Linear Subspace Models

Goal: Explore linear models of a data set.

Motivation:

A central guestion in vision concerns how we represent &ctdin of
data vectors. The data vectors may be rasterized images¢dorple.

e We consider the construction of low-dimensional bases for a
ensemble of training data using principal components &maly
(PCA).

e We introduce PCA, its derivation, its properties, and somi&so

uses.

e \We very briefly critique its suitability for object detectio

Readings: Sections 22.1-22.3 of the Forsyth and Ponce.
Matlab Tutorials: colourTutorial.m, trainEigenEyes.m and
detectEigenEyes.m
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Representing Images of Human Eyes

Question: Suppose we have a dataset of scaled, centered images of
human eyes. How can we find an efficient representation of auch
data set?

TTE
IR

Left Eyes Right Eyes

Generative Model. Suppose we can approximate each image in the
data set with a parameterized model of the form,

[(¥) =~ g(7;d).
Hered is a vector of coefficients.

Possible uses:

e compress or reduce the dimension of the data set,
e generate novel instances,
e (possibly) recognition.
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Subspace Appearance Models

ldea: Images are not random, especially those of an object, olaimi
objects, under different viewing conditions.

Rather, than storing every image, we might try to represenirhages
more effectively, e.g., in a lower dimensiorsalbspace

For example, let’s represent eadhx N image as a point in afv?-
dim vector space (e.g., ordering the pixels lexicograplyi¢da form
the vectors).

A

(red points denote images, blue vectors denote image eliters)

How do we find a low-dimensional basis to accurately modegd(ex-
imate) each image of the training ensemble (as a linear guatibin
of basis images)?
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Linear Subspace Models

We seek a linear basis with which each image in the ensemhl is
proximated as a linear combination of basis imaiges)

K
I(X) = m(T)+ ) apbi(X), (1)
k=1

herem(Z ) is the mean of the image ensemble. Bubspace coeffi-
cientsa=(ay, ..., ax) comprise the representaion.

With some abuse of notation, assuming basis imaged with N?
pixels, let's define

b, — anN?x 1 vector with pixels arranged in lexicographic order
B — a matrix with columnd,, i.e., B = [by, ..., by] € RV <K

With this notation we can rewrite Eq. (1) in matrix algebra as
I ~m+Ba (2)

In what follows, we assume that the mean of the ensemble(®th-
erwise, if the ensemble we have is not mean zero, we can dstihea
mean and subtract it from each image.)
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Choosing The Basis

Orthogonality: Let's assume orthogonal basis functions,

- T -

Ibels =1, by by =d;.

Subspace Coefficients: It follows from the linear model in Eq. (2)
and the orthogonality of the basis functions that

- T=

b;{; I ~ BkTBﬁ = B;{; [bl,...,BK]ﬁ = Qf

This selection of coefficientss = B”T, minimizes the sum of squared
errors (or sum of squared pixel differences, SSD):

min |I-BA& |?
acRK

Basis Images: In order to select the basis functiorﬁgk}f:l, sup-
pose we have a training set of images

(L, ., with L>K
Recall we are assuming the images are mean zero.

Finally, let's select the basigb;}X ,, to minimize squared recon-
struction error:

L
S min || L - B4 |3
=1 A
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Intuitions

Example: Let's consider a set of imagéd, } - ,, each with only two
pixels. So, each image can be viewed as a 2D pﬁil@,R?

—

us

For a model with only one basis image, what shdulde?

Approach: Fit an ellipse to the distribution of the image data, and
choose61 to be a unit vector in the direction of the major axis.

Define the ellipse a’ C~!xX = 1, whereC is the sample covariance
matrix of the image data,

1 L T
C=- > LT,
1=1
The eigenvectors df provide the major axis, i.e.,
CU =UD

for orthogonal matrixU = [u;, us], and diagonal matri with el-
ementsd; > dy > 0. The directionu; associated with the largest
eigenvalue is the direction of the major axis, soHet= 4.
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Principal Components Analysis

Theorem: (Minimum reconstruction error)T'he orthogonal basiB,
of rank X' < N2, that minimizes the squared reconstruction error over
training data{I;}~ ., i.e.,

L
> min || T -Ba |3
=1
is given by the first eigenvectors of the data covariance matrix
1 L T 2. A2
. I T N*xN . .
C_E;IZIZ eR . forwhich CU = UD

whereU = [uy, ..., Uz2| is orthogonal, and =diag(ds, ..., d2) with
di>dy> ... >dyo.

That is, the optimal basis vectors d}@: ug, fork = 1...K. The cor-
responding basis imagés,(X)}_, are often called eigen-images.

Proof: see the derivation below.
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Derivation of PCA

To begin, we want to find in order to minimize squared error in subspace approximatio the
images of the training ensemble.

L
E = ) minl|I-Ba |3
=1

Given the assumption that the columndére orthonormal, the optimal coefficients aye= BTfl,
SO

L
E =Y mn|L-B&|; = |L-BB'L; 3)
=1 M
Furthermore, writing the each training image as a columnrnraftix A = [fl, cey TL} , we have
L
E= ) ||[L-BB'L|} = |A-BB"A|} = trace[AA"]| —trace[B"AA"B]
=1

You get this last step by expanding the square and n@hB = I,, and using the properties of
trace, €.9.,trace[A] = trace[A”], and alsdrace[BY AATB] = trace] ATBBTA] .
So to minmize the average squared error in the approximatgowant to findB to maximize

E' = trace BTAA"B] 4)
Now, let’s use the fact that for the data covarianCexe haveC = %A AT. Moreover, as defined
above the SVD of” can be written a€ = U D U”. So, let’s substitute the SVD int’:
E' = trace [ BTUDU'B] (5)
where of coursdJ is orthogonal, an® is diagonal.

Now we just have to show that we want to cho@ssuch that the trace strips off the filstelements
of D to maximizeFE'. Intuitively, note thaB” U must be ranki sinceB is rank K. And note that
the diagonal elements @ are ordered. Also the trace is invariant under matrix rotatiSo, the
highest rankK" trace we can hope to get is by choosiBgo that, when combined witd we keep
the first K columns ofD. That is, the columns dB should be the firsi orthonormal rows olU.
We need to make this a little more rigorous, but that’s it fown.

2503: Linear Subspace Models Notes: 8



Other Properties of PCA

Maximum Variance: The K-D subspace approximation captures
the greatest possible variance in the training data.

~T' = o . :
e Fora; = b, I, the directiorb, that maximizes the varianced®] =
- T - . -1 - . . .
b; Cby, subject tob, b; = 1, is the first eigenvector dof.
T A . -7 — —T -
e The second maximizéds, Cb, subjecttdb, b, =1 andb, by, =0.
> TS . ..
e Fora;, = by I, anda = (ay,...,ax), the subspace coefficient
covariance is Ea'| = diagd,,...,dx). Thatis, the diagonal
entries ofD are marginal variances of the subspace coefficients:

or = Ela?] = dy, .
So the total varianceapturedin the subspace is sum of first

eigenvalues o€.

e Total variancdostowing to the subspace projection (i.e., the out-
of-subspace variance) is the sum of the [i$t- K eigenvalues:

N2
L2 | IE-Ba ] = 3 o
Decorrelated Coefficients: C is diagonalized by its eigenvectors,
soD is diagonal, and the subspace coefficients are uncorrelated
e Under a Gaussian model of the images (where the images are
drawn from an/N?-dimensional Gaussian pdf), this means that

the coefficients are also statistically independent.
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PCA and Singular Value Decomposition
The singular value decomposition of the data maix
A= [fl, ...,fL] . A e RNl whereusuallyL < N? .

is given by
A=USV’

where U € RV %L | § € RLXL |V € RE%L | The columns ofU andV are orthogonal, i.e.,
U'U =1,,,andV’'V =1, and matrixS is diagonalS = diag(s, ..., s;) Wheres; > s, >
Z SL 2 0.

Theorem: The best rankk” approximation toA under the Frobenius norm,, is given by

K N2
A = Zskﬁ’k\_f'kT — BBYA, where min |[|[A-A|2% = Z 57,
—1 rank(A)=K k=K 1

andB = [uy, ..., Uk]. A is also the best rank approximation under thé, matrix norm.

What's the relation to PCA and the covariance of the traimingges?

L

- o>T 1 1 1

LI _ AAT _ T Ty1T _ 21717
E =7 = —LUS\/ VS U = —LUS U

So the squared singular valuesAfare proportional to the firgt eigenvalues o€:

4 — 1st fork=1,..,L
g 0 fork > L

And the singular vectors A are just the first. eigenvectors o€.
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Eigen-Images for Generic Images?

Fourier components are eigenfunctions of generic imagerebkes.

Why? Covariance matrices for stationary processes ardifep

1

PCA vyields unique eigen-images up to rotations of invarisurb-
spaces (e.g., Fourier components with the same marginaheay).
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Eigen-Reflectances

Consider an ensemble of surface reflectan¢s

Various Munsell Reflectances

Reflectivity

Wavelength (nm)

What is the effective dimension of these reflectances? Define

Vi = Zle UJQ-. Then the fraction of total variance explained by the

first k PCA componentsi®; = V;./V;.

Fraction of Explained Variance
1 ‘ ‘

0.95¢

0.9}

0.85}

0.8t

Proportion of total variance

0-7% 2 4 6 8 10
Principal subspace dimension, k

Reflectances()), for wavelengths\ within the visible spectrum, are
effectively 3 dimensional (se=ol our Tut ori al . m).
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Eye Subspace Model

Subset of 1196 eye image8q x 20):

1] 514}
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Left Eyes Right Eyes

Si/VL, anko = Vk/VL:

Variance Fraction Explained by Subspace

Defn: LetV, = >0 52, dQ;

js

dQ(k): Variance Fraction Explained by one s.v.

o
2]
T

Fraction of Variance
o
5
:

o
w

o
)

| | I 0.1 ! I |
0 5 10 15 20 0 5 10 15 20
Singular value index, k Singular value index

Left plot showsd@;, the fraction of the total variance contributed by
the k' principal component.

Right plot shows();. the fraction of the total variance captured by the
subspace formed from the firstprincipal components.
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Eye Subspace Model

Mean Eye:

Basis Images{l 6, and 10:5:35):

! '

Reconstructions(for K = 5, 20, 50):

Eye Image Reconstructlon Reconstruction Reconstruction
(K =20) (K=50)

Eye Image Reconstructlon Reconstruction Reconstruction
(K =20) (K'=50)
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Generative Eye Model

Generative modelM, for random eye images:

K

I = m+ <Zakbk> + &

k=1
wherem is the mean eye image;, ~ N (0, o3), o3 is the sample vari-
ance associated with thé" principal direction in the training data,
andé ~ N(0,021y2) whereo? = ﬁZkNjKH oi is the per pixel
out-of-subspace variance.

Random Eye Images:

i
. I

Random draws from generative model (with K =5, 10, 20, 50, 100, 200)

So the probability of an image given this modet is

<Hp ay| M) ) €| M)

where
2 2
(M) = e H o
a = e : e
Ak V2moy, Y 27‘(’0’6
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Face Detection

The wide-spread use of PCA for object recognition began wnén
work Turk and Pentland (1991) for face detection and redagni

Shown below is the model learned from a collection of frofdaks,
normalized for contrast, scale, and orientation, with thekigrounds
removed prior to PCA.

Here are the mean image (upper-left) and the first 15 eigagas
The first three show strong variations caused by illumimatid he
next few appear to correspond to the occurrence of certaiturfes
(hair, hairline, beard, clothing, etc).
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Object Recognition

Murase and Nayar (1995)
e images of multiple objects, taken from different positi@msthe
viewsphere
e each object occupies a manifold in the subspace (as a faraitio
position on the viewsphere)
e recognition: nearest neighbour assuming dense sampling-of
ject pose variations in the training set.

‘—-91
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Summary

The generative model:

e PCA finds the subspace (of a specified dimension) that maxi-
mizes projected signal variance.

e A single Gaussian model is naturally associated with a PQA re
resentation. The principal axes are the principal direstiof the
Gaussian’s covariance.

Issues:

e The single Gaussian model is often rather crude. PCA caoefis
exhibit significantly more structure (cf. Murase & Nayar).

e As aresult of this unmodelled structure, detectors baseihghe
Gaussian models are often poor. See the Matlab tutorial
det ect Ei genEyes. m

e We discuss alternative detection strategies later in thisse.
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