm) 6=yj)
∑

j w
(m)
j

whereI(fm(~xj) 6= yj) = 1 if fm(~xj) 6= yj and0 otherwise

αm = ln 1−ǫm
ǫm

for all i do

w
(m+1)
j = w

(m)
j eαmI(fm(~xj) 6=yj)

end for

end for

After learning, the final classifier is

g(~x) = sign

(

M
∑

m=1

αmfm(~x, ~θm)

)

(7)
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Viola and Jones Face Detector

Rejection cascade architecture:

Features are formed from Haar filters...

These features can be computed extremely rapidly using integral im-

ages.

The result is a real-time face detector with good classification perfor-

mance (Viola and Jones, 2004).
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Viola and Jones, Results
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More Results

• boosting for side views

• boosting on HOG features

• boosting on flow features

• boosting shared features
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