
CSC487/2503 – Computational Vision – Fall 2007

Assignment 3: Detecting Eigen-Eyes

Due: at the beginning of the lecture, 1:10 pm., Thurs., Nov. 15
This assignment is worth 15 marks towards your grade in this course.

This assignment explores principal component analysis (PCA) for representing images. Our
objective in this assignment is to gain some experience in using PCA and in evaluating the char-
acteristics of detectors built using PCA models. The general idea is that a fairly weak detector
can be useful given further constraints on the desired solutions. Here the additional information
we lean on is that eyes appear in skin coloured blobs, and two eyes typically appear together with
a known separation.

Familiarize yourself with the material in the utvisToolbox/tutorials/eigenTut tutorial.

Download eyeFinderHandout.zip from the course web page.

What to hand in. Write a short report addressing each of the itemized questions below
(hand-written reports are fine). You can assume that the marker knows the context of the questions,
so do not spend time repeating material in the hand-out or in class notes. Include print outs of
the output from your program in your report. Also, please email mbrubake@cs.toronto.edu each
of the Matlab files that you altered or created. Undergrads do not need to do problems 1 and 3
below (they will be given extra credit, according to the grad marking scheme, if they do).

Training Data. One large set of eye and non-eye images has been split into two disjoint
sets, one in trainSet.mat, the other in testSet.mat. We will use the former to train our eye
detector and, once the training is complete, we will use the latter to test its performance on a new
data set.

The eye images in trainSet.mat, have been warped to be roughly of constant position,
orientation, and scale (the scale was set by specifying an inter-eye distance of about 40 pixels).
These warped images were then cropped to be of size 20 × 25. They are represented as 500
dimensional columns in the Matlab matrix eyeIm. (There is also a set of non-eye images in nonIm,
which we will use to tune the detector.)

The handout code trainPCA.m loads the training set of images. It then massages the training
eye images to account for variations in image contrast. This is done by dividing the image by a
blurred version of itself. This preserves local contrast changes, but largely suppresses global shading
variations. Then the resulting images are rescaled and the mean image is projected out. This results
in a training set, say Dk(~x) for k = 1, . . . ,K of normalized, projected eye images for which the
PCA components are extracted.

The SVD then produces the basis images Bj(~x) along with the singular values σj , for j =
1, . . . , 500. In order to match the principal covariances of the data set, the singular values have

1

been rescaled by 1√
K

. These quantities are saved in trainDivEyes.mat (do not overwrite this file).

There is nothing you need to hand in for this section.

EigenEye Detector. The second script file, namely trainDetector.m, uses the above PCA
results to develop an eye detector. The detector is different from the one described in eigenTut.
Again there is nothing you to hand in for this section.

In particular, suppose we have extracted a 20 × 25 test image patch from a brightness nor-
malized image. Suppose I(~x) is that patch. In order to detect whether or not I(~x) is the image of
an eye (at the right position, orientation, and scale) we first project out the mean eye image. The
result is the image D(~x). We expand this using the PCA basis {Bk(~x)}nB

k=1
, giving the model image

M(~x) =

nB
∑

k=1

Bk(~x)ak. (1)

Here the coefficients ak are ak =
∑

~x Bk(~x)D(~x). Finally the error in this model image is

E(~x) = D(~x) − M(~x). (2)

We detect unmodeled pixels as points for which the error is larger than a simple threshold involving
the magnitude of the projected image D(~x), namely

|E(~x)| > c1 + c2|D(~x)|, (3)

where ~c T = (c1, c2) is a 2-vector of adjustable coefficients. In general, the threshold coefficients ~c
will depend on nB, the number of basis vectors used. The detector is based simply on the number
of pixels which satisfy (3).

Specific questions to be answered are listed below:

1. [5 pts] Residual Variance. Suppose we consider approximating the training images Dk(~x)
with just the first n PCA basis images, Bj(~x) for j = 1, . . . , n. Define the residual variance:

Vn(~x) ≡
1

K

K
∑

k=1

Dk(~x) −
n

∑

j=1

bk,jBj(~x)

2

, (4)

where the expansion coefficient bk,j is given by bk,j = 〈Dk(~x), Bj(~x)〉.

Show mathematically that this residual variance Vn(~x) satisfies

Vn(~x) =
500
∑

j=n+1

[Bj(~x)σj]
2 , (5)

where σ2
j is the jth eigenvalue of the data covariance matrix associated with the eigenvector

Bj(~x). (This exercise is not meant as a hint for question 3 below.)

2

2. [5 pts] Detector performance. Use trainDetector.m to determine the best coefficients ~c (to
only one significant digit) for each of the three choices for the basis dimension: nB = 10, 20, 50.
Here we wish to adjust the ~c to roughly minimize the false positive rate when the false negative
rate is close to 10%.

The code currently reports the false positive rate for the closest false negative rate it can find
below the 10% limit. I want you to minimize this reported false positive rate by adjusting the
~c. You can use different ~c’s for different values of nB.

Modify trainDetector.m so that it also generates ROC plot with the three detectors (for
nB = 10, 20, 50). (Feel free to copy the relevant code from eigenTut.)

Copy the modified trainDetector.m to testDetector.m, and run the detectors you tuned
above (for each nB = 10, 20, 50) on the data from the test set in testSet.mat. (Do NOT refit
your detectors on this test set!) This allows us to check that we have not overfit the detector to
the training data. The idea is that the results on the test set should be similar to those you get
on the training set.

Do you get similar ROC plots to the ones for the training set? Your report should include
the ROC plots for both the training and test results. Also, report your detector results (for
both training and test results) in terms of the false positive rate at a threshold where the false
negative rate is close to 10%.

3. [5 pts] Alternative detector. Try a different approach to do this detection. Implement
this approach in two M-files, trainMyDetector.m and testMyDetector.m. I am particularly
interested in smaller false positive rates, while keeping the false negative rate around 10%.

Your alternative approach could be the detector described in the lecture notes, or a variation on
the one implemented in the handout code trainDetector.m, or anything else you would like to
try. (Although, note that this question is only worth 5 points.)

In your report, first describe what motivated you to try this detector. Why should it work well?
Clearly describe the algorithm, and show ROC plots for both the training and test data. I
will not base the mark on the performance of the detector. Just try something reasonable, and
report your results.

4. [10 pts] Skin Coloured Blob Tracker. Here we consider massaging a given image sequence,
such as the one displayed in the beginning of the script file eyeFinderHandout.m, so that it can
then be processed to find eyes. In order to use the PCA-based eye detector developed above we
will need to locate the region around the face, and rescale it to have an inter-eye distance of
roughly 40 pixels. The image extent of the face does not change very much in the given sequence,
and therefore the code simply uses a single rescaling constant (you don’t need to change this).
As a result, we only need consider the identification and tracking of the center of a skin-coloured
region from frame to frame. In question 5 we will then apply the eigen-eye detector to the skin
coloured regions we extract here.

(a) [1 pt] Skin Colour Direction. We follow an approach similar to the one described
in Assignment 1 for segmenting a diffusely reflecting surface. In particular, let ~r be the
3-vector denoting the mean of the R,G,B pixel responses in a small hand-selected, skin-
coloured region of an image. Let ~d be the “skin-colour” direction defined by normalizing
this mean response, that is ~d ≡ ~r/||~r||. Fill in the computation of ~d below the line indicated
in eyeFinderHandout.m.

3

(b) [2 pts] Skin Coloured Pixels. The general idea is to identify skin-coloured pixels within
a test image by testing to see if their R,G,B values fall within a cone whose axis is the
skin-coloured direction ~d identified in part 2a.

To do this, we define s(~x) = ~d T ~im(~x) to be the component of the R,G,B responses at pixel
~x along the skin-coloured direction ~d. Here ~im(~x) is a 3-vector denoting the R, G, and B
responses at pixel ~x. The first restriction on skin-coloured pixels is that s(~x) must be bigger
than some minimum value, say s(~x) > ms, for some constant threshold ms > 0 (otherwise,
as we saw in Assignment 1, many dark pixels will be accepted as being skin-coloured). The
second condition is that we need the radial distance to the cone’s axis to be sufficiently
small. That is, for a given RGB value ~im(~x), define r(~x) to be the perpendicular distance
between the axis of the cone and ~im(~x), namely

r(~x) = || ~im(~x) − s(~x)~d||.

Finally, for any pixel with s(~x) > ms, define skinIm(~x) = f(r(~x)/s(~x)). Here f(z) ∈ [0, 1]
is a non-increasing function of z for z ≥ 0, with f(0) = 1 and limz→∞ f(z) = 0. Choose
any suitable such function f(z). For pixels which are too dark, that is s(~x) ≤ ms, set
skinIm(~x) = 0.

After you provide the implementation for skinIm(~x) in the code eyeFinderHandout.m, the
code will display your computed skin-colour response image. Adjust thresholds ms and f0

such that skinIm(~x) > f0 selects most of the skin-coloured pixels, but as few of the pixels
from the background as possible.

(c) [2 pts] Skin Coloured Blobs. We wish to remove small regions of isolated responses
from the skin-coloured pixel response image skinIm(~x), and to fill in undetected pixels
in skin-coloured regions. These properties will be important in Question 3 below, where
we will only consider pixels identified to be within skin coloured blobs when we search
for eyes. We therefore do not wish to miss too many pixels around the eyes! Also, to
save computation time, we do not want to have too many extraneous pixels within these
skin-coloured blobs.

To get the skin-coloured blob image, simply blur the thresholded image skinIm(~x) > f0 by
convolving it with a Gaussian filter, and threshold the response image, say blurSkinIm(~x) >
b0. (I found σ = 7 for the Gaussian filter worked well given the overall sizes of the faces
in the current test set.) The code eyeFinderHandout.m will display your computed skin-
colour blob image, blurSkinIm(~x). Adjust threshold b0 such that blurSkinIm(~x) > b0

selects almost all of the skin-coloured pixels, especially in the regions around the eyes.

(d) [5 pts] Skin Coloured Blob Tracking. We wish to rescale the image region around the
face so that the inter-eye distance roughly matches that used to train the PCA model. To
do that we first need to locate the face region in each of the images. Given the rough (x, y)
image location of the face (as specified by meanLoc in eyeFinderHandout.m), the code
already provided rescales and crops the region around this location. Here the rescaling
value is simply taken to be a constant, and no rotation is used in the image warp. All you
need to set is the center location of the face region, namely the value meanLoc.

Your task is to set the 2D vector meanLoc in eyeFinderHandout.m to provide the rough
(x, y) image coordinates for face region. These coordinates do not need to be very accurate,
so long as the face region ends up within the rescaled image. Use iteratively reweighted least
squares to find the robust mean of the (x, y) pixel locations for which blurSkinIm(~x) > b0.

4

Figure 1: Results of eigen-eye pair detector for the first and last frames. White regions indicate
the detected eyes.

Given an appropriate choice for the weights, the algorithm should be able to track the face
region through-out the sequence, using the location from the previous frame as the initial
guess for the next frame. The initial guess for the first frame is already set to be the center
of the image.

Once you have completed this modification of eyeFinderHandout.m, the revised code
should be able to track the skin coloured blob corresponding to the face. If you didn’t
use loops over image pixels, the entire algorithm should run reasonably quickly (my imple-
mentation requires less than a second per frame).

In your report, provide a detailed description of this iteratively reweighted least squares
algorithm to determine meanLoc, along with a specification for the particular distributions
of weights you used.

5. [10 pts] Eye Finder. Here we apply the eigen-eye detector discussed above (or yours from
question 3) to 20× 25 subimages cut out of the warped subimage wIm(~x) produced in question
4 above. Check the handout file eyeFinderHandout.m for the locations you need to add code.

First preprocess wIm(~x) by doing the local brightness division (see question 2 above), and
overwrite wIm(~x) with the result. Use a loop (yes, a loop!) over pixels ~x0 = (x0, y0) in the
warped image at which a skin coloured blob was identified (i.e. blurSkinIm(~x0) > b0). For each
such pixel ~x0, crop a 20×25 subimage from the normalized warped image wIm. In order to center
the eye of the PCA model at this pixel ~x0 = (x0, y0), use the ranges x = x0 + rangeEyeX and
y = y0 + rangeEyeY, where rangeEyeX and rangeEyeY are provided in eyeFinderHandout.m.
Store all these cropped subimages in one 500 × P matrix of test patches, where P is the total
number of patches. (This is the same format as the training and test data used in question
2 above.) You will also need to store the center position (x0, y0) for each of these P patches.
(Option: Only sample every other pixel both horizontally and vertically within the skin coloured
patch.)

(a) [7 pts] Single Eye Detector Apply one of the eigen-eye detectors discussed above to this
set of P cropped images. Note that this part of your Matlab code will be slow, perhaps
half a minute a frame, depending on how large the skin coloured blob was in the warped
frame and on nB, the dimension of the basis used in the detector. Generate an overlay
image (like the ones in Fig. 1) with the positions of the detected eyes marked in white.

5

Report on the overall performance of this detection scheme (include printed outputs of
the eye detection overlays). In particular, how common are false positives? Also, in what
situations do false negatives occur?

(b) [3 pts] Eye Pair Detector Finally, given the results of your individual eye detector in
part 5a, check that there is a corresponding eye response roughly 40 pixels to either the
right or left of it. This distance is the inter-eye separation used in the training images.
(The same distance was also used in selecting the rough size of the rescaling factor (i.e.
0.65) for computing the warped image wIm(~x).) In order to check for the matching eye in
a pair, allow for several pixels of error in both the vertical and horizontal directions.

Implement this verification step, and show only the pixels that were both identified as eyes
according to step 5b and have a corresponding companion response in roughly the right
location to either the left or right. Include printed copies of the overlayed detection results
in your report (similar to Fig. 1). How common are false positives now? In what situations
do false negatives occur?

6

