
Multi-Frame Factorization Techniques

Suppose {~xj,n}
J,N
j=1,n=1 is a set of corresponding image coordinates,

where the index n = 1, . . . , N refers to the nth scene point and j =
1, . . . , J refers to the jth image.
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Such corresponding points may be obtained from local feature points,
for example.

Problem. Estimate the 3D point positions, { ~Xn}
N
n=1, along

with the placement and calibration parameters for the J cameras.
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Perspective Projection

The image points and the scene points are related by perspective pro-

jection,

~pj,n =
1

zj,n
Mj

~Pn. (1)

Here ~pj,n = (xj,n, yj,n, 1)T is in homogeneous pixel coordinates, and the

scene point ~Pn = (Pn,1, Pn,2, Pn,3, 1)T is in homogeneous 3D coordi-

nates. Also Mj = Min,jMex,j is the 3 × 4 camera matrix formed from

the product of the intrinsic and extrinsic calibration matrices. Finally,

zj,n is the projective depth, zj,n = ~e T
3 Mj

~Pn, where ~e T
3 = (0, 0, 1) (i.e.

~e3 is the third standard unit vector).

For convenience we assume the intrinsic matrices have the form

Min,j =



















fj 0 0

0 fj 0

0 0 1



















. (2)

The extrinsic calibration matrices are in general given by

Mex,j =
(

Rj,−Rj
~dj

)

, (3)

where Rj is the rotation from the world to the jth-camera’s coordinates,

and ~dj is the position, in world coordinates, of the nodal point for the

jth camera.
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Bundle Adjustment

We wish to solve for the point positions ~Pn for n = 1, . . . , N and the

camera matrices Mj for j = 1, . . . , J by minimizing

O({Mj}
J
j=1, {

~Pn}
N
n=1) ≡

∑

j,n
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∣

∣

∣

∣
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∣
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∣

∣

∣

∣

∣

∣

∣

∣











xj,n

yj,n











−
1

~e T
3 Mj

~Pn

(

I2, ~0
)

Mj
~Pn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

.

(4)

Here the camera matrices Mj must be of the form Min,jMex,j where

Min,j and Mex,j are as given in equations (2) and (3).

This nonlinear optimization problem is called bundle adjustment.

In these notes we discuss two approximations to bundle adjustment:

1. Approximate perspective projection by scaled orthographic projec-

tion.

2. Rescale each term in the bundle adjustment objective function (4)

and solve a bilinear problem.
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Scaled-Orthographic Projection

Scaled-orthographic projection provides an approximation of perspec-

tive projection (1) for the case of narrow fields of view,

max{|xj,n|, |yj,n|} << fj,

and relatively shallow depth variations,

zj,n ≈ 1/s.

For scaled-orthographic projection, the image points and the scene

points are related by

(

I2, ~0
)

~pj,n = s
(

I2, ~0
)

Mj
~Pn. (5)

Here ~pj,n, ~Pn and Mj are as above, and s is a constant scale factor.

This is bilinear in the scaled camera matrix sMj and the 3D point

~Pn.
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Differences from Mean Image Points

Let ~̄pj = 1
N

∑N
n=1 ~pj,n be the average image point, and ~̄P = 1

N

∑N
n=1

~Pn

be the average scene point. Then, by equation (5), we can show

~dj,n = M̃j
~Dn, (6)

where

~dj,n =
(

I2, ~0
)

(~pj,n − ~̄pj),

~Dn = (I3, ~0)( ~Pn −
~̄P ),

M̃j = s
(

I2, ~0
)

Mj

(

I3, ~0
)T

.

Moreover, from equations (2) and (3) it follows that the scaled-orthographic

projection matrix M̃j has the form

M̃j = s











fj 0 0

0 fj 0











Rj = sfj

(

I2, ~0
)

Rj, (7)

where Rj is the rotation matrix for the jth camera, as above.

2503: Multi-Frame Factorization Page: 5



Derivation: Difference from Mean

Let ~̄pj = 1

N

∑N
n=1

~pj,n be the average image point in the jth image, and ~̄P = 1

N

∑N
n=1

~Pn be the

average scene point.

Then, by equation (5), we have

(

I2, ~0
)

~̄pj = s
(

I2, ~0
)

Mj
~̄P

Subtracting this from (5) we find

(

I2, ~0
)

(~pj,n − ~̄pj) = s
(

I2, ~0
)

Mj(~Pn − ~̄P ).

Note the 4th component of ~Pn − ~̄P is equal to 1 − 1 = 0. Therefore we can drop this 4th

component, and obtain

~dj,n = M̃j
~Dn,

where

~dj,n =
(

I2, ~0
)

(~pj,n − ~̄pj),

~Dn = (I3, ~0)(~Pn − ~̄P ),

M̃j = s
(

I2, ~0
)

Mj

(

I3, ~0
)T

.

Which is what we set out to show.

Notice we can use the definitions of Min,j and Mex,j to simplify M̃j above. We find

M̃j = s
(

I2, ~0
)

Mj

(

I3, ~0
)T

,

= s
(

I2, ~0
)

Min,jMex,j

(

I3, ~0
)T

,

= s





fj 0 0

0 fj 0



 Rj

This gives equation (7) above.
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Scaled-Orthographic Factorization

Let C =
(

~dj,n

)

be the 2J × N data matrix formed by stacking ~dj,n,

for j = 1, . . . , J in columns, and combining these columns for n =

1, . . . , N (here j is the camera index and n the feature point index).

From above, ~dj,n = ~xj,n − ~̄xj, where ~xj,n is the observed pixel position

of the jth point in the nth frame, and ~̄xj is the average of these over

all n. In particular, the data matrix can be built from the observed

corresponding points.

From equation (6) we then have

C = MD, (8)

where M is the 2J × 3 matrix formed by stacking the M̃j matrices,

and D is the 3 × N shape matrix having columns given by ~Dn. This

equation states that the data matrix has at most rank 3 (without

considering noise).
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Factorization via SVD

Performing an SVD on the data matrix C, for a case with J = 3 images,

provides C = WΣV T with the singular values shown below:
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See the 3dRecon Matlab tutorial orthoMassageDino.m (σn = 1 pixel).
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Affine Shape

What does the factorization C = WΣV T tell us about the shape of the

objects being imaged? For notational convenience, we assume that all

but the first 3 singular values of Σ have been set to zero or, equivalently,

Σ is 3 × 3, W is 2J × 3 and V T is 3 × N .

We now have two rank 3 factorizations of C, namely MD and WΣV T .

But this factorization is only unique up to a nonsingular matrix A, as

follows:

C = MD = (WA)(A−1ΣV T ) = WΣV T . (9)

That is, for some 3×3 matrix A, the 3D point positions and the camera

matrices must be given by

D = A−1ΣV T

M = WA.
(10)

Equivalently, we could place AA−1 between the Σ and the V T in equa-

tion (9).

Therefore we know the shape D up to the 9 parameters in A, namely

AD = ΣV T . This is known as an affine reconstruction of the

shape D.
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Affine Shape (Cont.)

What can A (or, equivalenty, A−1) do to a shape?

For example, consider a configuration of 3D points as specified by the

3 × N matrix D above. Suppose we have a nonsingular matrix A.

What does the configuration AD look like?

Use SVD to decompose A into UaΣaV
T
a . So AD = Ua(Σa(V

T
a D)) is ob-

tained by rotating/reflecting D using V T
a , then stretching/shrinking the

result along the axes according to Σa, and finally rotating/reflecting this

result using Ua. (Imagine applying such transforms to your lecturer’s

head.)

The equivalence class of all configurations that can be obtained with

transformations of this form is called affine shape.

It can be shown that affine shape preserves parallel lines and intersecting

lines, but not angles and lengths.

See Tomasi and Kanade, IJCV, Vol. 9, 1992, pp.137-154, for the original

factorization method.
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Euclidean Reconstructions

We can determine many of the parameters in A from knowledge about

the cameras.

In particular, suppose we know the projection matrix M̃j satisfies

M̃j = sfj

(

I2, ~0
)

Rj,

for some value of sfj. From (10) we have M̃j = WjA where Wj is

the jth 2 × 3 block in W corresponding to the same two rows as M̃j

occupies in M . Since RjR
T
j = I3 it then follows that

M̃jM̃
T
j = s2f 2

j I2 = WjAATW T
j . (11)

Here the scale factor for the jth image sfj and the 3 × 3 symmetric

positive definite matrix Q = AAT are the only unknowns.

For each j, equation (11) provides 2 linear homogeneous equations for

the coefficients of Q. Then for J ≥ 3 we have 2J ≥ 6 homogeneous

linear equations which we can solve for Q, up to a scalar multiple r2
q .

Finally, given Q we can factor it (assuming the eigenvalues are all non-

negative) by computing the eigenvalues, Q = UqΛqU
T
q , and then recog-

nizing A = 1
rq

UqΛ
1/2
q RT

q . Here rq is the unknown scale factor in Q, and

Rq is an arbitrary orthogonal 3 × 3 matrix.
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Euclidean Reconstruction (Cont.)

Therefore we have recovered A = 1
rq

KqR
T
q where Kq = UqΛ

1/2
q is known.

As a consequence we have recovered the shape matrix Dr and the cam-

era matrix Mr where

D = rqRqDr, for Dr = K−1
q ΣV T ,

M =
1

rq
MrR

T
q , for Mr = WKq.

(12)

This is called a Euclidean reconstruction, since we have recovered

the shape up to a 3D scale rq, and a rotation/reflection Rq. Equiva-

lently, this is referred to as a metric shape recovery.

The ambiguity of the overall rotation Rq reflects the fact that we cannot

recover the orientation of the original world coordinate frame. This

unknown rotation Rq affects both the shape, via D = RqDr, and all of

the camera matrices, via M = MrR
T
q . That is, Rq rotates the both the

scene and the cameras together.

Similarly, the ambiguity of the overall scale rq reflects the fact that

we do not know the scale of the world coordinate frame. We could

be imaging a tiny scene with large scale factors sfj, and we could not

tell from the images alone. (Think about making the movie Titanic.)

Here rq rescales the shape via D = rqDr, and also rescales all the scale

parameters fj in the cameras, via M = 1
rq

Mr.
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Remaining Ambiguities

The remaining ambiguity in Rq is the Necker ambiguity, that is, Rq

could be a reflection (say Rq = diag(1, 1,−1)). Effectively, with ortho-

graphic projection we cannot tell the difference between a concave-in

shape viewed from the left, and the reflected concave-out shape viewed

from the right. Unlike the previous two ambiguities, this ambiguity does

not persist (mathematically) when we switch to perspective projection.

For J = 2 orthographic views there is an additional ambiguity, known

as the bas-relief ambiguity. For this ambiguity, there is an additional

unknown parameter (in Kq above), which ties the overall depth varia-

tion of the shape to the amount of rotation between the two cameras.

See orthoMassageDino.m.

Refs: See the classic paper by Koenderink and van Doorn, 1991.
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Dino Example, Orthographic Case
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Introduction to Projective Reconstruction

Returning to perspective projection, it is tempting to modify the bundle

adjustment objective function (4) by multiplying each term in the sum

by the projective depths zj,n = ~e T
3 Mj

~Pn, providing a reweighted version

of (4):

O =
∑

j,n

∣

∣

∣

∣

∣

∣

∣
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∣
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∣

∣

∣

∣

∣

∣

∣

∣

∣

zj,n



















xj,n

yj,n

1



















− Mj
~Pn
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∣
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∣

∣
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∣

∣

∣

∣

∣

∣

∣

∣

∣

2

(13)

where zj,n, Mj and ~Pn are all unknowns for j = 1, . . . , J and n =

1, . . . , N .

The form of (13) suggests the following factorization approach.
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Projective Factorization

Suppose we know the projective depths zj,n, and form the data matrix

C = (zj,n~pj,n). This is a 3J × N matrix formed by stacking the 3-

vectors zj,n~pj,n in columns for the same point n, and then arranging

these columns side by side for n = 1, . . . , N . By equation (1) we have

zj,n~pj,n = MjPn.

Therefore C (for the correct zj,n’s) must have the rank 4 factorization

C = MP, (14)

where M is the 3J×4 matrix formed by stacking up the camera matrices

Mj, and P = ( ~P1, . . . , ~PN) is the 4 × N shape matrix.
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Iterative Projective Factorization

Suppose we normalize Cn = CL so that the columns have unit length

(using a diagonal matrix L). Then we factor Cn using SVD to form

Cn = WΣV T , (15)

where we set all but the first 4 singular values to zero. Equivalently, we

have W is 3J × 4, Σ is 4 × 4, and V T is 4 × N .

We can rewrite the nth column of Cn as Zn~zn, where Zn is a

3J ×N matrix obtained from the image points ~pj,n and the nth weight

Ln,n. Here ~zn = (z1,n, . . . , zJ,n)T , which are the projective depths for

the nth point in each of the J frames. We then update ~zn to better

match the current factorization. That is, we wish to minimize

||Zn~zn − WΣV T~en|| (16)

wrt ~zn, subject to the constraint that the updated column of Cn still has

unit length, i.e., ||Zn~zn|| = 1. Here ~en is the nth standard unit vector,

en,i = δn,i. (In projectiveMassageDino.m this update of ~zn is done

with one step along the gradient direction for this constrained optimiza-

tion problem.) Once all the projective depths have been updated, we

reform the normalized data matrix Cn, and redo the factorization (15).

This process is iterated until convergence.
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Projective Reconstruction

Upon convergence we have a projective factorization Cn = WΣV T .

As in the orthographic case, this factorization is only unique up to a

nonsingular matrix H. In this case, H is a 4 × 4, 3D homography

matrix. In particular, we have the factorization, C = CnL
−1 = MP

with
P = H−1ΣV TL−1

M = WH.
(17)

Since the shape matrix P is known up to a 3D homography H, this is

called a projective reconstruction.

This projective reconstruction can be “upgraded” to a metric recon-

struction by using information about the camera matrices Mj to con-

strain the 3D homography matrix H. In order to understand this, we

must first introduce the absolute dual quadric from projective geometry.
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Absolute Dual Quadric (Canonical Coords)

The equation of a plane in 3D is

~m T ~P = 0,

where ~P = (X, Y, Z, 1)T is a 3D point written in homogeneous coordi-

nates.

Imagine two planes, with coefficient vectors ~m1 and ~m2. Then the angle

between these two planes is θ where

cos(θ) =
~m T

1 Q̂∞~m2
√

(~m T
1 Q̂∞~m1)(~m T

2 Q̂∞~m2)
. (18)

Here Q̂∞ is the absolute dual quadric in canonical coordinates,

Q̂∞ =











I3
~0

~0 T 0











. (19)
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Absolute Dual Quadric (General Coords)

Suppose H is any nonsingular 3D homography matrix, and consider

the projective coordinates ~P ′ = H ~P . The planes ~mk · ~P = 0 can be

expressed in these new coordinates as

~m′
k ·

~P ′ = 0, where ~m′
k = H−T ~mk.

We can measure the same angle between these two planes using the

absolute dual quadric in general projective coordinates, namely

Q∞ = HQ̂∞HT . (20)

In fact, it follows that

cos(θ) =
(~m′

1)
TQ∞~m′

2
√

((~m′
1) TQ∞~m′

1)((~m
′
2) TQ∞~m′

2)
.

The general idea behind upgrading a projective reconstruction to a met-

ric one is to use the absolute dual quadric to express known properties of

the camera coordinates, such as the fact that the planes perpendicular

to the X, Y, and Z axes are mutually perpendicular (i.e. cos(θ) = 0).
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Upgrading to a Metric Reconstruction

In particular, from (2) and (3) it follows that

MjQ̂∞MT
j =



















f 2
j 0 0

0 f 2
j 0

0 0 1



















. (21)

This is the analogue of equation (11) in the orthographic case. From

equation (17) we also have M = WH, where W is known from the

projective factorization. So

MjQ̂∞MT
j = WjHQ̂∞HTW T

j = WjQ∞W T
j . (22)

We see that, for the jth camera, (22) and (21) provide 5 linear equations

for Q∞ (6 linear equations if fj is known). So we have (at least) 5J

linear constraints on Q∞.

Since we know Q∞ is a symmetric 4×4 matrix there are only 10 degrees

of freedom to determine, and J = 2 frames are enough. (Note we also

know Q∞ has rank 3 and has non-negative eigenvalues.)
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Solving for H

Given Q∞ (which is symmetric, positive semi-definite, rank 3) we can

compute its eigenvalue decompositon

Q∞ = UqΛqU
T
q , Λq = diag[λ1, λ2, λ3, 0],

with λi > 0. It then follows from (20) that

H = Uqdiag[λ
1/2
1 , λ

1/2
2 , λ

1/2
3 , 1]A, (23)

where A is the matrix for a general 3D similarity transform

A =











R ~d

~0T s











.

Here R is a unitary matrix. The reason A remains unknown is that the

absolute dual quadric Q̂∞ is invariant to similarity transformations

AQ̂∞AT = Q̂∞.

This is easy to verify from the forms of A and Q̂∞.

Finally, equations (2, 3, 17) can be used to remove the reflection ambi-

guity. The only remaining ambiguities are the overall orientation, origin

and scale of the world coordinate frame.
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Dino Example, Projective Case
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Dino Example, Projective Case
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Structure from Motion

The use of the theoretical rank for a set of observations provides a key insight into the structure

from motion problems (see Jepson and Heeger, 1991).

Consider a camera travelling through a stationary environment. Then the scene appears to move

with translational velocity ~T and angular velocity ~Ω. In the camera’s coordinates, the motion

of any scene point ~X is
d ~X

dt
= ~T + ~Ω × ~X.

Suppose we observe the motion field ~u(~xk) at K image points, {~xk}
K
k=1

, in this camera’s image.

Let ~X(~xk) be the 3D scene point associated with the kth image point ~xk. Then it can be shown

that ~U T ≡ (~u T
1

, . . . , ~u T
K) satisfies

~U = C(~T )





~z

~Ω



 = A(~T )~z + B~Ω. (24)

Here ~z is a K-vector, with elements zk = 1/|| ~X(~xk)||, A(~T ) is a 2K × K matrix that depends

linearly on ~T , and B is a 2K × 3 matrix that depends only on the image points ~xk.

Notice, for ~T = ~0 we have A(~T ) = 0, and (24) states that the flow field ~U must be in the rank

3 subspace formed by the range of the matrix B. Similarly, for nonzero ~T , equation (24) states

that the 2K-dimensional flow field ~U must be in the K +3-dimensional subspace formed by the

range of C(~T ).

This range condition can be used to identify ~T (up to a speed ambiguity, i.e., ||~T || remains

unknown) and ~Ω given the motion field ~U . Moreover, given ~T/||~T || and ~Ω, equation (24) can

be used to solve for the inverse depths ~z (up to an overall scale ambiguity).
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