Parallel Lines Project to Intersecting Lines

As an application of (7), consider a set of parallel lines in 3D, say

$$\tilde{X}_k^h(s) = \begin{pmatrix} \tilde{X}_k^0 \\ 1 \end{pmatrix} + s \begin{pmatrix} \tilde{t} \\ 0 \end{pmatrix}.$$

Here \tilde{X}_k^0, for $k = 1, \ldots, K$, and \tilde{t} are 3D vectors in the world coordinate frame. Here \tilde{t} is the common 3D tangent direction for all the lines, and \tilde{X}_k^0 is an arbitrary point on the k^{th} line.

Then, according to equation (7), the images of these points in homogeneous coordinates are given by

$$\bar{p}_k^h(s) = M \tilde{X}_k^h(s) = \bar{p}_k^h(0) + s\bar{p}_t^h,$$

where $M = M_{int}M_{ext}$ is a 3×4 matrix, $\bar{p}_t^h = M(\tilde{t}^T, 0)^T$ and $\bar{p}_k^h(0) = M((\tilde{X}_k^0)^T, 1)^T$. Note \bar{p}_t^h and $\bar{p}_k^h(0)$ are both constant vectors, independent of s. Converting to standard pixel coordinates, we have

$$\bar{p}_k(s) = \frac{1}{\alpha(s)} \bar{p}_k^h(0) + \frac{s}{\alpha(s)}\bar{p}_t^h,$$

where $\alpha(s) = p_{k,3}^h(s)$ is third component of $\bar{p}_k^h(s)$. Therefore we have shown $\bar{p}_k(s)$ is in the subspace spanned by two constant 3D vectors. It is also in the image plane, $p_{k,3} = 1$. Therefore it is in the intersection of these two planes, which is a line in the image. That is, lines in 3D are imaged as lines in 2D. (Although, in practice, some lenses introduce “radial distortion”, which causes the image of a 3D line to be bent. However, this distortion can be removed with careful calibration.)

In addition it follows that $\alpha(s) = p_{k,3}^h(0) + \beta s$ where $\beta = p_{t,3}^h = (0, 0, 1)M(\tilde{t}^T, 0)^T$. Assuming $\beta \neq 0$, we have $1/\alpha(s) \to 0$ and $s/\alpha(s) \to 1/\beta$ as $s \to \infty$. Therefore the image points $\bar{p}_k(s) \to (1/\beta)\bar{p}_t^h$, which is a constant image point dependent only on the tangent direction of the 3D lines. This shows that the images of the parallel 3D lines $\tilde{X}_k^h(s)$ all intersect at the image point $(1/\beta)\bar{p}_t^h$.