Object Recognition

Goal: Introduce central issues of object recognition, basicrieples,
and emerging directions.

Outline:

1. What is object recognition and why is it challenging?
Historical perspective

Basic view-based classifiers and common problems
Multi-Class recognition

Scene and Geometric Context

Parsing and Segmentation

o 0k W

Optional Readings:

e J. Mundy. "Object recognition in the geometric era: A refres
tive”

e S. Dickinson. "The evolution of object categorization ainel thal-
lenge of image abstraction”

Matlab Tutorials and Demo Code:
e SIFT

e Boosted classifier (A. Torralba):

http://people.csail.mt.edu/torral ba/ short Cour seRLOC boost i ng/ boosti ng. ht m
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Background

What is object recognition?
e validation
e detection
e instance recognition (identification)

category recognition

scene/context recognition

activity recognition

Challenges
e variation in view point and lighting
e variation in shape, pose and appearance
e Clutter and occlusion
e function versus morphology

Historical Perspective
e Blocks world
e 3D shape and part decomposition
e Perceptual organization
e Appearance-based models
e Context (3D and 2D) and Parsing
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Subspace Models for Detection

Mean Eye:

Basis Imageg1—6, and 10:5:35):

o 0
M=

A=
=]

Reconstructions(for K = 5, 20, 50):

Eye Image Reconstructlon Reconstruction Reconstruction
(K =20) (K=150)

Eye Image Reconstructlon Reconstruction Reconstruction
(K =20) (K=50)
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Subspace Models for Detection

Generative modelM, for random eye images:

K
I = m+ (Zak5k> + &
k=1

wherem is the mean eye imagey, ~ N(0,0%), o7 is the sample
variance associated with tké& principal direction in the training data,
andé€ ~ N(0,021y2) whereo? = ﬁzngﬂ o? is the per pixel

out-of-subspace variance.

Random Eye Images:

il
-

Random draws from generative model (with K=5, 10, 20, 50, 100, 200)

So the likelihood of an image under this model of eyes is

<Hp ay| M) ) €| M)

where
2 2
paM) = ——e H o
a , O¢
: VA 27TU;€ Y 27‘(’0’6
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Eye Detection

The log likelihood of the model is given by

K
LM) = logp(I|M) = (Zlogp(ak/\/l)> + logp(€| M)

k=1
K 2 N? 2
—aj, — %
= — | + + const
(Z 20]%) (Z 203)
k=1 Jj=1
=  Su(a) + Sout(€)  + const

Detector:

1. Given an imagé

2. Compute the subspace coefficiesits B” (I — m)

3. Compute residual = I — m — B&

4. For S(d, €) = S;(a)+ S,u(€), and a given threshold, the image

patch is classified as an eye when

S(@a €) > 7.
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Eye Detection

Terminology:
e true positive = hit
e true negative = correct rejection
e false positive = false alarm (type | error)
e false negative = miss (type Il error)

classified positives classified negative$

true exampleg true positivesy),,, |false negativesl,.; | Nyos = Tpos + Fleg

false examples false positivesf),,s | true negativesl’,c, | Npeg = Fpos + Theg
C(pos Cneg N

Definitions:

e true positive (hit) rate:py, = T),s/Npos (SENSItivity)
(i.e., what fraction of the true eyes do we find?)

e true negative (reject) ratep,, = T5,.;/Nney (SPeCificity)

o false positive rateps, = Fjos/Npeg = 1—pin (1 - Specificity)

e precision: 7,s/Cyos
(i.e., what fraction of positive response are correct hits?
l.e., how noisy is the detector?)

o recall: py, = T)os/Npos
(i.e., what fraction of the true eyes do we actually find?)
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Eye Detection

ROC Curves:

e true detection rate (sensitivity) vs false positive ratsgcificity)
e trade-off (as a function of decision thresheldetween sensitivity
(hit rate) and specificity (responding only to positive s3se

ROC
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False Positive Rate

Here the eye images in the test set were different from theetirothe
training set. Non-eyes were drawn at random from images.

Precision-Recall Curves:

e precision vs true detection rate (sensitivity)

e better whan ROC when th®,., > N,,, SO even a low false
positive rate can yield many more false alarms than hits.

e that’s why precision divides true hits by total number ohéther
than total number of positives.
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Face Detection

The wide-spread use of PCA for object recognition began thighwork Turk and Pentland (1991)
for face detection and recognition.

Shown below is the model learned from a collection of froféaks, normalized for contrast, scale,
and orientation, with the backgrounds removed prior to PCA.

Here are the mean image (upper-left) and the first 15 eigagé@s The first three show strong
variations caused by illumination. The next few appear twespond to the occurrence of certain
features (hair, hairline, beard, clothing, etc).

2503: Object Recognition Notes: 8



Face Detection/Recognition

—» Multiscale | Feature
Head Search Search

aﬁa

Moghaddam, Jebara and Pentland (2000): Subspace metleodseal for head detection and then
feature detection to normalize (warp) the facial regiorhefimage.

Recognition: Are these two images (test and target) the same?

Approach 1:9ngle Image Subspace Recognition:
Project test and target faces onto the face subspace, andtldstance within the subspace.
Approach 2:Intra/Extra-Personal Subspace Recognition:

e An intra-personal subspace is learned from difference @saq the same persion under varia-

tion in lighting and expression.

e The extra-personal subspace learned from difference leetweages of different people under

similar conditions.
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Object Recognition

Murase and Nayar (1995)

e images of multiple objects, taken from different positioamsthe viewsphere
e each object occupies a manifold in the subspace (as a furatjoosition on the viewsphere)

e recognition: nearest neighbour assuming dense sampliolgje€t pose variations in the train-

ing set.
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Gaussian Class-Conditional Models

In general, suppose we have Gaussian class-conditionadlsfmd the
image feature vectod. For models),,, we model the observation
densitiesp(d | M;) with Gaussians.

E.g., for two classes)/; and M,, let the prior probabilities bg(M;)
andp(M,) = 1 — p(M;). The observation densities are Gaussian with
meansi; and covariance§', (for £ = 1, 2).

Then, the posterior probability for modf;. given the datai

p(My | d) = p(My) G(CE Ars Ck)

p(d)

The log oddsi(&) for model M, over M, is defined to be

s(d) = lo -p—(M1(:1:)]
(d) g L)
o (p(M;) |Cof'?
=~ 8 L00n) \01\1/2] !

[ =) e d - i) — @ yTord - )] @

Thresholding the log odds at zero yields the decision boynda

The decision boundary is a quadratic surfacefispace (a quadratic
discriminant). When both classes have the same covariaegé;; =
(s, the quadratic terms in (1) cancel and the decision boundary

comes a hyperplane.
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Logistic Regression

Let’s return to the posterior class probability:

—

P(d ‘ Ml)P(Ml)

P(M;|d) = — — .
p(d | My)P (M) + p(d| M) P(M,)

(2)

Dividing the numerator and denominator pyd|M: ) P(M;) gives:

(3)

1 < d|M,)P(M
- a(d):lnp(_,| 1) P(M;) .
1+ eo(d) p(d|Ma) P(M>)

The posterior probability of/; grows asa grows, and whem = 0,

P(M;|d) =

the posterior is?(M;|d) = 5 i.e.,a(d) = 0 is the decision boundary.

Let’'s assume a linear decision boundary (independent ohasymp-
tions about or having to fit the observation densities). Thdet

a(d) = wid+b (4)

To learn a classifier, given |ID training exempla{é},-, y;}, wherey; =
{1, 2}, we minimize the negative log likliehood:

logp({d;, 95} [w,) o p({y;} [{d;}, w,b)
= Y P(Mi|d)) Y (1—P(M|d))) (5)
Jy;=1 Jy;=2
Although this objective function cannot be optimized insgd-form,
it is convex, which means it has a single minimum. Therefoeecan
optimize it with some form of gradient descent, for which thitial

guess is not critical.
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Issues with Class-Conditional and LR Models

Class-Conditional Models:

e The single Gaussian model is often rather crude. PCA coedi's
exhibit significantly more structure (cf. Murase & Nayar).
e A Gaussian model will also be a poor model of non-eye images.

e As aresult of this unmodelled structure, detectors basesinmie
Gaussian models are often poor.

Losgistic Regression:

e Discriminative model does note require a model over themase
tions, and often has fewer parameters as a result.

e LR is an example but its linear decision boundary is only rich
enough to limited domains.

Alternatives:

e An alternative approach is to consider warped and aligned vi
based models (see Cootes, Edwards, & Taylor, 1998).

e Richer density models of the subspace coefficients are lpessi
(e.g., nearest neighbour as in Murase & Nayar, or mixturegis)d

Breakthrough:

e More sophisticated discriminative models with simple tfdsa-
ture extraction (see Viola & Jones, 2004).
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AdaBoost: Binary Classification Problem

Given training datg z;, y;}_,, where
o 7; € R is the feature vector for thg" data item,
e y; € {—1,1} denotes the class membership of jHeitem 7,

we seek a classifief' () such thaty(x) = sign(F (7)) approximates
(in some sense) the training data.

In particular, on the training data, the given class indicg} should
agree with the modelgn(F'(Z;)) as much as possible.

AdaBoost is an algorithm for greedily training classifiérs ) which
take the form of additive linear models.
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Additive Linear Models

An additive linear model has the form

Fu(Z) = ) arful&: 0r) (6)

Herem > 1 and
e F,,(%)is aweighted (i.ea;;) sum of simpler functiong;.(; §k) :

e Note the simpler functions depend on parame&érswhich we
need to fit along with the weights..

e Here we take the simpler functiorfig(z; 9}) to be weak classifiers,
providing values if—1,1} (e.g., decision stumps).

e We useF;(¥) = 0 in the recursive definition above.

Eigen-appearance models, wavelets, and mixtures of Gausssiod-
els provide simple examples of additive linear models @lth, the
basis functions are not simply weak classifiers, as theyen®) h
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Exponential Loss

We seek a modet, (%) such thasign(F,, (7)) typically agrees with
the class indicatoy; € {—1, 1} in the training data.

How should we measure agreement/disagreement?

Sincey;, should have the same sign Bs(;), it is convenient to con-
sidery; F,,,(2), which should be positive.

4—

= Class Error
351 : Exp. Loss [
= Quad. Loss

3t
25F

2}

15}
1 . : 1
051 1
0 . . :

-2 -15 -1 -05 0 0.5 1 15 2

Loss

Possible loss (cost) functions of= y F'(7) are:

e Classification Error. C'(z) = 1if z <= 0, else0. Hard to opti-
mize due to discontinuity.

e Quadratic Loss. C(z) = (z — 1)?. Easy to optimize but penalizes
F (&) for being the correct sign but too large (i.e. confident and
correct).

e Exponential Loss. C'(z) = exp(—z). Smooth and monotonic in
z. Large costs fof'() large in absolute value, but the wrong sign
(i.e. confident and wrong, e.g. data outliers).
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Greedy Fitting and AdaBoost

Suppose we have trained a classifier () with m — 1 weak com-
ponents, and wish to add one more linear component,

—

Fo(Z) = Fn1(Z) + amfin(T; 0n).

Suppose we chooseg, andd,, to minimize the exponential loss

N

N
Zc(y]Fm(fj)) = Ze_ijm(fj)
j=1

J=1

N
— g e_ijm—l(fj)e_yjamfm(fjﬁm)
J=1

N —
J=1

Here the weightsy!" ' = e~ m-1(%)) are just the exponential losses
for the previous functior¥;,, () on each training item.

Note the weights are largest for data points which the ptes/fanc-
tion F),,_, (%) confidently classifies incorrectly (i.ey,F,,—1(%;) Sig-
nificantly negative), and are smallest for points confideakhssified
correctly (i.e.y; F,,,—1(Z;) significantly positive).

This greedy fitting of the weak classifiers in an additive maeksds to
the AdaBoost learning algorithm (see Friedman et al, 2000).
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AdaBoost Algorithm

for all training exemplarsj = 1...N, wﬁl) =1

for m=1to M do

Fit weak classifiefn to minimize the objective function:
3w I (fn (@ ) Ay)

N R

wherel(f,,(Z;) # y;) = 1if f,,(Z;) # y; and0 otherwise

€m

Q= In 1=

€m

for all 7 do
w§m+1> _ w](.m) com! (fm(7)7y))
end for
end for

After learning, the final classifier is

M
g(f) = sign <Z O‘mfm<fa gm)> (7)
m=1
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Viola and Jones Face Detector

Rejection cascade architecture:

Ti T
— % | Classifier 1 H-, Classifier 2 ﬁ} e classifier N Bh e
Input images False False Falsa
Falze Falzae False

Features are formed from Haar filters...

These features can be computed extremely rapidly usingradtem-

ages.
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The result is a real-time face detector with good classibogberfor-

mance (Viola and Jones, 2004).
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Viola and Jones, Results
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More Results

e boosting for side views
e boosting on HOG features
e boosting on flow features

e boosting shared features
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