
CSC487/2503 – Computational Vision – Fall 2009

Assignment 4: Detecting Human Eyes

Due: 4:00 pm., Fri., Dec. 4

This assignment is worth 15 marks towards your grade in this course.

This assignment uses a learning approach for view-based object detection.

Figure 1: Results of an eye detector roughly similar to the detector constructed in this assignment.
Green circles indicate detected eyes. Your results will vary.

Download A4Handout.zip from the course web page.

What to hand in. Write a short report addressing each of the itemized questions below
(hand-written reports are fine). You can assume that the marker knows the context of the questions,
so do not spend time repeating material in the hand-out or in class notes. Include print outs of the
output from your programs in your report. Also, please email kalo@dgp.toronto.edu each of the
Matlab files that you altered or created.

Training Data. One large set of eye and non-eye images has been split into two disjoint
sets, one in trainSet.mat, the other in testSet.mat. We will use the former to train various eye
detectors and, once the training is complete, we will use the latter to test their performance.

The images of eyes have been warped to be roughly of constant position, orientation, and scale
(the scale was set by specifying an inter-eye distance of about 40 pixels). These warped images were
then cropped to be of size 20 × 25. They are represented as 500 dimensional columns. There is also
a set of non-eye images in the training and test sets, which are used to tune and test the detectors.

1. Weak Classifiers. We demonstrate an eye classifier built using the AdaBoost learning algorithm.
This is a boosted classifier, based on many weak classifiers. Your task in this question is to
complete trainStump.m, which sets some of the parameters for a weak classifier.

The input for this M-function the function is a projection vector ~f , a flag useAbs, an N × K
dimensional data matrix X, 1 × K class label vector y (with y(k) equal to 0 or 1, indicating
the kth column of X corresponds to a non-target or target, respectively), and a 1 × K vector of

1



non-negative weights w. We seek a “weak-classifier” of the form:

h(~x, ~θ) =

{

I(u(~f T~x) ≤ θ1), for θ2 = 1,

I(u(~f T~x) > θ1), for θ2 = −1,
(1)

where u(z) is either just z or |z|, depending on whether or not the flag useAbs is false or true.
Also, I(b) in (1) is 1 when the boolean value b is true, and 0 otherwise. Note, this weak classifier
h(~x, ~θ) is similar to the weak classifier f(~x, ~θ) on p.27 of the View-Based Models notes, except
there the classifier takes values +1 and −1, while here it is +1 and 0.

The only unknowns for trainStump.m are the threshold value θ1 and the parity θ2. Complete
the M-function trainStump.m so that it returns the values described in the function comment,
including the optimum parameters ~θ. Denoting the kth column of X by ~xk, the optimum ~θ should
minimize the weighted error

err =

∑

k wkI(yk 6= h(~xk, ~θ))
∑

k wk

(2)

Hint: You can find θ1 and θ2 in Matlab without writing your own loop by using the built-in
functions cumsum, sum, max, and/or min.

Complete a short Matlab script, testStump.m, to demonstrate your M-function trainStump.m.
In particular, build several weak classifiers based on projection vectors ~f obtained from derivatives
of a Gaussian kernel (i.e., generated by buildGaussFeat.m in the handout code). You can assume
the weights in ~w are all equal (although it is important that your implementation of trainStump.m
works correctly for any non-negative weights with

∑

k wk 6= 0). In your report show histograms

of the continuous-valued function u(~f T~x) for both target ~x’s and non-targets. Report the true
positive rate and the false positive rate of each of your weak classifiers using the optimal ~θ.

2. AdaBoost. Browse the script file trainAdaGauss.m. The next thing you need to do to complete
the training part of this script is to write evalBoosted.m as described in the handout code’s
comments. Given a list of weak classifiers {hm(~x, ~θm)}M

m=1
, which have been trained as in question

5 above and found to have errors errm, for m = 1, . . . ,M , then the strong classifier is given by

SM (~x) =

M
∑

m=1

αm(2hm(~x, ~θm) − 1), (3)

here αm = log((1− errm)/errm). (This expression is different from the one on p.27 of the lecture
notes, since our weak classifiers have discrete values in {0, 1} instead of {−1, 1}.)

The first part of the script file trainAdaGauss.m can then be run to train a boosted classifier
for eyes. This iteratively adds one weak classifier to the additive linear model (3), trying many
different weak classifiers to determine which one to add. This search over many weak classifiers
may take a minute or so per classifier so you might try using only nFeatures = 20 weak classifiers.
If you have more CPU resources, try training nFeatures = 50 or 100.

As each weak classifier is selected, it is particularly instructive to observe the histograms of the
feature before thresholding, that is, histograms of u(~f T~x), for both the targets and the non
targets. (The M-file trainStump.m in the handout code is set up to make these plots.) If there
is an edge in most of the training target images at a particular scale, sign, and orientation, what
might you expect a selected feature to be? If the sign of the edge varies (i.e., either light to dark
or dark to light), what might you expect a selected feature to be? If the training target images

2



are all relatively smooth (i.e., no edges) in a particular region, what might you expect a selected
feature to be?

Add code to the end of trainAdaGauss.m to compute the ROC curves obtained by thresholding
the strong classifier in (3), that is, SM(~x) > τ , for different values of τ . Draw separate ROC
curves for various values of M . Do this for both the training set of eyes and non-eyes, and the
test set. To evaluate SM (~x) for some M less than the maximum number of features you trained,
you do not need to rerun the training. Why? Simply limit the sum in (3) to the first M terms.
Comment on the results. Are the testing and training errors for a given strong classifier (i.e., the
same M) similar? If not, explain what the cause for this might be.

3. Application to an Image Patch. The script file tryEyeDetector.m reads in an image of
several people, none of whom appear in the previous training or test sets. Write Matlab code to
select a rectangle from this image (using ginput(2)) and run an eye detector centered at every
pixel within the selected rectangle. Show the resulting detections overlayed on top of the original
image.

The reason for not running the eye detector over the whole image is that these Matlab implemen-
tations are slow. You can write a relatively efficient Matlab implementation by storing the image
as one long column vector I, and then forming X = I(J), where J is a 500×K matrix of indices
into I. If you choose the indices in J correctly, each column of X will be the pixels from a 20×25
patch within I. The detector can then be applied to all the columns in X quite efficiently. This
trick won’t work for the whole image, since you will run out of memory, but it will be able to
process many patches at a time (i.e., K patches).

Small Print. The eye detection results in Figure 1 were obtained using a similar positive set to the

one used here, but with a much larger negative set. The main point of showing these results here is to

demonstrate that a plausibly useful result can be obtained with the techniques described in this assignment.

4. Synthetic Visual Cortex. Suppose the first stage of our computational vision system always
computed an image pyramid. And say this pyramid included Gaussian filtered images (say at σ
equal to 4, 2, and 1), along with the first and second Gaussian derivatives (i.e., gx, gy, gxx, gxy

and gyy) at each of these scales. Completely specify the operations required to compute any of
the weak classifiers (1) actually used in Question 6 above. (I want a written answer, you do not
need to program anything.) Here you can assume you are given ~n = (cos(θ), sin(θ) corresponding
to the steering orientation, θ, of any directional derivative filter required. Note, some of the
filters used in buildGaussFeat.m were truncated to fit within the 20 × 25 image patch. You
can ignore this spatial truncation in describing how the weak classifiers are computed from these
pyramids. Also, roughly how many arithmetic operations are required to compute the strong
classifier SM(~x) above (ignoring the costs of forming and indexing into the image pyramids, and
the effects of spatial filter truncation)?

3


