
CSC487/2503 – Computational Vision – Fall 2007

Assignment 4: Particle Filtering

Due: at the beginning of the lecture, 1:10 pm., Thurs., Dec. 6
This assignment is worth 15 marks towards your grade in this course.

This assignment involves the implementation and evaluation of a simple particle filter.

Download pigeonTrack.zip from the course web page. If you are running Matlab on CDF
that is all you will need to download, since the image sequence is at /u/jepson/pub/pigeon/.
Otherwise, you will also need to download the image sequence in pigeon.zip.

Figure 1: The first frame of the sequence showing the “grey” pigeon and its clone, along with the
“red” pigeon.

What to hand in. Write a short report addressing each of the itemized questions below
(hand-written reports are fine). You can assume that the marker knows the context of the questions,
so do not spend time repeating material in the hand-out or in class notes. Include print outs of
the output from your program in your report. Also, please email mbrubake@cs.toronto.edu each
of the Matlab files that you altered or created. For undergrads this assignment is marked out of
35 (only questions 1 and 2 below are required). For grads this is marked out of 45 (questions 1,2
are required plus one of 3 or 4). In all cases students will be given extra credit, according to the
listed marking scheme, for any extra questions they complete. That is, the maximum mark for any
student is 55.

Diving in. There is nothing you need to hand in for this section. See the README file in
the handout code for a detailed description of the process of building an image observation model
and the associated likelihood.

To compute the image likelihood for a given image position ~x and orientation θ, we first place
a coarse grid on the image centered on ~x and oriented according to θ (see Fig. 2). Within each
cell of this grid we then compute a histogram of image gradients. The histogram bins range over
both the amplitude and the orientation of the gradients. Moreover, the image gradient orientations

1

Figure 2: Target HOG grids for the grey pigeon and its clone (left) and the red pigeon (right).

are rotated into the coordinates of the grid pattern (i.e. according to θ). Due to this rotation we
obtain some degree of pose invariance for the HOG descriptor. In particular, if we simply translate
and rotate an image patch, and place the grid on top of this patch with the same translation and
rotation, then the extracted gradient histograms should be the same (modulo interpolation and
gradient estimation errors).

The set of histograms within these grid cells form what is called a Histogram of Oriented
Gradients model, or HOG model (see Dalal and Triggs, Histograms of oriented gradients for human
detection, CVPR, 2005). The general motivation for this model is that the individual histograms
for each cell allow for some spatial distortion of the pattern of gradients within that cell. This is
coupled with information from the variation of the histograms over the whole HOG grid, which
maintains some information about the general spatial layout of the target.

The HOG implementation is provided in the handout code. The actual implementation differs
from the above description in that, instead of rotating the grid pattern by θ, we rotate the images
by −θ (actually, by a coarse discrete approximation of −θ) and then compute the histograms with
the HOG grid aligned with the x and y axes in the rotated image. This allows us to use integral
images to quickly compute the histograms for all the cells. Note we actually vary θ over the entire
range [0, 2π) even though the smaller range θ ∈ [0, π/2) would still achieve an axis aligned grid. We
chose not to use the smaller range primarily to save our programming time. (But this simplification
increases the runtime, especially in question 3 below.)

The script file grabHOG.m extracts the HOG models for the canonical position and orientation
for each of four different situations (see Fig. 2). We refer to these models as the “targets” we wish to
track. The goal of this assignment is, when given appropriate initial guesses, to track the position
and orientation of these targets through a short image sequence (76 frames).

During tracking suppose I(~x, t) is the image at time t and we have a hypothesized target
pose ~at = (~x T

t , θt)
T . We wish to determine if the image patch in the neighbourhood of ~xt with

the orientation of θt is similar to the particular target selected. To do this we first extract the
HOG model on the image I(~x, t), with the grid of cells translated and rotated according to the

2

pose ~at. We then compare this newly extracted HOG model with the original HOG target. In
particular, for each cell of the grid pattern, the histogram for the current image I(~x, t) is compared
with the corresponding histogram from the target. A histogram similarity score is computed for
each corresponding pair, and the average similarity score zt(~at) is computed. This zt is simply a
number between zero and one (with the value one denoting a perfect match, zero the worst possible
match).

Specific questions to be answered are listed below:

1. [10 pts] Log odds. First we consider how to map a score zt(~at) to the log likelihood ratio

L(z) = log

[

p(z| target present,~a)

p(z| target absent,~a)

]

. (1)

Here the distribution p(z| target present,~a) represents the probability that a score z is ob-
served when the target is actually present and the hypothesized pose ~a is correct. Similarly,
p(z| target absent,~a) represents the probability of z given the target is not actually present at
(or near) the pose ~a. We refer to these two conditional distributions as pOn(z) and pOff (z),
respectively.

The reason we want to compute the log likelihood ratio L(z) is that really we wish to compare
the probability that the target is present (with the specified pose) to the probability that it is
absent. This is discussed on p.32 of the tracking lecture notes.

In order to get a model for L(z) we first need to gather some data. Read steps 1 and 2 in
the README file in the handout code. After extracting a HOG model using grabHOG.m, run
trainHOG.m to extract histograms of the similarity scores zt. The script trainHOG.m asks you
to mouse in two different types of image regions (including their orientation), one which only
consists of negative examples, the other which only consists of positive examples. You will
need to collect several such sets of examples, for both pOn(z) and pOff(z). The script simply
loops until you hit Enter without mousing in any points. As a rule of thumb, you should keep
mousing in examples until the displayed histograms are reasonably stable from one step to the
next. You typically get many more negative examples per mouse click than positive ones, so you
will probably have to use more loop iterations to properly sample the positive example set. The
performance of your tracker will depend on how representative your set of positive and negative
examples are, so take your time.

The results of this training are written by trainHOG.m into the mat files respHist*.mat in the
./head and ./back subdirectories.

Next, by running fitLogOdds.m, you can eyeball a fit of log(pOn(z)/pOff (z)) with a logistic
model

L(z;µ, s, λ) =

[

1 − e−λ(z−µ)

1 + e−λ(z−µ)

]

s. (2)

Here s, µ, and λ are three positive scalar parameters. The corresponding Matlab variables are
mu, scl and lambda, and these appear near the top of the script fitLogOdds.m. You need
to roughly set the values of these three parameters to model the observed log likelihood ratio.
Different parameters should be used for each of the targets. These parameters are saved by
fitLogOdds.m in the hog*.mat files so that they can be used later.

3

You will notice that a single logistic model does not provide a fit to the observed behaviour of
log(pOn(z)/pOff (z)) over the whole range z ∈ [0, 1]. Instead, you need to decide which portion
of the plot you wish to model with the logistic function L(z).

In your write up, provide a short discussion of which portion of the log(pOn(z)/pOff (z)) curve
you decided to fit with the logistic L(z) and explain why. In your report include the plots of
these logistic fits produced by fitLogOdds.m. Finally, include a brief explanation of how you
can decide from just the plots of pOn(z) and pOff (z) how easy a target will be to track.

At this stage you can run tryHOG.m to try out your detector on images selected randomly from
the sequence. This will use the parameters you set for the logistic model (obtained from the
modified hog*.mat file). The script tryHOG.m asks you to mouse in an image patch, and an
orientation, and then the detector is run over this whole patch at the specified orientation.

If the training was done correctly, you should observe a peak in the logistic response L(z(~a(~x, θ)))
for positions ~x and orientations θ in the neighbourhood of the target’s pose. And this peak should
appear much stronger in the likelihood image eL(z). The true target may not always be the global
maximum, but it should often be. The presence of other local maxima in the responses is normal.

2. [25 pts] Particle filter. As discussed on pp.22-25 of the tracking lecture notes, we need two
components to build a particle filter for tracking. First we need a measurement model. Here
we will use the observation probability provided by the logistic model developed in question
1 above. Secondly, we need a model of the dynamics. In particular, we need to specify the
probability distribution for the pose of the target ~at given the pose at the previous time ~at−1.

(a) [5 pts] Model of dynamics. For the dynamics model we will use a zero velocity random
walk

~at = ~at−1 + ~nt, (3)

where the process noise ~nt is a mean zero, Normally distributed random variable, with a
diagonal covariance CD. The variances in the x and y image directions can be taken to be
equal, but the variance in θ should be different, so CD = diag(σ2

x, σ2
x, σ2

θ) for some constants
σx and σθ.

Implement this dynamics model by completing the M-file propagateSamples.m. The job
of propagateSamples.m is to take an unweighted set of samples representing the filtering
distribution p(~xt−1|~z1:t−1), propagate these samples to the next frame using p(~xt|~xt−1) and
return a new set of samples representing the proposal distribution p(~xt|~z1:t−1). (Hint: My
completed Matlab method is less than 10 lines long.)

(b) [10 pts] Reweight particle set using likelihoods. Your next task is to complete the
M-file updateWeights.m. This function is given as input parameters: a) the sample set
from the previous step; b) the current image; and c) the parameters of the likelihood model.
The log likelihood log p(zt|at) at all of the given samples for ~at is computed in the handout
code with the call to pigLogLike.

Given these log likelihoods your job is to compute weights for each of the samples. This is
described in Step 3 on page 23 of the lecture notes. (This again only takes a few lines of
Matlab code.)

In addition to computing the weights, your updateWeights.m function should also compute
the effective number of particles, as described on p.30. Simply print the effective number
of particles on the console.

4

(c) [5 pts] Go! Try the resulting particle filter on the four targets in Fig. 2. You need to
adjust the covariances in your dynamics prior.

In your write up describe how you set the covariances for the dynamics. Also include a
few frames showing examples of the tracking at various points during the sequence. These
figures can be obtained by running showResults.m after you have run the particle filter.
You can set the loop over frames in showResults.m to be just one frame, so you can capture
the desired figures.

(d) [5 pts] Evaluation of results. In your report provide a detailed evaluation of the per-
formance of the tracking algorithm. Explain, in general, what is required of the image
sequence and the target for there to be a reasonable expectation that this algorithm will
work. What are the algorithm’s strengths? What are the algorithm’s weaknesses? What
are the algorithm’s failure modes (i.e., what are the categorically distinct ways in which
the algorithm will fail)? Try to be clear and concise in your answers.

3. [10 pts] Tracking two modes. Since the particle filter maintains a representation of the
filtering distribution, it seems plausible that the particle filter might be useful for simultaneosly
tracking a couple of modes. In order to investigate this we can make use of the pigeon and its
clone. These have identical appearances (even their “mother” cannot tell them apart).

Modify partFilt.m so that the initial guess encompasses two sets of poses, one for the target
on one of the clones, and one for the same target on the other clone. This initial sample set
should be split roughly 50/50 between these two pigeons.

The other changes you need to make to partFilt.m are as follows. First the radius of the cropped
images needs to be increased. This radius is set by the variable sqrCropRad in partFilt.m.
Reset sqrCropRad to be more than the maximum distance between the two pigeons (i.e., 400).
Next you need to turn off the “safety net” by setting the variable safetyNet to false at the top
of partFilt.m. (The safety net uses some coarse tracking results to center the feasible region
for particles roughly in the neighbourhood of the target.) Finally, the last change required is
to reset the flag cropRotatedIm at the top of partFilt.m to be false. This allows the image
warping routine to rotate the image region without cropping any of the corners. The results
displayed Figure 201 by partFilt.m will now appear to change size. However that is just due
to the change in the bounding box around the rotated image. The image features themselves
are not being resized.

Given the above changes, try simultaneously tracking the targets on the backs of the two grey
pigeons. Then try tracking the heads of the two identical grey pigeons.

In your write up clearly describe your results. Are their additional failure modes that were not
present for the single target tracking case? If so, explain why these additional types of failures
occur.

4. [10 pts] Tracking linked objects. Suppose we wish to track both the head and the back
marking on a single pigeon. The state used by the tracker must now be a 6D vector, consisting
of the poses of both the body marking and the head. We refer to these two poses as ~a B

t and
~a H

t , respectively.

The image log likelihood of such a model can be taken to be simply a sum of the log likelihoods
of the two individual components, namely the head and back targets. This is definitely an over

5

simplification (e.g., it ignores any potential overlap in the image between these two targets).
However, this simplification suffices for our purposes here.

We also need to change the dynamics. A simple but clean way to do this is to model the Markov
dynamics as

p(~a B
t ,~a H

t |~a B
t−1,~a

H
t−1) = p(~a H

t |~a B
t ,~a H

t−1)p(~a B
t |~a B

t−1). (4)

This says that the pose of the body at time t, ~a B
t , depends only on the body pose at the previous

time t−1. The same zero velocity, Gaussian process as in question 2a above could be used here.
The other term in the new dynamics model, namely p(~a H

t |~a B
t ,~a H

t−1), conditions the current head
pose ~a H

t on both the previous head pose ~a H
t−1 and the current body pose ~a B

t . This term, then,
allows us to express the general relationship between the pose of the body marking and the pose
of the head.

Formulate a simple model for the conditional distribution p(~a H
t |~a B

t ,~a H
t−1). Hint: A product of

two Gaussian models, which is just another Gaussian, may suffice. Note that you will need to
sample from this distribution, so keep it simple.

In order to track such a model we need to make several changes to partFilt.m. First, we need
to change the initial guess. We also need to reset the sqrCropRad (this was described in the
previous question). Here we need to set it to be about the diameter of the image of a pigeon
(not half the size of the image, as we did in question 3). We need to turn the safety net off (see
question 3 above). And the flag cropRotatedIm can be set to true.

Secondly, the M-file propagateSamples.m needs to be rewritten given the change in the dynam-
ics. The idea here is that first you can sample from the distribution for the pose of the back
marking, using the same dynamic model p(~a B

t |~a B
t−1) as in question 2 above. Then, given the

sampled pose ~a B
t for the back at the current time t, and the poses at the previous frame, you

can sample for the pose of the head at time t using your conditional distribution p(~a H
t |~a B

t ,~a H
t−1).

Finally, the updateWeights function needs to be changed. In particular, you need to compute
two HOG similarities along with their associated logistic models. You can get the log image
likelihood for all the poses of the backs by calling pigLogLike once, giving the poses of the back
and the back marking HOG target as parameters. Then you can get the log image likelihood for
all the poses of the heads by calling pigLogLike a second time, this time passing it the poses of
the heads and the HOG model for the head. The sum of these two terms gives the log likelihood
for each of the particles.

Given these changes, the revised partFilt.m should now be able to track a linked pair of targets.

In your write up clearly describe how you designed p(~a H
t |~a B

t ,~a H
t−1), and also how you set its

parameters. Do you observe any improvement in performance of the tracker (not in terms of
runtime, but rather in the accuracy of the inferences)? Are their additional failure modes that
were not present for the single target tracking case?

6

