
Linear Subspace Models

Goal: Explore linear models of a data set.

Motivation:

A central question in vision concerns how we represent a collection of

data vectors. The data vectors may be rasterized images, forexample.

• We consider the construction of low-dimensional bases for an

ensemble of training data using principal components analysis

(PCA).

• We introduce PCA, its derivation, its properties, and some of its

uses.

• We very briefly critique its suitability for object detection.

Readings: Sections 22.1–22.3 of the Forsyth and Ponce.

Matlab Tutorials: colourTutorial.m, trainEigenEyes.m and

detectEigenEyes.m
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Representing Images of Human Eyes

Question: Suppose we have a dataset of scaled, centered images of

human eyes. How can we find an efficient representation of sucha

data set?

Left Eyes Right Eyes

Generative Model. Suppose we can approximate each image in the
data set with a parameterized model of the form,

I(~x) ≈ g(~x;~a).

Here~a is a vector of coefficients.

Possible uses:

• compress or reduce the dimension of the data set,

• generate novel instances,

• (possibly) recognition.
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Subspace Appearance Models

Idea: Images are not random, especially those of an object, or similar

objects, under different viewing conditions.

Rather, than storing every image, we might try to represent the images

more effectively, e.g., in a lower dimensionalsubspace.

For example, let’s represent eachN × N image as a point in anN2-

dim vector space (e.g., ordering the pixels lexicographically to form

the vectors).

(red points denote images, blue vectors denote image differences)

How do we find a low-dimensional basis to accurately model (approx-

imate) each image of the training ensemble (as a linear combination

of basis images)?
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Linear Subspace Models

We seek a linear basis with which each image in the ensemble isap-

proximated as a linear combination of basis imagesbk(~x)

I(~x) ≈ m(~x) +

K
∑

k=1

ak bk(~x), (1)

herem(~x ) is the mean of the image ensemble. Thesubspace coeffi-

cients~a=(a1, ..., aK) comprise the representaion.

With some abuse of notation, assuming basis imagesbk(~x) with N2

pixels, let’s define

~bk – anN2×1 vector with pixels arranged in lexicographic order

B – a matrix with columns~bk, i.e., B = [~b1, ..., ~bK ] ∈ RN2×K

With this notation we can rewrite Eq. (1) in matrix algebra as

~I ≈ ~m + B~a (2)

In what follows, we assume that the mean of the ensemble is~0. (Oth-

erwise, if the ensemble we have is not mean zero, we can estimate the

mean and subtract it from each image.)
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Choosing The Basis

Orthogonality: Let’s assume orthogonal basis functions,

‖ ~bk ‖2 = 1 , ~bj
T~bk = δjk .

Subspace Coefficients: It follows from the linear model in Eq. (2)

and the orthogonality of the basis functions that

~bk
T~I ≈ ~bk

T
B~a = ~bk

T
[~b1, ..., ~bK ]~a = ak

This selection of coefficients,~a = B
T~I , minimizes the sum of squared

errors (or sum of squared pixel differences, SSD):

min
~a∈RK

‖ ~I − B~a ‖2
2

Basis Images: In order to select the basis functions{~bk}K
k=1 , sup-

pose we have a training set of images

{~Il }L
l=1 , with L � K

Recall we are assuming the images are mean zero.

Finally, let’s select the basis,{~bk}K
k=1 , to minimize squared recon-

struction error:
L
∑

l=1

min
~al

‖ ~Il − B~al ‖2
2
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Intuitions

Example: Let’s consider a set of images{~Il }L
l=1, each with only two

pixels. So, each image can be viewed as a 2D point,~Il ∈ R2.
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For a model with only one basis image, what should~b1 be?

Approach: Fit an ellipse to the distribution of the image data, and

choose~b1 to be a unit vector in the direction of the major axis.

Define the ellipse as~xTC−1~x = 1, whereC is the sample covariance

matrix of the image data,

C =
1

L

L
∑

l=1

~Il
~Il

T

The eigenvectors ofC provide the major axis, i.e.,

CU = UD

for orthogonal matrixU = [~u1, ~u2], and diagonal matrixD with el-

ementsd1 ≥ d2 ≥ 0. The direction~u1 associated with the largest

eigenvalue is the direction of the major axis, so let~b1 = ~u1.
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Principal Components Analysis

Theorem: (Minimum reconstruction error)The orthogonal basisB,

of rankK < N2, that minimizes the squared reconstruction error over

training data,{~Il}L
l=1, i.e.,

L
∑

l=1

min
~al

‖ ~Il − B~al ‖2
2

is given by the firstK eigenvectors of the data covariance matrix

C =
1

L

L
∑

l=1

~Il
~Il

T ∈ RN2×N2

, for which CU = UD

whereU= [~u1, ..., ~uN2] is orthogonal, andD= diag(d1, ..., dN2) with

d1≥d2≥ ... ≥dN2.

That is, the optimal basis vectors are~bk =~uk, for k = 1...K. The cor-

responding basis images{bk(~x)}K
k=1 are often called eigen-images.

Proof: see the derivation below.
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Derivation of PCA

To begin, we want to findB in order to minimize squared error in subspace approximations to the

images of the training ensemble.

E =
L
∑

l=1

min
~al

‖ ~Il − B~al ‖2
2

Given the assumption that the columns ofB are orthonormal, the optimal coefficients are~al = B
T~Il,

so

E =
L
∑

l=1

min
~al

‖ ~Il −B~al ‖2
2 = ‖ ~Il −BB

T~Il ‖2
2 (3)

Furthermore, writing the each training image as a column in amatrixA =
[

~I1, ...,~IL

]

, we have

E =

L
∑

l=1

‖ ~Il −BB
T~Il ‖2

2 = ‖ A −BB
T
A ‖2

F
= trace

[

AA
T
]

− trace
[

B
T
AA

T
B
]

You get this last step by expanding the square and notingB
T
B = IK , and using the properties of

trace, e.g.,trace[A] = trace[AT ], and alsotrace[BT
AA

T
B] = trace[AT

BB
T
A] .

So to minmize the average squared error in the approximationwe want to findB to maximize

E ′ = trace
[

B
T
AA

T
B
]

(4)

Now, let’s use the fact that for the data covariance,C we haveC = 1
L
AA

T . Moreover, as defined

above the SVD ofC can be written asC = UDU
T . So, let’s substitute the SVD intoE ′:

E ′ = trace
[

B
T
UDU

T
B
]

(5)

where of courseU is orthogonal, andD is diagonal.

Now we just have to show that we want to chooseB such that the trace strips off the firstK elements

of D to maximizeE ′. Intuitively, note thatBT
U must be rankK sinceB is rankK. And note that

the diagonal elements ofD are ordered. Also the trace is invariant under matrix rotation. So, the

highest rankK trace we can hope to get is by choosingB so that, when combined withU we keep

the firstK columns ofD. That is, the columns ofB should be the firstK orthonormal rows ofU.

We need to make this a little more rigorous, but that’s it for now...
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Other Properties of PCA

Maximum Variance: The K-D subspace approximation captures

the greatest possible variance in the training data.

• Fora1 = ~b
T

1
~I, the direction~b1 that maximizes the variance E[a2

1] =

~b1
T
C~b1, subject to~b

T

1
~b1 = 1, is the first eigenvector ofC.

• The second maximizes~b
T

2 C
~b2 subject to~b

T

2
~b2 =1 and~b

T

1
~b2 =0.

• For ak = ~bk
T~I, and~a = (a1, ..., aK), the subspace coefficient

covariance is E[~a~aT ] = diag(d1, ..., dK). That is, the diagonal

entries ofD are marginal variances of the subspace coefficients:

σ2
k ≡ E[a2

k] = dk .

So the total variancecapturedin the subspace is sum of firstK

eigenvalues ofC.

• Total variancelostowing to the subspace projection (i.e., the out-

of-subspace variance) is the sum of the lastN2−K eigenvalues:

1

L

L
∑

l=1

[

min
~al

‖ ~Il − B~al ‖2
2

]

=

N2

∑

k=K+1

σ2
k

Decorrelated Coefficients: C is diagonalized by its eigenvectors,

soD is diagonal, and the subspace coefficients are uncorrelated.

• Under a Gaussian model of the images (where the images are

drawn from anN2-dimensional Gaussian pdf), this means that

the coefficients are also statistically independent.
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PCA and Singular Value Decomposition

The singular value decomposition of the data matrixA,

A =
[

~I1, ...,~IL

]

, A ∈ RN2
×L , where usuallyL � N2 .

is given by

A = USV
T

where U ∈ RN2
×L , S ∈ RL×L , V ∈ RL×L . The columns ofU andV are orthogonal, i.e.,

U
T
U = IL×L andV

T
V = IL×L, and matrixS is diagonal,S = diag(s1, ..., sL) wheres1 ≥ s2 ≥

... ≥ sL ≥ 0.

Theorem: The best rank-K approximation toA under the Frobenius norm,̃A, is given by

Ã =
K
∑

k=1

sk~uk~vk

T = BB
T
A , where min

rank(Ã)=K

‖A−Ã‖2
F

=
N2

∑

k=K+1

s2
k

,

andB = [~u1, ..., ~uK ]. Ã is also the best rank-K approximation under theL2 matrix norm.

What’s the relation to PCA and the covariance of the trainingimages?

C =
1

L

L
∑

l=1

~Il
~Il

T

=
1

L
AA

T =
1

L
USV

T
VS

T
U

T =
1

L
US

2
U

T

So the squared singular values ofA are proportional to the firstL eigenvalues ofC:

dk =

{

1
L

s2
k

for k = 1, ..., L

0 for k > L

And the singular vectors ofA are just the firstL eigenvectors ofC.
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Eigen-Images for Generic Images?

Fourier components are eigenfunctions of generic image ensembles.

Why? Covariance matrices for stationary processes are Toeplitz.

PCA yields unique eigen-images up to rotations of invariantsub-
spaces (e.g., Fourier components with the same marginal variance).
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Eigen-Reflectances

Consider an ensemble of surface reflectancesr(λ).

400 500 600 700
0

0.2

0.4

0.6

0.8

1

Wavelength (nm)

R
ef

le
ct

iv
ity

Various Munsell Reflectances

What is the effective dimension of these reflectances? Define

Vk ≡ ∑k
j=1 σ2

j . Then the fraction of total variance explained by the

first k PCA components isQk ≡ Vk/VL.
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Reflectancesr(λ), for wavelengthsλ within the visible spectrum, are
effectively 3 dimensional (seecolourTutorial.m).
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Eye Subspace Model

Subset of 1196 eye images (25 × 20):

Left Eyes Right Eyes

Defn: Let Vk ≡ ∑k
j=1 s2

j , dQk ≡ s2
k/VL, andQk ≡ Vk/VL:

0 5 10 15 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Singular value index, k

F
ra

ct
io

n 
of

 V
ar

ia
nc

e,
 d

Q
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Left plot showsdQk, the fraction of the total variance contributed by
thekth principal component.
Right plot showsQk the fraction of the total variance captured by the
subspace formed from the firstk principal components.
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Eye Subspace Model

Mean Eye:

Basis Images(1−6, and 10 :5 :35):

Reconstructions(for K = 5, 20, 50):

Eye Image Reconstruction
(K = 5)

Reconstruction
(K = 20)

Reconstruction
(K = 50)

Eye Image Reconstruction
(K = 5)

Reconstruction
(K = 20)

Reconstruction
(K = 50)
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Generative Eye Model

Generative model,M, for random eye images:

~I = ~m +

(

K
∑

k=1

ak
~bk

)

+ ~e

where~m is the mean eye image,ak∼N (0, σ2
k), σ2

k is the sample vari-

ance associated with thekth principal direction in the training data,

and~e ∼ N (0, σ2
e IN2) whereσ2

e = 1
N2

∑N2

k=K+1 σ2
k is the per pixel

out-of-subspace variance.

Random Eye Images:

Random draws from generative model  (with K = 5, 10, 20, 50, 100, 200)

So the probability of an image given this modelM is

p(~I |M) =

(

K
∏

k=1

p(ak|M)

)

p(~e |M)

where

p(ak|M) =
1√

2πσk

e
− a2

k

2σ2

k , p(~e |M) =
N2

∏

j=1

1√
2πσe

e
−

e2
j

2σ2
e .
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Face Detection

The wide-spread use of PCA for object recognition began withthe

work Turk and Pentland (1991) for face detection and recognition.

Shown below is the model learned from a collection of frontalfaces,

normalized for contrast, scale, and orientation, with the backgrounds

removed prior to PCA.

Here are the mean image (upper-left) and the first 15 eigen-images.

The first three show strong variations caused by illumination. The

next few appear to correspond to the occurrence of certain features

(hair, hairline, beard, clothing, etc).
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Object Recognition

Murase and Nayar (1995)
• images of multiple objects, taken from different positionson the

viewsphere
• each object occupies a manifold in the subspace (as a function of

position on the viewsphere)
• recognition: nearest neighbour assuming dense sampling ofob-

ject pose variations in the training set.
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Summary

The generative model:

• PCA finds the subspace (of a specified dimension) that maxi-
mizes projected signal variance.

• A single Gaussian model is naturally associated with a PCA rep-
resentation. The principal axes are the principal directions of the
Gaussian’s covariance.

Issues:

• The single Gaussian model is often rather crude. PCA coeff’scan
exhibit significantly more structure (cf. Murase & Nayar).

• As a result of this unmodelled structure, detectors based onsingle
Gaussian models are often poor. See the Matlab tutorial
detectEigenEyes.m.

• We discuss alternative detection strategies later in this course.
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